Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

A New Portable Colorimetric Sensor Based on RGB Chromaticity for Quantitative Determination of Sarin in Water

Author(s): Tingting Huang, Guohong Liu*, Jingxiang Yu, Meng Liu, Zhiping Huang, Jian Li and Danping Li

Volume 16, Issue 4, 2020

Page: [475 - 484] Pages: 10

DOI: 10.2174/1573411014666181023112032

Price: $65

Abstract

Background: Sarin is a nerve agent which is lethal to people due to its high toxicity. According to its extreme toxicity, sarin, relatively lack of color, highly toxic, miscible in water, poses viable threats to potable water sources. Therefore, there is an urgent need for portable, rapid and yet reliable methods to monitor for adulteration of potable water sources by sarin on spot.

Methods: A stock solution of 30 mg/L sarin was prepared daily by dissolving 300 μg of sarin in 10 mL isopropanol. A certain amount of sarin was added to the glass tube, and then o-dianisidine and hydrogen peroxide were added. The pH value of the solution was adjusted to 9.8. The solution was transferred to the test tube after 10 minutes. A test tube of 2 mL was placed between the light source and the RGB color sensor. The LED light source illuminates directly over the test tube while the RGB sensor obtained the generated spectral response. This RGB voltage output is connected to the ADC and microcontroller to convert these analog voltages to three digital data. This RGB digital data is linked to the microcomputer through the serial port that is interfaced with the user interface. The data thus obtained in the sensor can be processed to display the sarin concentration.

Results: Under the optimum conditions as described above, the calibration curve of chromaticity value versus sarin concentration was linear in the range of 0.15 mg/L to 7.8 mg/L. According to the IUPAC definition, theoretical detection limits of this method were 0.147 mg/L and 0.140 mg/L for R and B values, respectively. The practical detection limit was 0.15 mg/L. The sensor was successfully applied to the determination of sarin in artificial water samples and the recoveries were between 86.0% to 95.9%.

Conclusion: The results in the present work have demonstrated the feasibility to design a new portable colorimetric sensor based on the RGB chromaticity method for quantitative determination of sarin in water. The influences of chromogenic reagent, oxidant, reaction time, o-dianisidine concentration, hydrogen peroxide concentration, reaction temperature, pH on the chromaticity values were investigated. The results showed that the sensor possessed high selectivity, sensitivity and good repeatability. The method would be potentially applied to the analysis of other toxic compounds in environment, such as other chemical warfare agents.

Keywords: Colorimetric senor, portable, quantitative determination, RGB chromaticity, sarin, water.

Graphical Abstract
[1]
Wright, L.K.M.; Lumley, L.A.; Lee, R.B.; Taylor, J.T.; Miller, D.B.; Muse, W.T., Jr; Emm, E.J.; Whalley, C.E. Younger rats are more susceptible to the lethal effects of sarin than adult rats: 24 h LC50 for whole-body (10 and 60 min) exposures. Drug Chem. Toxicol., 2017, 40(2), 134-139.
[http://dx.doi.org/10.1080/01480545.2016.1188304] [PMID: 27320079]
[2]
Khan, W.A.; Dechkovskaia, A.M.; Herrick, E.A.; Jones, K.H.; Abou-Donia, M.B. Acute sarin exposure causes differential regulation of choline acetyltransferase, acetylcholinesterase, and acetylcholine receptors in the central nervous system of the rat. Toxicol. Sci., 2000, 57(1), 112-120.
[http://dx.doi.org/10.1093/toxsci/57.1.112] [PMID: 10966517]
[3]
Kuroda, N. Law on the prohibition of chemical weapons and the regulation of specific chemicals. Jap. J. Toxicol. Environ. Health, 1997, 43, 155-161.
[http://dx.doi.org/10.1248/jhs1956.43.155]
[4]
Hoffman, A.; Eisenkraft, A.; Finkelstein, A.; Schein, O.; Rotman, E.; Dushnitsky, T. A decade after the Tokyo sarin attack: a review of neurological follow-up of the victims. Mil. Med., 2007, 172(6), 607-610.
[http://dx.doi.org/10.7205/MILMED.172.6.607] [PMID: 17615841]
[5]
Pontius, F.W. Regulatory compliance planning to ensure water supply safety. J. Am. Water Works Assoc., 2002, 94, 52.
[http://dx.doi.org/10.1002/j.1551-8833.2002.tb09433.x]
[6]
Tan, H.Y.; Loke, W.K.; Nguyen, N.T.; Tan, S.N.; Tay, N.B.; Wang, W.; Ng, S.H. Lab-on-a-chip for rapid electrochemical detection of nerve agent Sarin. Biomed. Microdevices, 2014, 16(2), 269-275.
[http://dx.doi.org/10.1007/s10544-013-9830-4] [PMID: 24288016]
[7]
Black, R.M.; Clarke, R.J.; Read, R.W.; Reid, M.T.J. Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulphur mustard and their degradation products. J. Chromatogr. A, 1994, 662(2), 301-321.
[http://dx.doi.org/10.1016/0021-9673(94)80518-0] [PMID: 8143028]
[8]
Schneider, J.F.; Boparai, A.S.; Reed, L.L. Screening for sarin in air and water by solid-phase microextraction-gas chromatography-mass spectrometry. J. Chromatogr. Sci., 2001, 39(10), 420-424.
[http://dx.doi.org/10.1093/chromsci/39.10.420] [PMID: 11669366]
[9]
Hook, G.L.; Jackson Lepage, C.; Miller, S.I.; Smith, P.A. Dynamic solid phase microextraction for sampling of airborne sarin with gas chromatography-mass spectrometry for rapid field detection and quantification. J. Sep. Sci., 2004, 27(12), 1017-1022.
[http://dx.doi.org/10.1002/jssc.200301725] [PMID: 15352721]
[10]
Lei, Z.; Yang, Y. A concise colorimetric and fluorimetric probe for sarin related threats designed via the “covalent-assembly” approach. J. Am. Chem. Soc., 2014, 136(18), 6594-6597.
[http://dx.doi.org/10.1021/ja502945q] [PMID: 24766398]
[11]
Climent, E.; Biyikal, M.; Gawlitza, K.; Dropa, T.; Urban, M.; Costero, A.M.; Martínez-Máñez, R.; Rurack, K. A rapid and sensitive strip-based quick test for nerve agents tabun, sarin, and soman using BODIPY-modified silica materials. Chemistry, 2016, 22(32), 11138-11142.
[http://dx.doi.org/10.1002/chem.201601269] [PMID: 27124609]
[12]
Climent, E.; Biyikal, M.; Gawlitza, K.; Dropa, T.; Urban, M.; Costero, A.M.; Martinez-Manez, R.; Rurack, K. Determination of the chemical warfare agents sarin, soman and tabun in natural waters employing fluorescent hybrid silica materials. Sens. Actuators B Chem., 2017, 246, 1056-1065.
[http://dx.doi.org/10.1016/j.snb.2017.02.115]
[13]
Kumar, V.; Raviraju, G.; Rana, H.; Rao, V.K.; Gupta, A.K. Highly selective and sensitive chromogenic detection of nerve agents (sarin, tabun and VX): a multianalyte detection approach. Chem. Commun. (Camb.), 2017, 53(96), 12954-12957.
[http://dx.doi.org/10.1039/C7CC07823D] [PMID: 29159359]
[14]
White, B.J.; Harmon, H.J. Enzyme-based detection of sarin (GB) using planar waveguide absorbance spectroscopy. Sens. Lett., 2005, 3, 36-41.
[http://dx.doi.org/10.1166/sl.2005.002]
[15]
Pohanka, M.; Binder, J.; Kuca, K. Sarin Assay using Acetylcholinesterases and Electrochemical Sensor Strip. Def. Sci. J., 2009, 59, 300-304.
[http://dx.doi.org/10.14429/dsj.59.1525]
[16]
Sharma, S.P.; Tomar, L.N.S.; Acharya, J.; Chaturvedi, A.; Suryanarayan, M.V.S.; Jain, R. Acetylcholinesterase inhibition-based biosensor for amperometric detection of sarin using single-walled carbon nanotube-modified ferrule graphite electrode. Sens. Actuators B Chem., 2012, 166, 616-623.
[http://dx.doi.org/10.1016/j.snb.2012.03.022]
[17]
Baker, P.A.; Goltz, M.N.; Schrand, A.M.; Yoon, D.Y.; Kim, D.S. Organophosphate vapor detection on gold electrodes using peptide nanotubes. Biosens. Bioelectron., 2014, 61, 119-123.
[http://dx.doi.org/10.1016/j.bios.2014.04.010] [PMID: 24861572]
[18]
Broadbent, A.D. A critical review of the development of the CIE1931 RGB color-matching functions. Color Res. Appl., 2004, 29, 267-272.
[http://dx.doi.org/10.1002/col.20020]
[19]
Apyari, V.V.; Gorbunova, M.V.; Isachenko, A.I.; Dmitrienko, S.G.; Zolotov, Y.A. Use of household color-recording devices in quantitative chemical analysis. J. Anal. Chem., 2017, 72, 1127-1137.
[http://dx.doi.org/10.1134/S106193481711003X]
[20]
Guzman, J.M.C.C.; Tayo, L.L.; Liu, C.C.; Wang, Y.N.; Fu, L.M. Rapid microfluidic paper-based platform for low concentration formaldehyde detection. Sens. Actuators B Chem., 2018, 255, 3623-3629.
[http://dx.doi.org/10.1016/j.snb.2017.09.080]
[21]
Chen, Y.; Zilberman, Y.; Mostafalu, P.; Sonkusale, S.R. Paper based platform for colorimetric sensing of dissolved NH3 and CO2. Biosens. Bioelectron., 2015, 67, 477-484.
[http://dx.doi.org/10.1016/j.bios.2014.09.010] [PMID: 25241151]
[22]
Zhang, Y.N.; Lim, L.T. Colorimetric array indicator for NH3 and CO2 detection. Sens. Actuators B Chem., 2018, 255, 3216-3226.
[http://dx.doi.org/10.1016/j.snb.2017.09.148]
[23]
Benedetti, L.P.D.; dos Santos, V.B.; Silva, T.A.; Benedetti, E.; Martins, V.L.; Fatibello, O. A digital image-based method employing a spot-test for quantification of ethanol in drinks. Anal. Methods, 2015, 7, 4138-4144.
[http://dx.doi.org/10.1039/C5AY00529A]
[24]
Tian, K.; Hu, D.; Hu, R.; Wang, S.; Li, S.; Li, Y.; Yang, G. Multiple fluorescence ΔCIE and ΔRGB codes for sensing volatile organic compounds with a wide range of responses. Chem. Commun. (Camb.), 2011, 47(36), 10052-10054.
[http://dx.doi.org/10.1039/c1cc13056k] [PMID: 21826346]
[25]
Long, J.; Xu, J.H.; Yang, Y.J.; Wen, J.F.; Jia, C.Y. A colorimetric array of metalloporphyrin derivatives for the detection of volatile organic compounds. Mater. Sci. Eng. B-Adv., 2011, 176, 1271-1276.
[26]
Guan, B.B.; Zhao, J.W.; Cai, M.J.; Lin, H.; Yao, L.Y.; Sun, L.L. Analysis of volatile organic compounds from Chinese vinegar substrate during solid-state fermentation using a colorimetric sensor array. Anal. Methods, 2014, 6, 9383-9391.
[http://dx.doi.org/10.1039/C4AY01010H]
[27]
Zhao, S.X.; Lei, J.C.; Huo, D.Q.; Hou, C.J.; Luo, X.G.; Wu, H.X.; Fa, H.B.; Yang, M. A colorimetric detector for lung cancer related volatile organic compounds based on cross-response mechanism. Sens. Actuators B Chem., 2018, 256, 543-552.
[http://dx.doi.org/10.1016/j.snb.2017.10.091]
[28]
Xu, W.; Lu, S.S.; Chen, Y.Y.; Zhao, T.T.; Jiang, Y.Q.; Wang, Y.R.; Chen, X. Simultaneous color sensing of O-2 and pH using a smartphone. Sens. Actuators B Chem., 2015, 220, 326-330.
[http://dx.doi.org/10.1016/j.snb.2015.05.088]
[29]
Capel-Cuevas, S.; Cuellar, M.P.; de Orbe-Paya, I.; Pegalajar, M.C.; Capitan-Vallvey, L.F. Full-range optical pH sensor array based on neural networks. Microchem. J., 2011, 97, 225-233.
[http://dx.doi.org/10.1016/j.microc.2010.09.008]
[30]
Kim, J.S.; Oh, H.B.; Kim, A.H.; Kim, J.S.; Lee, E.S.; Goh, B.J.; Choi, J.H.; Shin, Y.J.; Baek, J.Y.; Lee, K.S.; Jun, J.H. An array-type RGB sensor for precision measurement of pH. J. Opt. Soc. Korea, 2015, 19, 700-704.
[http://dx.doi.org/10.3807/JOSK.2015.19.6.700]
[31]
Chen, B.; Ma, J.; Yang, T.; Chen, L.; Gao, P.F.; Huang, C.Z. A portable RGB sensing gadget for sensitive detection of Hg2+ using cysteamine-capped QDs as fluorescence probe. Biosens. Bioelectron., 2017, 98, 36-40.
[http://dx.doi.org/10.1016/j.bios.2017.05.032] [PMID: 28649022]
[32]
Li, L.; Zhang, L.; Zhao, Y.; Chen, Z. Colorimetric detection of Hg(II) by measurement the color alterations from the “before” and “after” RGB images of etched triangular silver nanoplates. Mikrochim. Acta, 2018, 185(4), 235-240.
[http://dx.doi.org/10.1007/s00604-018-2759-9] [PMID: 29594673]
[33]
Abbaspour, A.; Khajehzadeh, A.; Ghaffarinejad, A. Development of a new method based on scanner electrochemistry: applied for the speciation of Iron(II) and Iron(III). Anal. Methods, 2011, 3, 2268-2272.
[http://dx.doi.org/10.1039/c1ay05257h]
[34]
Vallejos, S.; Munoz, A.; Garcia, F.C.; Colleoni, R.; Biesuz, R.; Alberti, G.; Garcia, J.M. Colorimetric detection, quantification and extraction of Fe(III) in water by acrylic polymers with pendant Kojic acid motifs. Sens. Actuators B Chem., 2016, 233, 120-126.
[http://dx.doi.org/10.1016/j.snb.2016.04.040]
[35]
Trigo-Lopez, M.; Munoz, A.; Ibeas, S.; Serna, F.; Garcia, F.C.; Garcia, J.M. Colorimetric detection and determination of Fe(III), Co(II), Cu(II) and Sn(II) in aqueous media by acrylic polymers with pendant terpyridine motifs. Sens. Actuators B Chem., 2016, 226, 118-126.
[http://dx.doi.org/10.1016/j.snb.2015.11.116]
[36]
Fallahi, M.R.; Khayatian, G. Colorimetric Detection of Cu (II) in Water and Urine Samples Using 2,2 '-Thiodiacetic Acid Modified Silver Nanoparticles. Curr. Anal. Chem., 2017, 13, 167-173.
[http://dx.doi.org/10.2174/1573411012666161102164539]
[37]
Lopez-Molinero, A.; Tejedor Cubero, V.; Domingo Irigoyen, R.; Sipiera Piazuelo, D. Feasibility of digital image colorimetry--application for water calcium hardness determination. Talanta, 2013, 103, 236-244.
[http://dx.doi.org/10.1016/j.talanta.2012.10.038] [PMID: 23200383]
[38]
Andrade, S.J.E.; Lima, M.B.; Barreto, I.S.; Lyra, W.S.; Almeida, L.F.; Araujo, M.C.U.; Silva, E.C. A digital image-based flow-batch analyzer for determining Al(III) and Cr(VI) in water. Microchem. J., 2013, 109, 106-111.
[http://dx.doi.org/10.1016/j.microc.2012.03.029]
[39]
Lopez-Molinero, A.; Linan, D.; Sipiera, D.; Falcon, R. Chemometric interpretation of digital image colorimetry. Application for titanium determination in plastics. Microchem. J., 2010, 96, 380-385.
[http://dx.doi.org/10.1016/j.microc.2010.06.013]
[40]
de Sena, R.C.; Soares, M.; Pereira, M.L.O.; da Silva, R.C.D.; do Rosário, F.F.; da Silva, J.F.C. A simple method based on the application of a CCD camera as a sensor to detect low concentrations of barium sulfate in suspension. Sensors (Basel), 2011, 11(1), 864-875.
[http://dx.doi.org/10.3390/s110100864] [PMID: 22346607]
[41]
Choodum, A.; Kanatharana, P.; Wongniramaikul, W. NicDaeid, N. A sol-gel colorimetric sensor for methamphetamine detection. Sens. Actuators B Chem., 2015, 215, 553-560.
[http://dx.doi.org/10.1016/j.snb.2015.03.089]
[42]
Dominguez, R.B.; Orozco, M.A.; Chávez, G.; Márquez-Lucero, A. The evaluation of a low-cost colorimeter for glucose detection in salivary samples. Sensors (Basel), 2017, 17(11), 2495-2505.
[http://dx.doi.org/10.3390/s17112495] [PMID: 29104212]
[43]
Soni, A.; Jha, S.K. Smartphone based non-invasive salivary glucose biosensor. Anal. Chim. Acta, 2017, 996, 54-63.
[http://dx.doi.org/10.1016/j.aca.2017.10.003] [PMID: 29137708]
[44]
Steiner, M.S.; Meier, R.J.; Duerkop, A.; Wolfbeis, O.S. Chromogenic sensing of biogenic amines using a chameleon probe and the red-green-blue readout of digital camera images. Anal. Chem., 2010, 82(20), 8402-8405.
[http://dx.doi.org/10.1021/ac102029j] [PMID: 21500419]
[45]
Lin, B.; Yu, Y.; Cao, Y.; Guo, M.; Zhu, D.; Dai, J.; Zheng, M. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosens. Bioelectron., 2018, 100, 482-489.
[http://dx.doi.org/10.1016/j.bios.2017.09.028] [PMID: 28965053]
[46]
Choodum, A.; Keson, J.; Kanatharana, P.; Limsakul, W.; Wongniramaikul, W. Selective pre and post blast trinitrotoluene detection with a novel ethylenediamine entrapped thin polymer film and digital image colorimetry. Sens. Actuators B Chem., 2017, 252, 463-469.
[http://dx.doi.org/10.1016/j.snb.2017.06.030]
[47]
Abbaspour, A.; Mirahmadi, E.; Khajehzadeh, A. Disposable sensor for quantitative determination of hydrazine in water and biological sample. Anal. Methods, 2010, 2, 349-353.
[http://dx.doi.org/10.1039/b9ay00291j]
[48]
Cao, X.; Lei, G.; Feng, J.; Pan, Q.; Wen, X.; He, Y. A novel color modulation analysis strategy through tunable multiband laser for nanoparticle identification and evaluation. Anal. Chem., 2018, 90(4), 2501-2507.
[http://dx.doi.org/10.1021/acs.analchem.7b03636] [PMID: 29334223]
[49]
Baharfar, M.; Yamini, Y.; Seidi, S.; Arain, M.B. Approach for downscaling of electromembrane extraction as a lab on-a-chip device followed by sensitive red-green-blue detection. Anal. Chem., 2018, 90(14), 8478-8486.
[http://dx.doi.org/10.1021/acs.analchem.8b01224] [PMID: 29847097]
[50]
Greenawald, L.A.; Boss, G.R.; Snyder, J.L.; Reeder, A.; Bell, S. Development of an inexpensive RGB color sensor for the detection of hydrogen cyanide gas. ACS Sens., 2017, 2(10), 1458-1466.
[http://dx.doi.org/10.1021/acssensors.7b00396] [PMID: 28967741]
[51]
Gehauf, B.; Epstein, J.; Wilson, G.B.; Witten, B.; Sass, S.; Bauer, V.E.; Rueggeberg, W.H.C. Reaction for colorimetric estimation of some phosphorus compounds. Anal. Chem., 1957, 29, 278-281.
[http://dx.doi.org/10.1021/ac60122a030]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy