Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Nanocarriers: A Successful Tool to Increase Solubility, Stability and Optimise Bioefficacy of Natural Constituents

Author(s): Anna Rita Bilia*, Vieri Piazzini, Laura Risaliti, Giulia Vanti, Marta Casamonti, Meng Wang and Maria Camilla Bergonzi

Volume 26 , Issue 24 , 2019

Page: [4631 - 4656] Pages: 26

DOI: 10.2174/0929867325666181101110050

Price: $65

Abstract

Natural products are fascinating molecules in drug discovery for their exciting structure variability and also for their interaction with various targets. Drugs multi-targeting effect represents a more realistic approach to develop successful medications for many diseases. However, besides a large number of successful in vitro and in vivo studies, most of the clinical trials fail. This is generally related to the scarce water solubility, low lipophilicity and inappropriate molecular size of natural compounds, which undergo structural instability in biological milieu, rapid clearance and high metabolic rate. Additionally, some molecules are destroyed in gastric juice or suffer to a massive pre-systemic metabolism in the liver, when administered orally, limiting their clinical use. A reduced bioavailability can also be linked to drug distribution/accumulation in non-targeted tissues and organs that increase the side effects lowering the therapeutic efficacy and patient compliance. Nanomedicine represents a favourable tool to increase bioavailability and activities of natural products. Generally, nanovectors provide a large surface area and can overcome anatomic barriers. Each nanovector has its own advantages, disadvantages, and characteristics. In this review, different nanocarriers made of compounds which are Generally Recognized As Safe (GRAS) for the delivery of natural products, marketed as food supplements and medicines are reported.

Keywords: Natural products, low bioavailability, poor stability, lipid-based and polymeric nanoparticles, improved oral bioefficacy, passive and active targeting, crossing barriers.

[1]
Solecki, R. Shanidar IV, a Neanderthal Flower Burial in Northern Iraq. Science, 1975, 190(4217), 880-881.
[http://dx.doi.org/10.1126/science.190.4217.880]
[2]
Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep., 2000, 17(3), 215-234.
[http://dx.doi.org/10.1039/a902202c] [PMID: 10888010]
[3]
Castiglioni, A. A History of Medicine; Jason Aronson: New York, 1985.
[4]
Theophrastus, Enquiry Into Plants Volume I: Books 1-5; Loeb Classical Library/G.P; Putnam's Sons: New York, 1916.
[5]
Wermuth, C.G. The Practice of Medicinal Chemistry, 3rd ed; Academic Press: Amsterdam, 2003.
[6]
National Library of Medicine. United States National Insti-tutes of Health., www.nlm.nih.gov/hmd/medieval/ara-bic.html
[7]
Chen, H.H. Integrating ancient and modern medicine in Chinese hospitals. The interaction among technology, traditional Chinese medicine, and health care. Int. J. Technol. Assess. Health Care, 1987, 3(2), 265-273.
[http://dx.doi.org/10.1017/S0266462300000556] [PMID: 10284924]
[8]
Wan, F.; Zhong, G.S. A medication comparison between Prescriptions for Fifty-two Diseases and Ten Thousands Things. Acta Med Sin, 1990, 5, 55-58.
[9]
Gao, X.M. Advanced Traditional Chinese Medicine Se-ries/Chinese Materia Medica; People's Medical Publishing House: Beijing, 2004, Vol. 1, .
[10]
Dwivedi, G.; Dwivedi, S. Sushruta - The clinician-teacher par excellence. Indian J. Chest Dis. Allied Sci., 2007, 49, 243-244.
[11]
Gates, W. An Aztec herbal: the classic codex of 1552; Do-ver Books: Mineola, NY, 2000.
[12]
Kong, D.X.; Li, X.J.; Zhang, H.Y. Convergent evolution of medicines. ChemMedChem, 2008, 3(8), 1169-1171.
[http://dx.doi.org/10.1002/cmdc.200800093] [PMID: 18491331]
[13]
Cheng, Z.F.; Zhen, C. The Cheng Zhi-Fan Collectanea of Medical History; Peking University Medical Press: Beijing, 2004.
[14]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[15]
Newman, D.J. Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J. Med. Chem., 2008, 51(9), 2589-2599.
[http://dx.doi.org/10.1021/jm0704090] [PMID: 18393402]
[16]
Beghyn, T.; Deprez-Poulain, R.; Willand, N.; Folleas, B.; Deprez, B. Natural compounds: leads or ideas? Bioinspired molecules for drug discovery. Chem. Biol. Drug Des., 2008, 72(1), 3-15.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00673.x] [PMID: 18554253]
[17]
Dictionary of Natural Products, http://dnp.chemnetbase.com
[18]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[19]
Fischer, E. Einfluss der Configuration auf die Wirkung der Enzyme. Ber. Dtsch. Chem. Ges., 1894, 27, 2985-2993.
[http://dx.doi.org/10.1002/cber.18940270364]
[20]
Lu, J.J.; Pan, W.; Hu, Y.J.; Wang, Y.T. Multi-target drugs: the trend of drug research and development. PLoS One, 2012, 7(6)e40262
[http://dx.doi.org/10.1371/journal.pone.0040262] [PMID: 22768266]
[21]
Morphy, R. Selectively nonselective kinase inhibition: striking the right balance. J. Med. Chem., 2010, 53(4), 1413-1437.
[http://dx.doi.org/10.1021/jm901132v] [PMID: 20166671]
[22]
Csermely, P.; Agoston, V.; Pongor, S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol. Sci., 2005, 26(4), 178-182.
[http://dx.doi.org/10.1016/j.tips.2005.02.007] [PMID: 15808341]
[23]
Bilia, A.R. Herbal medicinal products versus botanical-food supplements in the European market: state of art and perspectives. Nat. Prod. Commun., 2015, 10(1), 125-131.
[http://dx.doi.org/10.1177/1934578X1501000130] [PMID: 25920234]
[24]
Scuteri, D.; Morrone, L.A.; Rombolà, L.; Avato, P.R.; Bilia, A.R.; Corasaniti, M.T.; Sakurada, S.; Sakurada, T.; Bagetta, G. Aromatherapy and Aromatic Plants for the Treatment of Behavioural and Psychological Symptoms of Dementia in Patients with Alzheimer’s Disease: Clinical Evidence and Possible Mechanisms. Evid. Based Complement. Alternat. Med., 2017.20179416305
[http://dx.doi.org/10.1155/2017/9416305] [PMID: 28465709]
[25]
Bilia, A.R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M.C. Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid. Based Complement. Alternat. Med., 2014.2014651593
[http://dx.doi.org/10.1155/2014/651593] [PMID: 24971152]
[26]
Bilia, A.R.; Piazzini, V.; Guccione, C.; Risaliti, L.; Asprea, M.; Capecchi, G.; Bergonzi, M.C. Improving on Nature: The Role of Nanomedicine in the Development of Clinical Natural Drugs. Planta Med., 2017, 83(5), 366-381.
[http://dx.doi.org/10.1055/s-0043-102949] [PMID: 28178749]
[27]
Airoldi, C.; La Ferla, B.D.; Orazio, G.; Ciaramelli, C.; Palmioli, A. Flavonoids in the treatment of Alzheimer’s and other neu-rodegenerative diseases. Curr. Med. Chem., 2018, 25(27), 3228-3246.
[http://dx.doi.org/10.2174/0929867325666180209132125] [PMID: 29424298]
[28]
Dariush Mozaffarian, J.H.Y. Flavonoids, Dairy Foods, and Cardiovascular and Metabolic Health. A Review of Emerging Biologic Pathways. Wu Circ Res., 2018, 122, 369-384.
[29]
Gupta, S.S. Prospects and perspectives of natural plant products in medicine. Indian J. Pharmacol., 1994, 26, 1-12.
[30]
Cragg, G.M.; Newman, D.J. Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta, 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[31]
Bhattaram, V.A.; Graefe, U.; Kohlert, C.; Veit, M.; Derendorf, H. Pharmacokinetics and bioavailability of herbal medicinal products. Phytomedicine, 2002, 9(Suppl. 3), 1-33.
[http://dx.doi.org/10.1078/1433-187X-00210] [PMID: 12222652]
[32]
Karakaya, S. Bioavailability of phenolic compounds. Crit. Rev. Food Sci. Nutr., 2004, 44(6), 453-464.
[http://dx.doi.org/10.1080/10408690490886683] [PMID: 15615428]
[33]
Mehta, P.; Shah, R.; Lohidasan, S.; Mahadik, K.R. Pharmacokinetic profile of phytoconstituent(s) isolated from medicinal plants-A comprehensive review. J. Tradit. Complement. Med., 2015, 5(4), 207-227.
[http://dx.doi.org/10.1016/j.jtcme.2014.11.041] [PMID: 26587392]
[34]
Kesarwani, K.; Gupta, R.; Mukerjee, A. Bioavailability enhancers of herbal origin: an overview. Asian Pac. J. Trop. Biomed., 2013, 3(4), 253-266.
[http://dx.doi.org/10.1016/S2221-1691(13)60060-X] [PMID: 23620848]
[35]
Couvreur, P.; Vauthier, C. Nanotechnology: intelligent design to treat complex disease. Pharm. Res., 2006, 23(7), 1417-1450.
[http://dx.doi.org/10.1007/s11095-006-0284-8] [PMID: 16779701]
[36]
Fleisher, D.; Bong, R.; Stewart, B.H. Improved oral drug delivery: solubility limitations overcome by the use of pro-drugs. Adv. Drug Deliv. Rev., 1996, 19, 115-130.
[http://dx.doi.org/10.1016/0169-409X(95)00103-E]
[37]
Stella, V.J.; Nti-Addae, K.W. Prodrug strategies to overcome poor water solubility. Adv. Drug Deliv. Rev., 2007, 59(7), 677-694.
[http://dx.doi.org/10.1016/j.addr.2007.05.013] [PMID: 17628203]
[38]
Merisko-Liversidge, E.; Liversidge, G.G.; Cooper, E.R. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci., 2003, 18(2), 113-120.
[http://dx.doi.org/10.1016/S0928-0987(02)00251-8] [PMID: 12594003]
[39]
Möschwitzer, J.P. Drug nanocrystals in the commercial pharmaceutical development process. Int. J. Pharm., 2013, 453(1), 142-156.
[http://dx.doi.org/10.1016/j.ijpharm.2012.09.034] [PMID: 23000841]
[40]
Müller, R.H.; Gohla, S.; Keck, C.M. State of the art of nanocrystals--special features, production, nanotoxicology aspects and intracellular delivery. Eur. J. Pharm. Biopharm., 2011, 78(1), 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.007] [PMID: 21266197]
[41]
Ku, M.S. Use of the Biopharmaceutical Classification System in early drug development. AAPS J., 2008, 10(1), 208-212.
[http://dx.doi.org/10.1208/s12248-008-9020-0] [PMID: 18446521]
[42]
Bi, C.; Miao, X.Q.; Chow, S.F.; Wu, W.J.; Yan, R.; Liao, Y.H.; Chow, A.H.; Zheng, Y. Particle size effect of curcumin nanosuspensions on cytotoxicity, cellular internalization, in vivo pharmacokinetics and biodistribution. Nanomedicine (Lond.), 2017, 13(3), 943-953.
[http://dx.doi.org/10.1016/j.nano.2016.11.004] [PMID: 27884638]
[43]
Gao, Y.; Wang, C.; Sun, M.; Wang, X.; Yu, A.; Li, A.; Zhai, G. In vivo evaluation of curcumin loaded nanosuspensions by oral administration. J. Biomed. Nanotechnol., 2012, 8(4), 659-668.
[http://dx.doi.org/10.1166/jbn.2012.1425] [PMID: 22852475]
[44]
Li, X.; Yuan, H.; Zhang, C.; Chen, W.; Cheng, W.; Chen, X.; Ye, X. Preparation and in-vitro/in-vivo evaluation of curcumin nanosuspension with solubility enhancement. J. Pharm. Pharmacol., 2016, 68(8), 980-988.
[http://dx.doi.org/10.1111/jphp.12575] [PMID: 27283220]
[45]
Wang, Y.; Wang, C.; Zhao, J.; Ding, Y.; Li, L. A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability. J. Colloid Interface Sci., 2017, 485, 91-98.
[http://dx.doi.org/10.1016/j.jcis.2016.09.003] [PMID: 27657837]
[46]
Rachmawati, H.; Al Shaal, L.; Müller, R.H.; Keck, C.M. Development of curcumin nanocrystal: physical aspects. J. Pharm. Sci., 2013, 102(1), 204-214.
[http://dx.doi.org/10.1002/jps.23335] [PMID: 23047816]
[47]
Tousif, S.; Singh, D.K.; Mukherjee, S.; Ahmad, S.; Arya, R.; Nanda, R.; Ranganathan, A.; Bhattacharyya, M.; Van Kaer, L.; Kar, S.K.; Das, G. Nanoparticle-Formulated Curcumin Prevents Posttherapeutic Disease Reactivation and Reinfection with Mycobacterium tuberculosis following Isoniazid Therapy. Front. Immunol., 2017, 8, 739.
[http://dx.doi.org/10.3389/fimmu.2017.00739] [PMID: 28713372]
[48]
Tagami, T.; Imao, Y.; Ito, S.; Nakada, A.; Ozeki, T. Simple and effective preparation of nano-pulverized curcumin by femtosecond laser ablation and the cytotoxic effect on C6 rat glioma cells in vitro. Int. J. Pharm., 2014, 468(1-2), 91-96.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.013] [PMID: 24709219]
[49]
Yadav, D.; Kumar, N. Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance. Int. J. Pharm., 2014, 477(1-2), 564-577.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.070] [PMID: 25445971]
[50]
Singh, S.; Aggarwal, B.B. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane).[corrected] J. Biol. Chem., 1995, 270(42), 24995-25000.
[http://dx.doi.org/10.1074/jbc.270.42.24995] [PMID: 7559628]
[51]
Reddy, S.; Aggarwal, B.B. Curcumin is a non-competitive and selective inhibitor of phosphorylase kinase. FEBS Lett., 1994, 341(1), 19-22.
[http://dx.doi.org/10.1016/0014-5793(94)80232-7] [PMID: 7511111]
[52]
Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer, 2011, 10, 12.
[http://dx.doi.org/10.1186/1476-4598-10-12] [PMID: 21299897]
[53]
Bilia, A.R.; Bergonzi, M.C.; Isacchi, B.; Antiga, E.; Caproni, M. Curcumin nanoparticles potentiate therapeutic effectiveness of acitrein in moderate-to-severe psoriasis patients and control serum cholesterol levels. J. Pharm. Pharmacol., 2018, 70(7), 919-928.
[http://dx.doi.org/10.1111/jphp.12910] [PMID: 29600580]
[55]
Bilia, A.R.; Isacchi, B.; Righeschi, C.; Guccione, C.; Ber-gonzi, M.C. Flavonoids loaded in nanocarriers: an oppor-tunity to increase oral bioavailability and bioefficacy. Food Nutr. Sci., 2014, 5(13), 1212-1227.
[http://dx.doi.org/10.4236/fns.2014.513132]
[56]
Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm., 2008, 69(1), 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2007.08.001] [PMID: 17826969]
[57]
Decuzzi, P.; Godin, B.; Tanaka, T.; Lee, S.Y.; Chiappini, C.; Liu, X.; Ferrari, M. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release, 2010, 141(3), 320-327.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.014] [PMID: 19874859]
[58]
He, C.; Yin, L.; Tang, C.; Yin, C. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials, 2012, 33(33), 8569-8578.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.063] [PMID: 22906606]
[59]
He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010, 31(13), 3657-3666.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.065] [PMID: 20138662]
[60]
Schimpel, C.; Teubl, B.; Absenger, M.; Meindl, C.; Fröhlich, E.; Leitinger, G.; Zimmer, A.; Roblegg, E. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles. Mol. Pharm., 2014, 11(3), 808-818.
[http://dx.doi.org/10.1021/mp400507g] [PMID: 24502507]
[61]
Muro, S.; Garnacho, C.; Champion, J.A.; Leferovich, J.; Gajewski, C.; Schuchman, E.H.; Mitragotri, S.; Muzykantov, V.R. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther., 2008, 16(8), 1450-1458.
[http://dx.doi.org/10.1038/mt.2008.127] [PMID: 18560419]
[62]
Agarwal, R.; Singh, V.; Jurney, P.; Shi, L.; Sreenivasan, S.V.; Roy, K. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc. Natl. Acad. Sci. USA, 2013, 110(43), 17247-17252.
[http://dx.doi.org/10.1073/pnas.1305000110] [PMID: 24101456]
[63]
Banerjee, A.; Qi, J.; Gogoi, R.; Wong, J.; Mitragotri, S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release, 2016, 238, 176-185.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.051] [PMID: 27480450]
[64]
Sosnik, A.; Neves, J.D.; Sarmento, B. Mucoadhesive poly-mers in the design of nano-drug delivery systems for admin-istration by non-parenteral routes: a review. Prog. Polym. Sci., 2014, 39(12), 2030-2075.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.010]
[65]
Smart, J.D. The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev., 2005, 57(11), 1556-1568.
[http://dx.doi.org/10.1016/j.addr.2005.07.001] [PMID: 16198441]
[66]
Ensign, L.M.; Cone, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev., 2012, 64(6), 557-570.
[http://dx.doi.org/10.1016/j.addr.2011.12.009] [PMID: 22212900]
[67]
Shankar, G. A review on nanoparticulate mucoadhesive system. Agrawal international journal of pharmaceutical sciences and research, 2017, 8(12), 4983-4991.
[68]
Roy, S.; Pal, K.; Anis, A.; Pramanik, K.; Prabhakar, B. Pol-ymers in mucoadhesive drug-delivery systems: a brief note. Des. Monomers Polym., 2009, 12(6), 483-495.
[http://dx.doi.org/10.1163/138577209X12478283327236]
[69]
Cheng, Z.; Chen, X.; Zhai, D.; Gao, F.; Guo, T.; Li, W.; Hao, S.; Ji, J.; Wang, B. Development of keratin nanoparticles for controlled gastric mucoadhesion and drug release. J. Nanobiotechnology, 2018, 16(1), 24.
[http://dx.doi.org/10.1186/s12951-018-0353-2] [PMID: 29554910]
[70]
Du, X.J.; Wang, J.L.; Iqbal, S.; Li, H.J.; Cao, Z.T.; Wang, Y.C.; Du, J.Z.; Wang, J. The effect of surface charge on oral absorption of polymeric nanoparticles. Biomater. Sci., 2018, 6(3), 642-650.
[http://dx.doi.org/10.1039/C7BM01096F] [PMID: 29412203]
[71]
Bilia, A.R.; Bergonzi, M.C.; Guccione, C.; Manconi, M.; Fadda, A.M.; Sinico, C. Vesicles and micelles: two versatile vectors for the delivery of natural products. J. Drug Deliv. Sci. Technol., 2016, 32, 241-255.
[http://dx.doi.org/10.1016/j.jddst.2015.09.007]
[72]
Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: prepara-tion techniques and size-control parameters. Prog. Polym. Sci., 2011, 36(7), 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[73]
Couvreur, P.; Dubernet, C.; Puisieux, F. Controlled drug delivery with nanoparticles: current possibilities and future trend. Eur. J. Pharm. Biopharm., 1995, 41(1), 2-13.
[74]
Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 2001, 70(1-2), 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[75]
Hans, M.L.; Lowman, A.M. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci., 2002, 6(4), 319-327.
[http://dx.doi.org/10.1016/S1359-0286(02)00117-1]
[76]
Rodrigues, A.; Emeje, M. Recent applications of starch de-rivatives in nanodrug delivery. Carbohydr. Polym., 2012, 87(2), 987-994.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.044]
[77]
Sriamornsak, P. Chemistry of pectin and its pharmaceutical uses: a review. SUIJ, 2003, 3(1-2), 206-228.
[78]
Kamel, S.; Kamel, S. Pharmaceutical significance of cellu-lose: a review. Express Polym. Lett., 2008, 2(11), 758-778.
[http://dx.doi.org/10.3144/expresspolymlett.2008.90]
[79]
Jani, G.K.; Shah, D.P.; Prajapati, V.D.; Jain, V.C. Gums and mucilages: versatile excipients for pharmaceutical formu-lations. Asian J Pharm Sci, 2009, 4(5), 309-323.
[80]
Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm., 2002, 28(6), 621-630.
[http://dx.doi.org/10.1081/DDC-120003853] [PMID: 12149954]
[81]
Li, L.; Ni, R.; Shao, Y.; Mao, S. Carrageenan and its applications in drug delivery. Carbohydr. Polym., 2014, 103, 1-11.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.008] [PMID: 24528694]
[82]
Rinaudo, M. Chitin and chitosan — properties and applica-tions. ChemInform, 2007, 38(27), 603-632.
[http://dx.doi.org/10.1002/chin.200727270]
[83]
Osmałek, T.; Froelich, A.; Tasarek, S. Application of gellan gum in pharmacy and medicine. Int. J. Pharm., 2014, 466(1-2), 328-340.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.038] [PMID: 24657577]
[84]
Jeevithan, E.; Zhao, Q.; Bao, B.; Wu, W. Biomedical and pharmaceutical application of fish collagen and gelatin: a re-view. J. Nutr. Ther., 2013, 2(4), 218-227.
[85]
Elzoghby, A.O.; El-Fotoh, W.S.; Elgindy, N.A. Casein-based formulations as promising controlled release drug delivery systems. J. Control. Release, 2011, 153(3), 206-216.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.010] [PMID: 21338636]
[86]
Bergonzi, M.C.; Guccione, C.; Grossi, C.; Piazzini, V.; Torracchi, A.; Luccarini, I.; Casamenti, F.; Bilia, A.R. Albumin Nanoparticles for Brain Delivery: A Comparison of Chemical versus Thermal Methods and in vivo Behavior. ChemMedChem, 2016, 11(16), 1840-1849.
[http://dx.doi.org/10.1002/cmdc.201600080] [PMID: 26947767]
[87]
Song, Q.; Wang, X.; Hu, Q.; Huang, M.; Yao, L.; Qi, H.; Qiu, Y.; Jiang, X.; Chen, J.; Chen, H.; Gao, X. Cellular internalization pathway and transcellular transport of pegylated polyester nanoparticles in Caco-2 cells. Int. J. Pharm., 2013, 445(1-2), 58-68.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.060] [PMID: 23380624]
[88]
Guccione, C.; Oufir, M.; Piazzini, V.; Eigenmann, D.E.; Jähne, E.A.; Zabela, V.; Faleschini, M.T.; Bergonzi, M.C.; Smiesko, M.; Hamburger, M.; Bilia, A.R. Andrographolide-loaded nanoparticles for brain delivery: Formulation, characterisation and in vitro permeability using hCMEC/D3 cell line. Eur. J. Pharm. Biopharm., 2017, 119, 253-263.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.018] [PMID: 28652141]
[89]
Grossi, C.; Guccione, C.; Isacchi, B.; Bergonzi, M.C.; Luccarini, I.; Casamenti, F.; Bilia, A.R. Development of Blood-Brain Barrier Permeable Nanoparticles as Potential Carriers for Salvianolic Acid B to CNS. Planta Med., 2017, 83(5), 382-391.
[PMID: 27002395]
[90]
Tahmasebi Mirgani, M.; Isacchi, B.; Sadeghizadeh, M.; Marra, F.; Bilia, A.R.; Mowla, S.J.; Najafi, F.; Babaei, E. Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int. J. Nanomedicine, 2014, 9, 403-417.
[PMID: 24531649]
[91]
Noriega-Luna, B.; Godínez, L.A. Rodríguez, F. J.; Rodríguez, A.; Larrea, G.; Sosa-Ferreyra, C. F.; Mercado-Curiel, R. F.; Manríquez, J.; Bustos, E. Applications of den-drimers in drug delivery agents, diagnosis, therapy, and de-tection. J. Nanomater., 2014, 2014, 39.
[92]
Falconieri, M.C.; Adamo, M.; Monasterolo, C.; Bergonzi, M.C.; Coronnello, M.; Bilia, A.R. New Dendrimer-Based Nanoparticles Enhance Curcumin Solubility. Planta Med., 2017, 83(5), 420-425.
[PMID: 27002394]
[93]
Mcclements, D.J. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 2011, 8(6), 1719-1729.
[http://dx.doi.org/10.1039/C2SM06903B]
[94]
Bergonzi, M.C.; Hamdouch, R.; Mazzacuva, F.; Isacchi, B.; Bilia, A.R. Optimization, characterization and in vitro, evalu-ation of curcumin microemulsions. Lebensm. Wiss. Technol., 2014, 59(1), 148-155.
[http://dx.doi.org/10.1016/j.lwt.2014.06.009]
[95]
Ramakrishna, R.; Bhateria, M.; Singh, R.; Puttrevu, S.K.; Bhatta, R.S. Plasma pharmacokinetics, bioavailability and tissue distribution of agnuside following peroral and intravenous administration in mice using liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal., 2016, 125, 154-164.
[http://dx.doi.org/10.1016/j.jpba.2016.02.047] [PMID: 27018507]
[96]
Lorenz, D.; Lücker, P.W.; Mennicke, W.H.; Wetzelsberger, N. Pharmacokinetic studies with silymarin in human serum and bile. Methods Find. Exp. Clin. Pharmacol., 1984, 6(10), 655-661.
[PMID: 6513680]
[97]
Piazzini, V.; Monteforte, E.; Luceri, C.; Bigagli, E.; Bilia, A.R.; Bergonzi, M.C. Nanoemulsion for improving solubility and permeability of Vitex agnus-castus extract: formulation and in vitro evaluation using PAMPA and Caco-2 approaches. Drug Deliv., 2017, 24(1), 380-390.
[http://dx.doi.org/10.1080/10717544.2016.1256002] [PMID: 28165811]
[98]
Piazzini, V.; Rosseti, C.; Bigagli, E.; Luceri, C.; Bilia, A.R.; Bergonzi, M.C. Prediction of Permeation and Cellular Transport of Silybum marianum Extract Formulated in a Nanoemulsion by Using PAMPA and Caco-2 Cell Models. Planta Med., 2017, 83(14-15), 1184-1193.
[http://dx.doi.org/10.1055/s-0043-110052] [PMID: 28472840]
[99]
Gupta, S.; Kesarla, R.; Omri, A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm., 2013.2013848043
[http://dx.doi.org/10.1155/2013/848043] [PMID: 24459591]
[100]
Weerapol, Y.; Limmatvapirat, S.; Kumpugdee-Vollrath, M.; Sriamornsak, P. Spontaneous emulsification of nifedipine-loaded self-nanoemulsifying drug delivery system. AAPS PharmSciTech, 2015, 16(2), 435-443.
[http://dx.doi.org/10.1208/s12249-014-0238-0] [PMID: 25367002]
[101]
Guccione, C.; Bergonzi, M.C.; Awada, K.M.; Piazzini, V.; Bilia, A.R. Lipid Nanocarriers for Oral Delivery of Serenoa repens CO2 Extract: A Study of Microemulsion and Self-Microemulsifying Drug Delivery Systems. Planta Med., 2018, 84(9-10), 736-742.
[http://dx.doi.org/10.1055/a-0589-0474] [PMID: 29544228]
[102]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47(2-3), 165-196.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[103]
Righeschi, C.; Bergonzi, M.C.; Isacchi, B.; Bazzicalupi, C.; Gratteri, P.; Bilia, A.R. Enhanced curcumin permeability by sln formulation: the pampa approach. Lebensm. Wiss. Technol., 2016, 66, 475-483.
[http://dx.doi.org/10.1016/j.lwt.2015.11.008]
[104]
Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1-2), 121-128.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[105]
Uner, M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie, 2006, 61(5), 375-386.
[PMID: 16724531]
[106]
Frias, I.; Neves, A.R.; Pinheiro, M.; Reis, S. Design, development, and characterization of lipid nanocarriers-based epigallocatechin gallate delivery system for preventive and therapeutic supplementation. Drug Des. Devel. Ther., 2016, 10, 3519-3528.
[http://dx.doi.org/10.2147/DDDT.S109589] [PMID: 27826184]
[107]
Torchilin, V.P. Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res., 2007, 24(1), 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[108]
Efferth, T.; Romero, M.R.; Bilia, A.R.; Osman, A.G.; El-Sohly, M. Wink, Michael.; Bauer, R.; Khan, I.; Bergonzi, M. C.; Marin, Jose J.G. Expanding the therapeutic spectrum of artemisinin: Activity against infectious diseases beyond malaria and novel pharmaceutical developments. World J Tradit Chin Med, 2016, 2(2), 1-23.
[http://dx.doi.org/10.15806/j.issn.2311-8571.2016.0002]
[109]
Bilia, A.R.; Bergonzi, M.C.; Vincieri, F.F.; Lo Nostro, P.; Morris, G.A. A diffusion-ordered NMR spectroscopy study of the solubilization of artemisinin by octanoyl-6-O-ascorbic acid micelles. J. Pharm. Sci., 2002, 91(10), 2265-2270.
[http://dx.doi.org/10.1002/jps.10217] [PMID: 12226853]
[110]
Lapenna, S.; Bilia, A.R.; Morris, G.A.; Nilsson, M. Novel artemisinin and curcumin micellar formulations: drug solubility studies by NMR spectroscopy. J. Pharm. Sci., 2009, 98(10), 3666-3675.
[http://dx.doi.org/10.1002/jps.21685] [PMID: 19199296]
[111]
Bergonzi, M.C.; Isacchi, B.; Bilia, A.R. Octanoyl-6-o-ascorbic acid: an efficient antioxidant with potent solubilising properties the case of active constituents from saint John’s wort. J. Drug Deliv. Sci. Technol., 2013, 23(5), 505-509.
[http://dx.doi.org/10.1016/S1773-2247(13)50073-6]
[112]
Gregoriadis, G. The carrier potential of liposomes in biology and medicine (second of two parts). N. Engl. J. Med., 1976, 295(14), 765-770.
[http://dx.doi.org/10.1056/NEJM197609302951406] [PMID: 785256]
[113]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[114]
Isacchi, B.; Bergonzi, M.C.; Iacopi, R.; Ghelardini, C.; Galeotti, N.; Bilia, A.R. Liposomal formulation to increase stability and prolong antineuropathic activity of verbascoside. Planta Med., 2017, 83(5), 412-419.
[PMID: 27191581]
[115]
Wang, Y.; Wang, S.; Firempong, C.K.; Zhang, H.; Wang, M.; Zhang, Y.; Zhu, Y.; Yu, J.; Xu, X. Enhanced Solubility and Bioavailability of Naringenin via Liposomal Nanoformulation: Preparation and In Vitro and In Vivo Evaluations. AAPS PharmSciTech, 2017, 18(3), 586-594.
[http://dx.doi.org/10.1208/s12249-016-0537-8] [PMID: 27151135]
[116]
Uchegbu, I.F.; Vyas, S.P. Non-ionic surfactant based vesi-cles (niosomes) in drug delivery. Int. J. Pharm., 1998, 172(1–2), 33-70.
[http://dx.doi.org/10.1016/S0378-5173(98)00169-0]
[117]
Song, Q.; Li, D.; Zhou, Y.; Yang, J.; Yang, W.; Zhou, G.; Wen, J. Enhanced uptake and transport of (+)-catechin and (-)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells. Int. J. Nanomedicine, 2014, 9, 2157-2165.
[http://dx.doi.org/10.2147/IJN.S59331] [PMID: 24855353]
[118]
Papahadjopoulos, D.; Vail, W.J.; Jacobson, K.; Poste, G. Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim. Biophys. Acta, 1975, 394(3), 483-491.
[http://dx.doi.org/10.1016/0005-2736(75)90299-0] [PMID: 805602]
[119]
Santangelo, R.; Paderu, P.; Delmas, G.; Chen, Z.W.; Mannino, R.; Zarif, L.; Perlin, D.S. Efficacy of oral cochleate-amphotericin B in a mouse model of systemic candidiasis. Antimicrob. Agents Chemother., 2000, 44(9), 2356-2360.
[http://dx.doi.org/10.1128/AAC.44.9.2356-2360.2000] [PMID: 10952579]
[120]
Asprea, M.; Leto, I.; Bergonzi, M.C.; Bilia, A.R. Thyme essential oil loaded in nanocochleates: encapsulation efficien-cy, invitro, release study and antioxidant activity. Lebensm. Wiss. Technol., 2017, 77, 497-502.
[http://dx.doi.org/10.1016/j.lwt.2016.12.006]
[121]
Torchilin, V. Multifunctional pharmaceutical nanocarriers; Fundamental Biomedical Technologies, 2008, p. 4.
[http://dx.doi.org/10.1007/978-0-387-76554-9]
[122]
Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev., 2011, 63(3), 136-151.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[123]
Veronese, F.M.; Mero, A. The impact of PEGylation on biological therapies. BioDrugs, 2008, 22(5), 315-329.
[http://dx.doi.org/10.2165/00063030-200822050-00004] [PMID: 18778113]
[124]
Barenholz, Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[125]
Coimbra, M.; Isacchi, B.; van Bloois, L.; Torano, J.S.; Ket, A.; Wu, X.; Broere, F.; Metselaar, J.M.; Rijcken, C.J.; Storm, G.; Bilia, R.; Schiffelers, R.M. Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int. J. Pharm., 2011, 416(2), 433-442.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.056] [PMID: 21291975]
[126]
Isacchi, B.; Fabbri, V.; Galeotti, N.; Bergonzi, M.C.; Karioti, A.; Ghelardini, C.; Vannucchi, M.G.; Bilia, A.R. Salvianolic acid B and its liposomal formulations: anti-hyperalgesic activity in the treatment of neuropathic pain. Eur. J. Pharm. Sci., 2011, 44(4), 552-558.
[http://dx.doi.org/10.1016/j.ejps.2011.09.019] [PMID: 22001125]
[127]
Isacchi, B.; Arrigucci, S.; la Marca, G.; Bergonzi, M.C.; Vannucchi, M.G.; Novelli, A.; Bilia, A.R. Conventional and long-circulating liposomes of artemisinin: preparation, characterization, and pharmacokinetic profile in mice. J. Liposome Res., 2011, 21(3), 237-244.
[http://dx.doi.org/10.3109/08982104.2010.539185] [PMID: 21158702]
[128]
Isacchi, B.; Bergonzi, M.C.; Grazioso, M.; Righeschi, C.; Pietretti, A.; Severini, C.; Bilia, A.R. Artemisinin and artemisinin plus curcumin liposomal formulations: enhanced antimalarial efficacy against Plasmodium berghei-infected mice. Eur. J. Pharm. Biopharm., 2012, 80(3), 528-534.
[http://dx.doi.org/10.1016/j.ejpb.2011.11.015] [PMID: 22142592]
[129]
Righeschi, C.; Coronnello, M.; Mastrantoni, A.; Isacchi, B.; Bergonzi, M.C.; Mini, E.; Bilia, A.R. Strategy to provide a useful solution to effective delivery of dihydroartemisinin: development, characterization and in vitro studies of liposomal formulations. Colloids Surf. B Biointerfaces, 2014, 116, 121-127.
[http://dx.doi.org/10.1016/j.colsurfb.2013.12.019] [PMID: 24462780]
[130]
Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur, P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev., 2013, 42(3), 1147-1235.
[http://dx.doi.org/10.1039/C2CS35265F] [PMID: 23238558]
[131]
Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine (Lond.), 2012, 8(2), 147-166.
[http://dx.doi.org/10.1016/j.nano.2011.05.016] [PMID: 21703993]
[132]
Sahoo, S.K.; Labhasetwar, V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol. Pharm., 2005, 2(5), 373-383.
[http://dx.doi.org/10.1021/mp050032z] [PMID: 16196490]
[133]
Leto, I.; Coronnello, M.; Righeschi, C.; Bergonzi, M.C.; Mini, E.; Bilia, A.R. Enhanced Efficacy of Artemisinin Loaded in Transferrin-Conjugated Liposomes versus Stealth Liposomes against HCT-8 Colon Cancer Cells. ChemMedChem, 2016, 11(16), 1745-1751.
[http://dx.doi.org/10.1002/cmdc.201500586] [PMID: 26999297]
[134]
Watanabe, K.; Kaneko, M.; Maitani, Y. Functional coating of liposomes using a folate- polymer conjugate to target folate receptors. Int. J. Nanomedicine, 2012, 7, 3679-3688.
[PMID: 22888227]
[135]
Li, H.; Li, Y.; Ao, H.; Bi, D.; Han, M.; Guo, Y.; Wang, X. Folate-targeting annonaceous acetogenins nanosuspensions: significantly enhanced antitumor efficacy in HeLa tumor-bearing mice. Drug Deliv., 2018, 25(1), 880-887.
[http://dx.doi.org/10.1080/10717544.2018.1455761] [PMID: 29608108]
[136]
Zhan, C.; Gu, B.; Xie, C.; Li, J.; Liu, Y.; Lu, W. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J. Control. Release, 2010, 143(1), 136-142.
[http://dx.doi.org/10.1016/j.jconrel.2009.12.020] [PMID: 20056123]
[137]
Cole, J.T.; Holland, N.B. Multifunctional nanoparticles for use in theranostic applications. Drug Deliv. Transl. Res., 2015, 5(3), 295-309.
[http://dx.doi.org/10.1007/s13346-015-0218-2] [PMID: 25787729]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy