Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

In Silico Protein Interaction Network Analysis of Virulence Proteins Associated with Invasive Aspergillosis for Drug Discovery

Author(s): Renu Chaudhary, Meenakshi Balhara, Deepak Kumar Jangir, Mehak Dangi, Mrridula Dangi and Anil K. Chhillar*

Volume 19, Issue 2, 2019

Page: [146 - 155] Pages: 10

DOI: 10.2174/1568026619666181120150633

Price: $65

Abstract

Background: Protein-Protein interaction (PPI) network analysis of virulence proteins of Aspergillus fumigatus is a prevailing strategy to understand the mechanism behind the virulence of A. fumigatus. The identification of major hub proteins and targeting the hub protein as a new antifungal drug target will help in treating the invasive aspergillosis.

Materials & Method: In the present study, the PPI network of 96 virulence (drug target) proteins of A. fumigatus were investigated which resulted in 103 nodes and 430 edges. Topological enrichment analysis of the PPI network was also carried out by using STRING database and Network analyzer a cytoscape plugin app. The key enriched KEGG pathway and protein domains were analyzed by STRING.

Conclusion: Manual curation of PPI data identified three proteins (PyrABCN-43, AroM-34, and Glt1- 34) of A. fumigatus possessing the highest interacting partners. Top 10% hub proteins were also identified from the network using cytohubba on the basis of seven algorithms, i.e. betweenness, radiality, closeness, degree, bottleneck, MCC and EPC. Homology model and the active pocket of top three hub proteins were also predicted.

Keywords: A. fumigatus, Aspergillosis, STRING, Cytoscape, Hub proteins, Invasive aspergillosis.

Graphical Abstract
[1]
Yanagida, M. Functional proteomics: Current achievements. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 771(1-2), 89-106.
[http://dx.doi.org/10.1016/S1570-0232(02)00074-0] [PMID: 12015994]
[2]
Berggård, T.; Linse, S.; James, P. Methods for the detection and analysis of protein-protein interactions. Proteomics, 2007, 7(16), 2833-2842.
[http://dx.doi.org/10.1002/pmic.200700131] [PMID: 17640003]
[3]
von Mering, C.; Krause, R.; Snel, B.; Cornell, M.; Oliver, S.G.; Fields, S.; Bork, P. Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 2002, 417(6887), 399-403.
[http://dx.doi.org/10.1038/nature750] [PMID: 12000970]
[4]
Braun, P.; Gingras, A.C. History of protein-protein interactions: From egg-white to complex networks. Proteomics, 2012, 12(10), 1478-1498.
[http://dx.doi.org/10.1002/pmic.201100563] [PMID: 22711592]
[5]
Zhang, A. Protein interaction networks: Computational analysis. 2009.
[6]
Liu, P.; Yang, L.; Shi, D.; Tang, X. Prediction of protein-protein interactions related to protein complexes based on protein interaction networks. BioMed Res. Int., 2015, 2015, 259157.
[PMID: 25722972]
[7]
Chen, J.; Hsu, W.; Lee, M.L.; Ng, S.K. Increasing confidence of protein interactomes using network topological metrics. Bioinformatics, 2006, 22(16), 1998-2004.
[http://dx.doi.org/10.1093/bioinformatics/btl335] [PMID: 16787971]
[8]
Zou, Q.; He, W. Special protein molecules computational identification. Int. J. Mol. Sci., 2018, 19(2), E536.
[http://dx.doi.org/ 10.3390/ijms19020536] [PMID: 29439426]
[9]
Ito, T.; Chiba, T.; Ozawa, R.; Yoshida, M.; Hattori, M.; Sakaki, Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA, 2001, 98(8), 4569-4574.
[http://dx.doi.org/10.1073/pnas.061034498] [PMID: 11283351]
[10]
Mrowka, R.; Patzak, A.; Herzel, H. Is there a bias in proteome research? Genome Res., 2001, 11(12), 1971-1973.
[http://dx.doi.org/10.1101/gr.206701] [PMID: 11731485]
[11]
Shoemaker, B.A.; Panchenko, A.R.; Bryant, S.H. Finding biologically relevant protein domain interactions: conserved binding mode analysis. Protein Sci., 2006, 15(2), 352-361.
[http://dx.doi.org/ 10.1110/ps.051760806] [PMID: 16385001]
[12]
Rao, V.S.; Srinivas, K.; Sujini, G.N.; Kumar, G.N. Protein-protein interaction detection: methods and analysis. Int. J. Proteomics, 2014, 2014, 147648.
[http://dx.doi.org/10.1155/2014/147648] [PMID: 24693427]
[13]
Albrecht, D.; Kniemeyer, O.; Mech, F.; Gunzer, M.; Brakhage, A.; Guthke, R. On the way toward systems biology of Aspergillus fumigatus infection. Int. J. Med. Microbiol., 2011, 301(5), 453-459.
[http://dx.doi.org/10.1016/j.ijmm.2011.04.014] [PMID: 21555243]
[14]
Thykaer, J.; Andersen, M.R.; Baker, S.E. Essential pathway identification: From in silico analysis to potential antifungal targets in Aspergillus fumigatus. Med. Mycol., 2009, 47(1)(Suppl. 1), S80-S87.
[http://dx.doi.org/10.1080/13693780802455305] [PMID: 19253142]
[15]
Thakur, R.; Shankar, J. In silico identification of potential peptides or allergen shot candidates against Aspergillus fumigatus. Biores. Open Access, 2016, 5(1), 330-341.
[http://dx.doi.org/ 10.1089/biores.2016.0035] [PMID: 27872794]
[16]
Patronov, A.; Doytchinova, I. T-cell epitope vaccine design by immunoinformatics. Open Biol., 2013, 3(1), 120139.
[http://dx.doi.org/10.1098/rsob.120139] [PMID: 23303307]
[17]
Chaudhuri, R.; Ansari, F.A.; Raghunandanan, M.V.; Ramachandran, S.; Fungal, R.V. Adhesin prediction and immunoinformatics portal for human fungal pathogens. BMC Genomics, 2011, 12, 192.
[http://dx.doi.org/10.1186/1471-2164-12-192] [PMID: 21496229]
[18]
Vivek-Ananth, R.P.; Mohanraj, K.; Vandanashree, M.; Jhingran, A.; Craig, J.P.; Samal, A. Comparative systems analysis of the secretome of the opportunistic pathogen Aspergillus fumigatus and other Aspergillus species. Sci. Rep., 2018, 8(1), 6617.
[http://dx.doi.org/10.1038/s41598-018-25016-4] [PMID: 29700415]
[19]
Abad, A.; Fernández-Molina, J.V.; Bikandi, J.; Ramírez, A.; Margareto, J.; Sendino, J.; Hernando, F.L.; Pontón, J.; Garaizar, J.; Rementeria, A. What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev. Iberoam. Micol., 2010, 27(4), 155-182.
[http://dx.doi.org/10.1016/j.riam.2010.10.003] [PMID: 20974273]
[20]
Rementeria, A.; López-Molina, N.; Ludwig, A.; Vivanco, A.B.; Bikandi, J.; Pontón, J.; Garaizar, J. Genes and molecules involved in Aspergillus fumigatus virulence. Rev. Iberoam. Micol., 2005, 22(1), 1-23.
[http://dx.doi.org/10.1016/S1130-1406(05)70001-2] [PMID: 15813678]
[21]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(Database issue), D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[22]
Su, G.; Morris, J.H.; Demchak, B.; Bader, G.D. Biological network exploration with cytoscape 3. Curr. Protoc. Bioinformatics, 2014, 2014, 1-8.
[23]
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and subnetworks from complex interactome. BMC Syst. Biol., 2014, 8(Suppl. 4), S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[24]
NCBI Resource Coordinators. Database resources of the national center for biotechnology information. Nucleic Acids Res., 2017, 45(D1), D12-D17.
[http://dx.doi.org/10.1093/nar/gkw1071] [PMID: 27899561]
[25]
Bordoli, L.; Kiefer, F.; Arnold, K.; Benkert, P.; Battey, J.; Schwede, T. Protein structure homology modeling using SWISS-MODEL workspace. Nat. Protoc., 2009, 4(1), 1-13.
[http://dx.doi.org/10.1038/nprot.2008.197] [PMID: 19131951]
[26]
Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22(2), 195-201.
[http://dx.doi.org/10.1093/bioinformatics/bti770] [PMID: 16301204]
[27]
Wiederstein, M.; Sippl, M.J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res, 2007, 35(Web Server issue), W407-10.
[PMID: 17517781]
[28]
Colovos, C.; Yeates, T.O. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci., 1993, 2(9), 1511-1519.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[29]
Wallner, B.; Elofsson, A. Can correct protein models be identified? Protein Sci., 2003, 12(5), 1073-1086.
[http://dx.doi.org/10.1110/ps.0236803] [PMID: 12717029]
[30]
Chen, V.B.; Arendall, W.B., III; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(Pt 1), 12-21.
[http://dx.doi.org/10.1107/S0907444909042073] [PMID: 20057044]
[31]
Berjanskii, M.; Zhou, J.; Liang, Y.; Lin, G.; Wishart, D.S. Resolution-by-proxy: A simple measure for assessing and comparing the overall quality of NMR protein structures. J. Biomol. NMR, 2012, 53(3), 167-180.
[http://dx.doi.org/10.1007/s10858-012-9637-2] [PMID: 22678091]
[32]
Dundas, J.; Ouyang, Z.; Tseng, J.; Binkowski, A.; Turpaz, Y.; Liang, J. CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res., 2006, 34, W116-W118.
[33]
Zheng, L-L.; Li, Y-X.; Ding, J.; Guo, X-K.; Feng, K-Y.; Wang, Y-J.; Hu, L-L.; Cai, Y-D.; Hao, P.; Chou, K-C. A comparison of computational methods for identifying virulence factors. PLoS One, 2012, 7(8), e42517.
[http://dx.doi.org/10.1371/journal.pone.0042517] [PMID: 22880014]
[34]
Muetze, T.; Goenawan, I.H.; Wiencko, H.L.; Bernal-Llinares, M.; Bryan, K.; Lynn, D.J. Contextual Hub Analysis Tool (CHAT): A Cytoscape app for identifying contextually relevant hubs in biological networks. F1000 Res., 2016, 5, 1745.
[http://dx.doi.org/10.12688/f1000research.9118.1] [PMID: 27853512]
[35]
Lin, C.Y.; Chin, C.H.; Wu, H.H.; Chen, S.H.; Ho, C.W.; Ko, M.T. Hubba: hub objects analyzer--A framework of interactome hubs identification for network biology. Nucleic Acids Res, 2008, 36(Web Server issue), W438-43.
[PMID: 18503085]
[36]
Jeong, H.; Mason, S.P.; Barabási, A.L.; Oltvai, Z.N. Lethality and centrality in protein networks. Nature, 2001, 411(6833), 41-42.
[http://dx.doi.org/10.1038/35075138] [PMID: 11333967]
[37]
He, X.; Zhang, J. Why do hubs tend to be essential in protein networks? PLoS Genet, 2006, 2, 0826-0834.
[38]
Albert, R.; Jeong, H.; Barabási, A.L. Error and attack tolerance of complex networks. Nature, 2000, 406(6794), 378-382.
[http://dx.doi.org/10.1038/35019019] [PMID: 10935628]
[39]
Han, J.D.J.; Bertin, N.; Hao, T.; Goldberg, D.S.; Berriz, G.F.; Zhang, L.V.; Dupuy, D.; Walhout, A.J.M.; Cusick, M.E.; Roth, F.P.; Vidal, M. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature, 2004, 430(6995), 88-93.
[http://dx.doi.org/10.1038/nature02555] [PMID: 15190252]
[40]
Aleksenko, A.; Liu, W.; Gojkovic, Z.; Nielsen, J.; Piskur, J. Structural and transcriptional analysis of the pyrABCN, pyrD and pyrF genes in Aspergillus nidulans and the evolutionary origin of fungal dihydroorotases. Mol. Microbiol., 1999, 33(3), 599-611.
[http://dx.doi.org/10.1046/j.1365-2958.1999.01507.x] [PMID: 10417650]
[41]
David, H.; Ozçelik, I.Ş.; Hofmann, G.; Nielsen, J. Analysis of Aspergillus nidulans metabolism at the genome-scale. BMC Genomics, 2008, 9, 163.
[http://dx.doi.org/10.1186/1471-2164-9-163] [PMID: 18405346]
[42]
Palmer, L.M.; Cove, D.J. Pyrimidine biosynthesis in Aspergillus nidulans: isolation and preliminary characterisation of auxotrophic mutants. Mol. Gen. Genet., 1975, 138(3), 243-255.
[http://dx.doi.org/10.1007/BF00269351] [PMID: 1102932]
[43]
Lamarre, C.; Sokol, S.; Debeaupuis, J.P.; Henry, C.; Lacroix, C.; Glaser, P.; Coppée, J.Y.; François, J.M.; Latgé, J.P. Transcriptomic analysis of the exit from dormancy of Aspergillus fumigatus conidia. BMC Genomics, 2008, 9, 417.
[http://dx.doi.org/10.1186/1471-2164-9-417] [PMID: 18796135]
[44]
Sugui, J.A.; Kim, H.S.; Zarember, K.A.; Chang, Y.C.; Gallin, J.I.; Nierman, W.C.; Kwon-Chung, K.J. Genes differentially expressed in conidia and hyphae of Aspergillus fumigatus upon exposure to human neutrophils. PLoS One, 2008, 3(7), e2655.
[http://dx.doi.org/10.1371/journal.pone.0002655] [PMID: 18648542]
[45]
Blatzer, M.; Barker, B.M.; Willger, S.D.; Beckmann, N.; Blosser, S.J.; Cornish, E.J.; Mazurie, A.; Grahl, N.; Haas, H.; Cramer, R.A. SREBP coordinates iron and ergosterol homeostasis to mediate triazole drug and hypoxia responses in the human fungal pathogen Aspergillus fumigatus. PLoS Genet., 2011, 7(12), e1002374.
[http://dx.doi.org/10.1371/journal.pgen.1002374] [PMID: 22144905]
[46]
Lamb, H.K.; Bagshaw, C.R.; Hawkins, A.R. In vivo overproduction of the pentafunctional arom polypeptide in Aspergillus nidulans affects metabolic flux in the quinate pathway. Mol. Gen. Genet., 1991, 227(2), 187-196.
[http://dx.doi.org/10.1007/BF00259670] [PMID: 1648168]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy