Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Development of Health Products from Natural Sources

Author(s): Francesca Sansone, Teresa Mencherini, Patrizia Picerno, Maria Rosaria Lauro, Michele Cerrato and Rita Patrizia Aquino*

Volume 26 , Issue 24 , 2019

Page: [4606 - 4630] Pages: 25

DOI: 10.2174/0929867325666180926152139

Price: $65

Abstract

BioActive Compounds (BACs) recovered from food or food by-product matrices are useful in maintaining well being, enhancing human health, and modulating immune function to prevent or to treat chronic diseases. They are also generally seen by final consumers as safe, non-toxic and environment-friendly. Despite the complex process of production, chemical characterization, and assessment of health effects, BACs must also be manufactured in stable and bioactive ingredients to be used in pharmaceutical, food and nutraceutical industry. Generally, vegetable derivatives occur as sticky raw materials with pervasive smell and displeasing flavor. Also, they show critical water solubility and dramatic stability behavior over time, involving practical difficulties for industrial use. Therefore, the development of novel functional health products from natural sources requires the design of a suitable formulation to delivery BACs at the site of action, preserve stability during processing and storage, slow down the degradation processes, mask lousy tasting or smell, and increase the bioavailability, while maintaining the BACs functionality. The present review focuses on human health benefits, BACs composition, and innovative technologies or formulation approaches of natural ingredients from some selected foods and by-products from industrial food transformations.

Keywords: Health products, soy, annurca peels, Citrus bergamia juice, C. aurantium peel, hazelnut by-products.

[1]
Dillard, C.J.; Bruce German, J. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric., 2000, 80, 1744-1756.
[http://dx.doi.org/10.1002/1097-0010(20000915)80:12<1744:AID-JSFA725>3.0.CO;2-W]
[2]
Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci., 2016, 8, 33-42.
[http://dx.doi.org/10.1016/j.cofs.2016.02.002]
[3]
Peterson, J.; Dwyer, J. Flavonoids: Dietary occurrence and biochemical activity. Nutr. Res., 1998, 18, 1995-2018.
[http://dx.doi.org/10.1016/S0271-5317(98)00169-9]
[4]
Manthey, J.A.; Guthrie, N. Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J. Agric. Food Chem., 2002, 50(21), 5837-5843.
[http://dx.doi.org/10.1021/jf020121d] [PMID: 12358447]
[5]
Boots, A.W.; Haenen, G.R.M.M.; Bast, A. Health effects of quercetin: from antioxidant to nutraceutical. Eur. J. Pharmacol., 2008, 585(2-3), 325-337.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.008] [PMID: 18417116]
[6]
Shi, J.; Nawaz, H.; Pohorly, J.; Mittal, G.; Kakuda, Y.; Jiang, Y. Extraction of polyphenolics from plant material for functional foods - Engineering and technology. Food Rev. Int., 2005, 21, 139-166.
[http://dx.doi.org/10.1081/FRI-200040606]
[7]
Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. J. Funct. Foods, 2015, 18, 820-897.
[http://dx.doi.org/10.1016/j.jff.2015.06.018]
[8]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[9]
Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[10]
Liu, R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr., 2003, 78(3)(Suppl.), 517S-520S.
[http://dx.doi.org/10.1093/ajcn/78.3.517S] [PMID: 12936943]
[11]
Tressera-Rimbau, A.; Arranz, S.; Eder, M.; Vallverdú-Queralt, A. Dietary polyphenols in the prevention of stroke. Oxid. Med. Cell. Longev., 2017.20177467962
[http://dx.doi.org/10.1155/2017/7467962] [PMID: 29204249]
[12]
Somerset, S.M.; Johannot, L. Dietary flavonoid sources in Australian adults. Nutr. Cancer, 2008, 60(4), 442-449.
[http://dx.doi.org/10.1080/01635580802143836] [PMID: 18584477]
[13]
Benavente-García, O.; Castillo, J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem., 2008, 56(15), 6185-6205.
[http://dx.doi.org/10.1021/jf8006568] [PMID: 18593176]
[14]
Applegate, C.C.; Rowles, J.L.; Ranard, K.M.; Jeon, S.; Erdman, J.W. Soy consumption and the risk of prostate cancer: An updated systematic review and meta-analysis. Nutrients, 2018, 10(1)E40
[http://dx.doi.org/10.3390/nu10010040] [PMID: 29300347]
[15]
Ruscica, M.; Pavanello, C.; Gandini, S.; Gomaraschi, M.; Vitali, C.; Macchi, C.; Morlotti, B.; Aiello, G.; Bosisio, R.; Calabresi, L.; Arnoldi, A.; Sirtori, C.R.; Magni, P. Effect of soy on metabolic syndrome and cardiovascular risk factors: a randomized controlled trial. Eur. J. Nutr., 2018, 57(2), 499-511.
[http://dx.doi.org/10.1007/s00394-016-1333-7] [PMID: 27757595]
[16]
Zaheer, K.; Humayoun Akhtar, M. An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Crit. Rev. Food Sci. Nutr., 2017, 57(6), 1280-1293.
[http://dx.doi.org/10.1080/10408398.2014.989958] [PMID: 26565435]
[17]
Zhao, T.T.; Jin, F.; Li, J.G.; Xu, Y.Y.; Dong, H.T.; Liu, Q.; Xing, P.; Zhu, G.L.; Xu, H.; Miao, Z.F. Dietary isoflavones or isoflavone-rich food intake and breast cancer risk: A meta-analysis of prospective cohort studies. Clin. Nutr., 2017.
[http://dx.doi.org/10.1016/j.clnu.2017.12.006] [PMID: 29277346]
[18]
Xu, M.L.; Liu, J.; Zhu, C.; Gao, Y.; Zhao, S.; Liu, W.; Zhang, Y. Interactions between soy isoflavones and other bioactive compounds: a review of their potentially beneficial health effects. Phytochem. Rev., 2015, 14, 459-467.
[http://dx.doi.org/10.1007/s11101-015-9398-0]
[19]
Luu, H.N.; Blot, W.J.; Xiang, Y.B.; Cai, H.; Hargreaves, M.K.; Li, H.; Yang, G.; Signorello, L.; Gao, Y.T.; Zheng, W.; Shu, X.O. Prospective evaluation of the association of nut/peanut consumption with total and cause-specific mortality. JAMA Intern. Med., 2015, 175(5), 755-766.
[http://dx.doi.org/10.1001/jamainternmed.2014.8347] [PMID: 25730101]
[20]
Gorji, N.; Moeini, R.; Memariani, Z. Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimer’s disease: A neuropharmacological review of their bioactive constituents. Pharmacol. Res., 2018, 129, 115-127.
[http://dx.doi.org/10.1016/j.phrs.2017.12.003] [PMID: 29208493]
[21]
Castro-Acosta, M.L.; Stone, S.G.; Mok, J.E.; Mhajan, R.K.; Fu, C.I.; Lenihan-Geels, G.N.; Corpe, C.P.; Hall, W.L. Apple and blackcurrant polyphenol-rich drinks decrease postprandial glucose, insulin and incretin response to a high-carbohydrate meal in healthy men and women. J. Nutr. Biochem., 2017, 49, 53-62.
[http://dx.doi.org/10.1016/j.jnutbio.2017.07.013] [PMID: 28886437]
[22]
Cicero, A.F.G.; Caliceti, C.; Fogacci, F.; Giovannini, M.; Calabria, D.; Colletti, A.; Veronesi, M.; Roda, A.; Borghi, C. Effect of apple polyphenols on vascular oxidative stress and endothelium function: a translational study. Mol. Nutr. Food Res., 2017, 61(11), 1-11.
[http://dx.doi.org/10.1002/mnfr.201700373] [PMID: 28755406]
[23]
Ferreira, P.S.; Spolidorio, L.C.; Manthey, J.A.; Cesar, T.B.; Lv, H.; Song, E.; Zhu, C.; Berard, A.M.; Pelissero, C.B.; Mazur, A.; Morand, C. Citrus flavanones prevent systemic inflammation and ameliorate oxidative stress in C57BL/6J mice fed high-fat diet. Food Funct., 2016, 7(6), 2675-2681.
[http://dx.doi.org/10.1039/C5FO01541C] [PMID: 27182608]
[24]
Rocha, D.M.U.P.; Lopes, L.L.; da Silva, A.; Oliveira, L.L.; Bressan, J.; Hermsdorff, H.H.M. Orange juice modulates proinflammatory cytokines after high-fat saturated meal consumption. Food Funct., 2017, 8(12), 4396-4403.
[http://dx.doi.org/10.1039/C7FO01139C] [PMID: 29068453]
[25]
Food and Agricultura Organization of The United Nations, F. Global initiative on food loss and food waste reduction. Global initiative on food loss and food waste reduction 2015, 1-8.
[26]
Bharat Helkar, P.; Sahoo, A. Review: Food Industry By-Products used as a Functional Food Ingredients. Int. J. Waste Resour., 2016, 6.
[http://dx.doi.org/10.4172/2252-5211.1000248]
[27]
Kumar, K.; Yadav, A.N.; Kumar, V.; Vyas, P.; Dhaliwal, H.S. Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour. Bioprocess., 2017, 4, 18.
[http://dx.doi.org/10.1186/s40643-017-0148-6]
[28]
FAO FAO Statistical Pocketbook, 2015.ISBN 9789251088029..
[29]
Rabetafika, H.N.; Bchir, B.; Blecker, C.; Richel, A. Fractionation of apple by-products as source of new ingredients: Current situation and perspectives. Trends Food Sci. Technol., 2014, 40, 99-114.
[http://dx.doi.org/10.1016/j.tifs.2014.08.004]
[30]
Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.M.; Silvestre, A.J.D.; Pascoal Neto, C. Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography-mass spectrometry. J. Agric. Food Chem., 2011, 59(17), 9386-9393.
[http://dx.doi.org/10.1021/jf201801q] [PMID: 21761864]
[31]
Smeriglio, A.; Denaro, M.; Barreca, D.; D’Angelo, V.; Germanò, M.P.; Trombetta, D. Polyphenolic profile and biological activities of black carrot crude extract (Daucus carota L. ssp. sativus var. atrorubens Alef.). Fitoterapia, 2018, 124, 49-57.
[http://dx.doi.org/10.1016/j.fitote.2017.10.006] [PMID: 29050970]
[32]
Cláudio, A.F.M.; Freire, M.G.; Freire, C.S.R.; Silvestre, A.J.D.; Coutinho, J.A.P. Extraction of vanillin using ionic-liquid-based aqueous two-phase systems. Separ. Purif. Tech., 2010, 75, 39-47.
[http://dx.doi.org/10.1016/j.seppur.2010.07.007]
[33]
Cláudio, A.F.M.; Ferreira, A.M.; Freire, C.S.R.; Silvestre, A.J.D.; Freire, M.G.; Coutinho, J.A.P. Optimization of the gallic acid extraction using ionic-liquid-based aqueous two-phase systems. Separ. Purif. Tech., 2012, 97, 142-149.
[http://dx.doi.org/10.1016/j.seppur.2012.02.036]
[34]
Zhang, A.; Sun, H.; Yan, G.; Wang, X. Recent developments and emerging trends of mass spectrometry for herbal ingredients analysis. Trends Analyt. Chem., 2017, 94, 70-76.
[http://dx.doi.org/10.1016/j.trac.2017.07.007]
[35]
Aqil, F.; Munagala, R.; Jeyabalan, J.; Vadhanam, M.V. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett., 2013, 334(1), 133-141.
[http://dx.doi.org/10.1016/j.canlet.2013.02.032] [PMID: 23435377]
[36]
Germanò, M.P.; D’Angelo, V.; Biasini, T.; Sanogo, R.; De Pasquale, R.; Catania, S. Evaluation of the antioxidant properties and bioavailability of free and bound phenolic acids from Trichilia emetica Vahl. J. Ethnopharmacol., 2006, 105(3), 368-373.
[http://dx.doi.org/10.1016/j.jep.2005.11.029] [PMID: 16427228]
[37]
Lewandowska, U.; Szewczyk, K.; Hrabec, E.; Janecka, A.; Gorlach, S. Overview of metabolism and bioavailability enhancement of polyphenols. J. Agric. Food Chem., 2013, 61(50), 12183-12199.
[http://dx.doi.org/10.1021/jf404439b] [PMID: 24295170]
[38]
Holst, B.; Williamson, G. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr. Opin. Biotechnol., 2008, 19(2), 73-82.
[http://dx.doi.org/10.1016/j.copbio.2008.03.003] [PMID: 18406129]
[39]
Dias, M.I.; Ferreira, I.C.F.R.; Barreiro, M.F. Microencapsulation of bioactives for food applications. Food Funct., 2015, 6(4), 1035-1052.
[http://dx.doi.org/10.1039/C4FO01175A] [PMID: 25710906]
[40]
Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 2005, 81(1)(Suppl.), 230S-242S.
[http://dx.doi.org/10.1093/ajcn/81.1.230S] [PMID: 15640486]
[41]
Aliakbarian, B.; Sampaio, F.C.; de Faria, J.T.; Pitangui, C.G.; Lovaglio, F.; Casazza, A.A.; Converti, A.; Perego, P. Optimization of spray drying microencapsulation of olive pomace polyphenols using Response Surface Methodology and Artificial Neural Network. Lwt, 2018, 93, 220-228.
[http://dx.doi.org/10.1016/j.lwt.2018.03.048]
[42]
Bustamante, A.; Hinojosa, A.; Robert, P.; Escalona, V. Extraction and microencapsulation of bioactive compounds from pomegranate (Punica granatum var. Wonderful) residues. Int. J. Food Sci. Technol., 2017, 52, 1452-1462.
[http://dx.doi.org/10.1111/ijfs.13422]
[43]
da Costa, R.S.; Teixeira, C.B.; Gabbay Alves, T.V.; Ribeiro-Costa, R.M.; Casazza, A.A.; Aliakbarian, B.; Converti, A.; Silva Júnior, J.O.C.; Perego, P. Optimization of spray drying conditions to microencapsulate cupuassu (Theobroma grandiflorum) seed by-product extract. Nat. Prod. Res., 2018, 6419, 1-9.
[http://dx.doi.org/10.1080/14786419.2018.1462178] [PMID: 29656659]
[44]
Dos Santos, S.S.; Rodrigues, L.M.; Da Costa, S.C.; Bergamasco, R.D.C.; Madrona, G.S. Microencapsulation of Bioactive Compounds from Blackberry Pomace (Rubus fruticosus) by Spray Drying Technique. Int. J. Food Eng., 2017, 13, 1-11.
[http://dx.doi.org/10.1515/ijfe-2017-0047]
[45]
Waterhouse, G.I.N.; Sun-Waterhouse, D.; Su, G.; Zhao, H.; Zhao, M. Spray-Drying of Antioxidant-Rich Blueberry Waste Extracts; Interplay Between Waste Pretreatments and Spray-Drying Process. Food Bioprocess Technol., 2017, 10, 1074-1092.
[http://dx.doi.org/10.1007/s11947-017-1880-9]
[46]
Kalušević, A.; Lević, S.; Čalija, B.; Pantić, M.; Belović, M.; Pavlović, V.; Bugarski, B.; Milić, J.; Žilić, S.; Nedović, V. Microencapsulation of anthocyanin-rich black soybean coat extract by spray drying using maltodextrin, gum Arabic and skimmed milk powder. J. Microencapsul., 2017, 34(5), 475-487.
[http://dx.doi.org/10.1080/02652048.2017.1354939] [PMID: 28715926]
[47]
Kalušević, A.M.; Lević, S.M.; Čalija, B.R.; Milić, J.R.; Pavlović, V.B.; Bugarski, B.M.; Nedović, V.A. Effects of different carrier materials on physicochemical properties of microencapsulated grape skin extract. J. Food Sci. Technol., 2017, 54(11), 3411-3420.
[http://dx.doi.org/10.1007/s13197-017-2790-6] [PMID: 29051636]
[48]
Sansone, F.; Picerno, P.; Mencherini, T.; Villecco, F.; D’Ursi, A.M.; Aquino, R.P.; Lauro, M.R. Flavonoid microparticles by spray-drying: Influence of enhancers of the dissolution rate on properties and stability. J. Food Eng., 2011, 103.
[http://dx.doi.org/10.1016/j.jfoodeng.2010.10.015]
[49]
Lauro, M.R.; Maggi, L.; Conte, U.; De Simone, F.; Aquino, R.P. Rutin and quercetin gastro-resistant microparticles obtained by spray-drying technique. J. Drug Deliv. Sci. Technol., 2005, 15, 363-369.
[http://dx.doi.org/10.1016/S1773-2247(05)50066-2]
[50]
Lauro, M.R.; De Simone, F.; Sansone, F.; Iannelli, P.; Aquino, R.P. Preparations and release characteristics of naringin and naringenin gastro-resistant microparticles by spray-drying. J. Drug Deliv. Sci. Technol., 2007, 17, 119-124.
[http://dx.doi.org/10.1016/S1773-2247(07)50018-3]
[51]
Tan, S.P.; Kha, T.C.; Parks, S.E.; Stathopoulos, C.E.; Roach, P.D. Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technol., 2015, 281, 65-75.
[http://dx.doi.org/10.1016/j.powtec.2015.04.074]
[52]
Labuschagne, P. Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Res. Int., 2018, 107, 227-247.
[http://dx.doi.org/10.1016/j.foodres.2018.02.026] [PMID: 29580481]
[53]
Verma, A.; Singh, S.V. Spray drying of fruit and vegetable juices--a review. Crit. Rev. Food Sci. Nutr., 2015, 55(5), 701-719.
[http://dx.doi.org/10.1080/10408398.2012.672939] [PMID: 24915356]
[54]
Rizzo, G.; Baroni, L. Soy, soy foods and their role in vegetarian diets ; , 2018. 10, p. ISBN 3932089766..
[55]
WANG Q.; GE, X.; TIAN, X.; ZHANG, Y.; ZHANG, J.; ZHANG, P. Soy isoflavone: The multipurpose phytochemical. Biomed. Rep., 2013, 1, 697-701.
[http://dx.doi.org/10.3892/br.2013.129]
[56]
Lokuruka, M. SOYBEAN NUTRITIONAL PROPERTIES: THE GOOD AND THE BAD ABOUT SOY FOODS CONSUMPTION- A REVIEW. african journal of food agriculture nutrition and development, 2010, 10, 2439-2459.
[57]
Cavazos, A.; Morales, E.; Dia, V.P.; De Mejia, E.G. Analysis of lunasin in commercial and pilot plant produced soybean products and an improved method of lunasin purification. J. Food Sci., 2012, 77(5), C539-C545.
[http://dx.doi.org/10.1111/j.1750-3841.2012.02676.x] [PMID: 22510061]
[58]
Baber, R.J. Isoflavones: Chemistry, analysis, function and effects; , , 2012. ISBN 9781849734196..
[59]
Garg, S.; Lule, V.K.; Malik, R.K.; Tomar, S.K. Soy Bioactive Components in Functional Perspective: A Review. Int. J. Food Prop., 2016, 19, 2550-2574.
[http://dx.doi.org/10.1080/10942912.2015.1136936]
[60]
Grieshop, C.M.; Kadzere, C.T.; Clapper, G.M.; Flickinger, E.A.; Bauer, L.L.; Frazier, R.L.; Fahey, G.C. Jr Chemical and nutritional characteristics of United States soybeans and soybean meals. J. Agric. Food Chem., 2003, 51(26), 7684-7691.
[http://dx.doi.org/10.1021/jf034690c] [PMID: 14664529]
[61]
Montgomery, K.S. Soy protein. J. Perinat. Educ., 2003, 12(3), 42-45.
[http://dx.doi.org/10.1891/1058-1243.12.3.42] [PMID: 17273351]
[62]
Friedman, M.; Brandon, D.L. Nutritional and health benefits of soy proteins. J. Agric. Food Chem., 2001, 49(3), 1069-1086.
[http://dx.doi.org/10.1021/jf0009246] [PMID: 11312815]
[63]
Jandacek, R.J. Linoleic Acid: A Nutritional Quandary. Healthcare (Basel), 2017, 5(2), 25.
[http://dx.doi.org/10.3390/healthcare5020025] [PMID: 28531128]
[64]
Glick, N.R.; Fischer, M.H. The Role of Essential Fatty Acids in Human Health. J. Evid. Based Complementary Altern. Med., 2013, 18, 268-289.
[http://dx.doi.org/10.1177/2156587213488788]
[65]
Meghwal, M. Soy Isoflavonoids as Nutraceutical for Human Health: An Update. J. Cell Sci. Ther., 2014, 06, 8-11.
[http://dx.doi.org/10.4172/2157-7013.1000194]
[66]
Messina, M. A brief historical overview of the past two decades of soy and isoflavone research. J. Nutr., 2010, 140(7), 1350S-1354S.
[http://dx.doi.org/10.3945/jn.109.118315] [PMID: 20484551]
[67]
Iqbal, J.; Abbasi, B. A.; Khalil, A. T.; Ali, B.; Mahmood, T.; Kanwal, S.; Shah, S. A.; Ali, W. Dietary isoflavones, the modulator of breast carcinogenesis: Current landscape and future perspectives., 2018, 11, 186-193.
[68]
Yoon, G-A.; Park, S. Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats. Nutr. Res. Pract., 2014, 8(6), 618-624.
[http://dx.doi.org/10.4162/nrp.2014.8.6.618] [PMID: 25489400]
[69]
Ahmad, A.; Hayat, I.; Arif, S.; Masud, T.; Khalid, N.; Ahmed, A. Mechanisms involved in the therapeutic effects of soybean (glycine max). Int. J. Food Prop., 2014, 17, 1332-1354.
[http://dx.doi.org/10.1080/10942912.2012.714828]
[70]
Ziaei, S.; Halaby, R. Dietary Isoflavones and Breast Cancer Risk. Medicines (Basel), 2017, 4(2), 18.
[http://dx.doi.org/10.3390/medicines4020018] [PMID: 28930233]
[71]
Ko, K.P. Isoflavones: chemistry, analysis, functions and effects on health and cancer. Asian Pac. J. Cancer Prev., 2014, 15(17), 7001-7010.
[http://dx.doi.org/10.7314/APJCP.2014.15.17.7001] [PMID: 25227781]
[72]
Messina, M. Soy and health update: Evaluation of the clinical and epidemiologic literature. Nutrients, 2016, 8(12)E754
[http://dx.doi.org/10.3390/nu8120754] [PMID: 27886135]
[73]
Wu, H.; Zhang, Z.; Huang, H.; Li, Z. Health benefits of soy and soy phytochemicals. AME Med. J., 2017, 2017, 1-9.
[http://dx.doi.org/10.21037/amj.2017.01.01]
[74]
Nagata, C.; Wada, K.; Tamura, T.; Konishi, K.; Goto, Y.; Koda, S.; Kawachi, T.; Tsuji, M.; Nakamura, K. Dietary soy and natto intake and cardiovascular disease mortality in Japanese adults: the Takayama study. Am. J. Clin. Nutr., 2017, 105(2), 426-431.
[http://dx.doi.org/10.3945/ajcn.116.137281] [PMID: 27927636]
[75]
Nguyen, C.T.; Pham, N.M.; Do, V.V.; Binns, C.W.; Hoang, V.M.; Dang, D.A.; Lee, A.H. Soyfood and isoflavone intake and risk of type 2 diabetes in Vietnamese adults. Eur. J. Clin. Nutr., 2017, 71(10), 1186-1192.
[http://dx.doi.org/10.1038/ejcn.2017.76] [PMID: 28488690]
[76]
Wang, S.; Wang, Y.; Pan, M.H.; Ho, C.T. Anti-obesity molecular mechanism of soy isoflavones: weaving the way to new therapeutic routes. Food Funct., 2017, 8(11), 3831-3846.
[http://dx.doi.org/10.1039/C7FO01094J] [PMID: 29043346]
[77]
Uifălean, A.; Schneider, S.; Ionescu, C.; Lalk, M.; Iuga, C.A. Soy isoflavones and breast cancer cell lines: Molecular mechanisms and future perspectives. Molecules, 2015, 21(1)E13
[http://dx.doi.org/10.3390/molecules21010013] [PMID: 26703550]
[78]
Zhang, H-Y.; Cui, J.; Zhang, Y.; Wang, Z-L.; Chong, T.; Wang, Z-M. Isoflavones and Prostate Cancer: A Review of Some Critical Issues. Chin. Med. J. (Engl.), 2016, 129(3), 341-347.
[http://dx.doi.org/10.4103/0366-6999.174488] [PMID: 26831238]
[79]
Habib, S.; Afridi, A.; Wasay, M.; Iqbal, R. Isoflavones and Alzheimer’s disease : The Effects, 2014.
[80]
Masilamani, M.; Wei, J.; Sampson, H.A. Regulation of the immune response by soybean isoflavones. Immunol. Res., 2012, 54(1-3), 95-110.
[http://dx.doi.org/10.1007/s12026-012-8331-5] [PMID: 22484990]
[81]
Cederroth, C.R.; Auger, J.; Zimmermann, C.; Eustache, F.; Nef, S. Soy, phyto-oestrogens and male reproductive function: a review. Int. J. Androl., 2010, 33(2), 304-316.
[http://dx.doi.org/10.1111/j.1365-2605.2009.01011.x] [PMID: 19919579]
[82]
Jefferson, W.N.; Patisaul, H.B.; Williams, C.J. Reproductive consequences of developmental phytoestrogen exposure. Reproduction, 2012, 143(3), 247-260.
[http://dx.doi.org/10.1530/REP-11-0369] [PMID: 22223686]
[83]
Miller, P.E.; Snyder, D.C. Phytochemicals and cancer risk: a review of the epidemiological evidence. Nutr. Clin. Pract., 2012, 27(5), 599-612.
[http://dx.doi.org/10.1177/0884533612456043] [PMID: 22878362]
[84]
He, F-J.; Chen, J-Q. Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence: Differences between Chinese women and women in Western countries and possible mechanisms. Food Sci. Hum. Wellness, 2013, 2, 146-161.
[http://dx.doi.org/10.1016/j.fshw.2013.08.002]
[85]
Wada, K.; Tsuji, M.; Tamura, T.; Konishi, K.; Kawachi, T.; Hori, A.; Tanabashi, S.; Matsushita, S.; Tokimitsu, N.; Nagata, C. Soy isoflavone intake and stomach cancer risk in Japan: From the Takayama study. Int. J. Cancer, 2015, 137(4), 885-892.
[http://dx.doi.org/10.1002/ijc.29437] [PMID: 25639758]
[86]
van Die, M.D.; Bone, K.M.; Williams, S.G.; Pirotta, M.V. Soy and soy isoflavones in prostate cancer: a systematic review and meta-analysis of randomized controlled trials. BJU Int., 2014, 113(5b), E119-E130.
[http://dx.doi.org/10.1111/bju.12435] [PMID: 24053483]
[87]
Fukagai, T.; Akaza, H. Serum Isoflavone Concentrations and Equol-Producing Intestinal Flora in Prostate Cancer in Japanese-American in Hawaii. J. Nutr. Food Sci., 2016, 06.
[http://dx.doi.org/10.4172/2155-9600.1000470]
[88]
Tang, L.; Lee, A.H.; Xu, F.; Zhang, T.; Lei, J.; Binns, C.W. Soya and isoflavone intakes associated with reduced risk of oesophageal cancer in north-west China. Public Health Nutr., 2015, 18(1), 130-134.
[http://dx.doi.org/10.1017/S1368980013003443] [PMID: 24674768]
[89]
Yu, Y.; Jing, X.; Li, H.; Zhao, X.; Wang, D. Soy isoflavone consumption and colorectal cancer risk: a systematic review and meta-analysis. Sci. Rep., 2016, 6, 25939.
[http://dx.doi.org/10.1038/srep25939] [PMID: 27170217]
[90]
Zhong, X.S.; Ge, J.; Chen, S.W.; Xiong, Y.Q.; Ma, S.J.; Chen, Q. Association between Dietary Isoflavones in Soy and Legumes and Endometrial Cancer: A Systematic Review and Meta-Analysis. J. Acad. Nutr. Diet., 2018, 118(4), 637-651.
[http://dx.doi.org/10.1016/j.jand.2016.09.036] [PMID: 27914914]
[91]
Grosso, G.; Godos, J.; Lamuela-Raventos, R.; Ray, S.; Micek, A.; Pajak, A.; Sciacca, S.; D’Orazio, N.; Del Rio, D.; Galvano, F. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Mol. Nutr. Food Res., 2017, 61(4), 1-10.
[http://dx.doi.org/10.1002/mnfr.201600930] [PMID: 27943649]
[92]
Liu, Z.M.; Ho, S.C.; Chen, Y.M.; Liu, J.; Woo, J. Cardiovascular risks in relation to daidzein metabolizing phenotypes among Chinese postmenopausal women. PLoS One, 2014, 9(2)e87861
[http://dx.doi.org/10.1371/journal.pone.0087861] [PMID: 24533060]
[93]
Tokede, O.A.; Onabanjo, T.A.; Yansane, A.; Gaziano, J.M.; Djoussé, L. Soya products and serum lipids: a meta-analysis of randomised controlled trials. Br. J. Nutr., 2015, 114(6), 831-843.
[http://dx.doi.org/10.1017/S0007114515002603] [PMID: 26268987]
[94]
Ramdath, D.D.; Padhi, E.M.; Sarfaraz, S.; Renwick, S.; Duncan, A.M. Beyond the Cholesterol-Lowering Effect of Soy Protein: A Review of the Effects of Dietary Soy and Its Constituents on Risk Factors for Cardiovascular Disease. Nutrients, 2017, 9(4), 324.
[http://dx.doi.org/10.3390/nu9040324] [PMID: 28338639]
[95]
Sathyapalan, T.; Aye, M.; Rigby, A.S.; Thatcher, N.J.; Dargham, S.R.; Kilpatrick, E.S.; Atkin, S.L. Soy isoflavones improve cardiovascular disease risk markers in women during the early menopause. Nutr. Metab. Cardiovasc. Dis., 2018, 28(7), 691-697.
[http://dx.doi.org/10.1016/j.numecd.2018.03.007] [PMID: 29739677]
[96]
Pawlowski, J.W.; Martin, B.R.; McCabe, G.P.; McCabe, L.; Jackson, G.S.; Peacock, M.; Barnes, S.; Weaver, C.M. Impact of equol-producing capacity and soy-isoflavone profiles of supplements on bone calcium retention in postmenopausal women: a randomized crossover trial. Am. J. Clin. Nutr., 2015, 102(3), 695-703.
[http://dx.doi.org/10.3945/ajcn.114.093906] [PMID: 26245807]
[97]
Greendale, G.A.; Tseng, C-H.; Han, W.; Huang, M-H.; Leung, K.; Crawford, S.; Gold, E.B.; Waetjen, L.E.; Karlamangla, A.S. Dietary isoflavones and bone mineral density during midlife and the menopausal transition: cross-sectional and longitudinal results from the Study of Women’s Health Across the Nation Phytoestrogen Study. Menopause, 2015, 22(3), 279-288.
[http://dx.doi.org/10.1097/GME.0000000000000305] [PMID: 25116050]
[98]
Baglia, M.L.; Gu, K.; Zhang, X.; Zheng, Y.; Peng, P.; Cai, H.; Bao, P-P.; Zheng, W.; Lu, W.; Shu, X-O. Soy isoflavone intake and bone mineral density in breast cancer survivors. Cancer Causes Control, 2015, 26(4), 571-580.
[http://dx.doi.org/10.1007/s10552-015-0534-3] [PMID: 25687481]
[99]
Zheng, X.; Lee, S-K.; Chun, O.K. Soy Isoflavones and Osteoporotic Bone Loss: A Review with an Emphasis on Modulation of Bone Remodeling. J. Med. Food, 2016, 19(1), 1-14.
[http://dx.doi.org/10.1089/jmf.2015.0045] [PMID: 26670451]
[100]
Ko, K-P.; Kim, C-S.; Ahn, Y.; Park, S-J.; Kim, Y-J.; Park, J.K.; Lim, Y-K.; Yoo, K-Y.; Kim, S.S. Plasma isoflavone concentration is associated with decreased risk of type 2 diabetes in Korean women but not men: results from the Korean Genome and Epidemiology Study. Diabetologia, 2015, 58(4), 726-735.
[http://dx.doi.org/10.1007/s00125-014-3463-x] [PMID: 25533387]
[101]
Sedaghat, A.; Shahbazian, H.; Haidari, F.; Payami, S.P.; Jahanshahi, A.; Latifi, S.M. The Effect of Soy Nuts on Glycemic Control, Lipid Profile and Insulin-Resistance in Type 2 Diabetic Patients. Open J. Endocr. Metab. Dis., 2015, 05, 1-7.
[http://dx.doi.org/10.4236/ojemd.2015.51001]
[102]
Chi, X-X.; Zhang, T.; Zhang, D-J.; Yu, W.; Wang, Q-Y.; Zhen, J-L. Effects of isoflavones on lipid and apolipoprotein levels in patients with type 2 diabetes in Heilongjiang Province in China. J. Clin. Biochem. Nutr., 2016, 59(2), 134-138.
[http://dx.doi.org/10.3164/jcbn.15-147] [PMID: 27698541]
[103]
Fang, K.; Dong, H.; Wang, D.; Gong, J.; Huang, W.; Lu, F. Soy isoflavones and glucose metabolism in menopausal women: A systematic review and meta-analysis of randomized controlled trials. Mol. Nutr. Food Res., 2016, 60(7), 1602-1614.
[http://dx.doi.org/10.1002/mnfr.201501024] [PMID: 27004555]
[104]
Li, W.; Ruan, W.; Peng, Y.; Wang, D. Soy and the risk of type 2 diabetes mellitus: A systematic review and meta-analysis of observational studies. Diabetes Res. Clin. Pract., 2018, 137, 190-199.
[http://dx.doi.org/10.1016/j.diabres.2018.01.010] [PMID: 29407270]
[105]
Gleason, C.E.; Fischer, B.L.; Dowling, N.M.; Setchell, K.D.R.; Atwood, C.S.; Carlsson, C.M.; Asthana, S. Cognitive effects of soy isoflavones in patients with Alzheimer’s disease. J. Alzheimers Dis., 2015, 47(4), 1009-1019.
[http://dx.doi.org/10.3233/JAD-142958] [PMID: 26401779]
[106]
Fang, Z.; Bhandari, B. Encapsulation of polyphenols - A review. Trends Food Sci. Technol., 2010, 21, 510-523.
[http://dx.doi.org/10.1016/j.tifs.2010.08.003]
[107]
Del Gaudio, P.; Sansone, F.; Mencherini, T.; De Cicco, F.; Russo, P.; Aquino, R.P. Nanospray Drying as a Novel Tool to Improve Technological Properties of Soy Isoflavone Extracts. Planta Med., 2017, 83(5), 426-433.
[http://dx.doi.org/10.1055/s-0042-110179] [PMID: 27340792]
[108]
Panizzon, G.P.; Bueno, F.G.; Ueda-Nakamura, T.; Nakamura, C.V.; Dias Filho, B.P. Preparation of spray-dried soy isoflavone-loaded gelatin microspheres for enhancement of dissolution: Formulation, characterization and in vitro evaluation. Pharmaceutics, 2014, 6(4), 599-615.
[http://dx.doi.org/10.3390/pharmaceutics6040599] [PMID: 25494200]
[109]
Sansone, F.; Mencherini, T.; Picerno, P.; D’Amore, M.; Aquino, R.P.; Lauro, M.R. Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. J. Food Eng., 2011, 105.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.03.004]
[110]
Nemitz, M.C.; Moraes, R.C.; Koester, L.S.; Bassani, V.L.; von Poser, G.L.; Teixeira, H.F. Bioactive soy isoflavones: extraction and purification procedures, potential dermal use and nanotechnology-based delivery systems. Phytochem. Rev., 2015, 14, 849-869.
[http://dx.doi.org/10.1007/s11101-014-9382-0]
[111]
Chen, F.; Peng, J.; Lei, D.; Liu, J.; Zhao, G. Optimization of genistein solubilization by κ-carrageenan hydrogel using response surface methodology. Food Sci. Hum. Wellness, 2013, 2, 124-131.
[http://dx.doi.org/10.1016/j.fshw.2013.06.001]
[112]
Cannavà, C.; Crupi, V.; Ficarra, P.; Guardo, M.; Majolino, D.; Mazzaglia, A.; Stancanelli, R.; Venuti, V. Physico-chemical characterization of an amphiphilic cyclodextrin/genistein complex. J. Pharm. Biomed. Anal., 2010, 51(5), 1064-1068.
[http://dx.doi.org/10.1016/j.jpba.2009.11.025] [PMID: 20036091]
[113]
Teixeira, F.; Bassani, V.L. IMPROVEMENT OF GENISTEIN CONTENT IN SOLID GENISTEIN/β-CYCLODEXTRIN COMPLEXES. Quim. Nova, 2010, 33, 587-590.
[http://dx.doi.org/10.1590/S0100-40422010000300019]
[114]
Yatsu, F.K.J.; Koester, L.S.; Lula, I.; Passos, J.J.; Sinisterra, R.; Bassani, V.L. Multiple complexation of cyclodextrin with soy isoflavones present in an enriched fraction. Carbohydr. Polym., 2013, 98(1), 726-735.
[http://dx.doi.org/10.1016/j.carbpol.2013.06.062] [PMID: 23987405]
[115]
Li, S.; Yuan, L.; Chen, Y.; Zhou, W.; Wang, X. Studies on the inclusion complexes of daidzein with β-cyclodextrin and derivatives. Molecules, 2017, 22(12), 1-11.
[http://dx.doi.org/10.3390/molecules22122183] [PMID: 29292784]
[116]
Zhao, C.; Wang, Y.; Su, Y.; Zhang, H.; Ding, L.; Yan, X.; Zhao, D.; Shao, N.; Ye, X.; Cheng, Y. Inclusion complexes of isoflavones with two commercially available dendrimers: Solubility, stability, structures, release behaviors, cytotoxicity, and anti-oxidant activities. Int. J. Pharm., 2011, 421(2), 301-309.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.044] [PMID: 22001794]
[117]
Zampieri, A.L.; Ferreira, F.S.; Resende, É.C.; Gaeti, M.P.N.; Diniz, D.G.A.; Taveira, S.F.; Lima, E.M. Biodegradable polymeric nanocapsules based on poly(DL-lactide) for genistein topical delivery: obtention, characterization and skin permeation studies. J. Biomed. Nanotechnol., 2013, 9(3), 527-534.
[http://dx.doi.org/10.1166/jbn.2013.1555] [PMID: 23621010]
[118]
Zhu, S.; Hong, M.; Liu, C.; Pei, Y. Application of Box-Behnken design in understanding the quality of genistein self-nanoemulsified drug delivery systems and optimizing its formulation. Pharm. Dev. Technol., 2009, 14(6), 642-649.
[http://dx.doi.org/10.3109/10837450902882385] [PMID: 19883253]
[119]
Tang, J.; Xu, N.; Ji, H.; Liu, H.; Wang, Z.; Wu, L. Eudragit nanoparticles containing genistein: formulation, development, and bioavailability assessment. Int. J. Nanomedicine, 2011, 6, 2429-2435.
[http://dx.doi.org/10.2147/IJN.S24185] [PMID: 22072878]
[120]
Setchell, K.D.R.; Brzezinski, A.; Brown, N.M.; Desai, P.B.; Melhem, M.; Meredith, T.; Zimmer-Nechimias, L.; Wolfe, B.; Cohen, Y.; Blatt, Y. Pharmacokinetics of a slow-release formulation of soybean isoflavones in healthy postmenopausal women. J. Agric. Food Chem., 2005, 53(6), 1938-1944.
[http://dx.doi.org/10.1021/jf0488099] [PMID: 15769117]
[121]
Sansone, F.; Mencherini, T.; Picerno, P.; Esposito, T.; Del Gaudio, P.; Russo, P.; Pepe, G.; Lauro, M. R.; Aquino, R. P. Microencapsulation by spray drying of Lannea microcarpa extract: Technological characteristics and antioxidant activity. Journal of Pharmacy and Pharmacognosy Research 2014, 2.
[122]
Del Gaudio, P.; Russo, P.; Rodriguez Dorado, R.; Sansone, F.; Mencherini, T.; Gasparri, F.; Aquino, R.P. Submicrometric hypromellose acetate succinate particles as carrier for soy isoflavones extract with improved skin penetration performance. Carbohydr. Polym., 2017, 165, 22-29.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.025] [PMID: 28363543]
[123]
Poomkokrak, J.; Niamnuy, C.; Choicharoen, K.; Devahastin, S. Encapsulation of soybean extract using spray drying Journal of Food Science and Agricultural Technology, 2015.
[124]
Georgetti, S.R.; Casagrande, R.; Souza, C.R.F.; Oliveira, W.P.; Fonseca, M.J.V. Spray drying of the soybean extract: Effects on chemical properties and antioxidant activity. Lebensm. Wiss. Technol., 2008, 41, 1521-1527.
[http://dx.doi.org/10.1016/j.lwt.2007.09.001]
[125]
Sansone, F.; Picerno, P.; Mencherini, T.; Russo, P.; Gasparri, F.; Giannini, V.; Lauro, M.R.; Puglisi, G.; Aquino, R.P. Enhanced technological and permeation properties of a microencapsulated soy isoflavones extract. J. Food Eng., 2013, 115, 298-305.
[http://dx.doi.org/10.1016/j.jfoodeng.2012.10.040]
[126]
De Cicco, F.; Porta, A.; Sansone, F.; Aquino, R.P.; Del Gaudio, P. Nanospray technology for an in situ gelling nanoparticulate powder as a wound dressing. Int. J. Pharm., 2014, 473(1-2), 30-37.
[http://dx.doi.org/10.1016/j.ijpharm.2014.06.049] [PMID: 24979533]
[127]
Stirpe, M.; Palermo, V.; Bianchi, M.M.; Silvestri, R.; Falcone, C.; Tenore, G.; Novellino, E.; Mazzoni, C. Annurca apple (M. pumila Miller cv Annurca) extracts act against stress and ageing in S. cerevisiae yeast cells. BMC Complement. Altern. Med., 2017, 17(1), 200.
[http://dx.doi.org/10.1186/s12906-017-1666-7] [PMID: 28381226]
[128]
Lo Scalzo, R.; Testoni, A.; Genna, A. “Annurca” apple fruit, a southern Italy apple cultivar: Textural properties and aroma composition. Food Chem., 2001, 73, 333-343.
[http://dx.doi.org/10.1016/S0308-8146(00)00306-X]
[129]
Cefarelli, G.; D’Abrosca, B.; Fiorentino, A.; Izzo, A.; Monaco, P. Isolation, characterization, and antioxidant activity of E- and Z-p-coumaryl fatty acid esters from cv. Annurca apple fruits. J. Agric. Food Chem., 2005, 53(9), 3525-3529.
[http://dx.doi.org/10.1021/jf047838g] [PMID: 15853397]
[130]
Cefarelli, G.; D’Abrosca, B.; Fiorentino, A.; Izzo, A.; Mastellone, C.; Pacifico, S.; Piscopo, V. Free-radical-scavenging and antioxidant activities of secondary metabolites from reddened cv. Annurca apple fruits. J. Agric. Food Chem., 2006, 54(3), 803-809.
[http://dx.doi.org/10.1021/jf052632g] [PMID: 16448186]
[131]
D’Abrosca, B.; Fiorentino, A.; Monaco, P.; Oriano, P.; Pacifico, S. Annurcoic acid: A new antioxidant ursane triterpene from fruits of cv. Annurca apple. Food Chem., 2006, 98, 285-290.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.072]
[132]
Mari, A.; Tedesco, I.; Nappo, A.; Russo, G.L.; Malorni, A.; Carbone, V. Phenolic compound characterisation and antiproliferative activity of “Annurca” apple, a southern Italian cultivar. Food Chem., 2010, 123, 157-164.
[http://dx.doi.org/10.1016/j.foodchem.2010.04.023]
[133]
Sommella, E.; Pepe, G.; Pagano, F.; Ostacolo, C.; Tenore, G.C.; Russo, M.T.; Novellino, E.; Manfra, M.; Campiglia, P. Detailed polyphenolic profiling of Annurca apple (M. pumila Miller cv Annurca) by a combination of RP-UHPLC and HILIC, both hyphenated to IT-TOF mass spectrometry. Food Res. Int., 2015, 76(Pt 3), 466-477.
[http://dx.doi.org/10.1016/j.foodres.2015.05.044] [PMID: 28455027]
[134]
D’Angelo, S.; Cimmino, A.; Raimo, M.; Salvatore, A.; Zappia, V.; Galletti, P. Effect of reddening-ripening on the antioxidant activity of polyphenol extracts from cv. ‘Annurca’ apple fruits. J. Agric. Food Chem., 2007, 55(24), 9977-9985.
[http://dx.doi.org/10.1021/jf071773a] [PMID: 17960886]
[135]
D’Angelo, S.; Sammartino, D. Protective effect of annurca apple extract against oxidative damage in human erythrocytes. Curr. Nutr. Food Sci., 2015, 11, 248-256.
[http://dx.doi.org/10.2174/1573401311666150610210529]
[136]
Graziani, G.; D’Argenio, G.; Tuccillo, C.; Loguercio, C.; Ritieni, A.; Morisco, F.; Del Vecchio Blanco, C.; Fogliano, V.; Romano, M. Apple polyphenol extracts prevent damage to human gastric epithelial cells in vitro and to rat gastric mucosa in vivo. Gut, 2005, 54(2), 193-200.
[http://dx.doi.org/10.1136/gut.2004.046292] [PMID: 15647180]
[137]
D’Angelo, S.; La Porta, R.; Napolitano, M.; Galletti, P.; Quagliuolo, L.; Boccellino, M. Effect of Annurca apple polyphenols on human HaCaT keratinocytes proliferation. J. Med. Food, 2012, 15(11), 1024-1031.
[http://dx.doi.org/10.1089/jmf.2012.0076] [PMID: 22892038]
[138]
D’Angelo, S.; Martino, E.; Ilisso, C.P.; Bagarolo, M.L.; Porcelli, M.; Cacciapuoti, G. Pro-oxidant and pro-apoptotic activity of polyphenol extract from Annurca apple and its underlying mechanisms in human breast cancer cells. Int. J. Oncol., 2017, 51(3), 939-948.
[http://dx.doi.org/10.3892/ijo.2017.4088] [PMID: 28766690]
[139]
Fini, L.; Selgrad, M.; Fogliano, V.; Graziani, G.; Romano, M.; Hotchkiss, E.; Daoud, Y.A.; De Vol, E.B.; Boland, C.R.; Ricciardiello, L. Annurca apple polyphenols have potent demethylating activity and can reactivate silenced tumor suppressor genes in colorectal cancer cells. J. Nutr., 2007, 137(12), 2622-2628.
[http://dx.doi.org/10.1093/jn/137.12.2622] [PMID: 18029474]
[140]
Fini, L.; Piazzi, G.; Daoud, Y.; Selgrad, M.; Maegawa, S.; Garcia, M.; Fogliano, V.; Romano, M.; Graziani, G.; Vitaglione, P.; Carmack, S.W.; Gasbarrini, A.; Genta, R.M.; Issa, J.P.; Boland, C.R.; Ricciardiello, L. Chemoprevention of intestinal polyps in ApcMin/+ mice fed with western or balanced diets by drinking annurca apple polyphenol extract. Cancer Prev. Res. (Phila.), 2011, 4(6), 907-915.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0359] [PMID: 21383028]
[141]
Scafuri, B.; Marabotti, A.; Carbone, V.; Minasi, P.; Dotolo, S.; Facchiano, A. A theoretical study on predicted protein targets of apple polyphenols and possible mechanisms of chemoprevention in colorectal cancer. Sci. Rep., 2016, 6, 32516.
[http://dx.doi.org/10.1038/srep32516] [PMID: 27587238]
[142]
Viggiano, A.; Viggiano, A.; Monda, M.; Turco, I.; Incarnato, L.; Vinno, V.; Viggiano, E.; Baccari, M.E.; De Luca, B. Annurca apple-rich diet restores long-term potentiation and induces behavioral modifications in aged rats. Exp. Neurol., 2006, 199(2), 354-361.
[http://dx.doi.org/10.1016/j.expneurol.2006.01.001] [PMID: 16480716]
[143]
Fratianni, F.; Coppola, R.; Nazzaro, F. Phenolic composition and antimicrobial and antiquorum sensing activity of an ethanolic extract of peels from the apple cultivar Annurca. J. Med. Food, 2011, 14(9), 957-963.
[http://dx.doi.org/10.1089/jmf.2010.0170] [PMID: 21476926]
[144]
Tenore, G.C.; Campiglia, P.; Stiuso, P.; Ritieni, A.; Novellino, E. Nutraceutical potential of polyphenolic fractions from Annurca apple (M. pumila Miller cv Annurca). Food Chem., 2013, 140(4), 614-622.
[http://dx.doi.org/10.1016/j.foodchem.2012.10.112] [PMID: 23692744]
[145]
Tenore, G.C.; Calabrese, G.; Stiuso, P.; Ritieni, A.; Giannetti, D.; Novellino, E. Effects of Annurca apple polyphenols on lipid metabolism in HepG2 cell lines: A source of nutraceuticals potentially indicated for the metabolic syndrome. Food Res. Int., 2014, 63, 252-257.
[http://dx.doi.org/10.1016/j.foodres.2014.05.024]
[146]
Tenore, G.C.; Caruso, D.; Buonomo, G.; D’Avino, M.; Campiglia, P.; Marinelli, L.; Novellino, E. A Healthy Balance of Plasma Cholesterol by a Novel Annurca Apple-Based Nutraceutical Formulation: Results of a Randomized Trial. J. Med. Food, 2017, 20(3), 288-300.
[http://dx.doi.org/10.1089/jmf.2016.0152] [PMID: 28296588]
[147]
Sansone, F.; Esposito, T.; Mencherini, T.; Piccinelli, A.L.; Gazzerro, P.; Picerno, P.; Russo, P.; Del Gaudio, P.; Essolito, M.; Campiglia, P.; Aquino, R.P. Annurca peel extract: from the chemical composition, through the functional activity, to the formulation and characterisation of a topical oil-in-water emulsion. Nat. Prod. Res., 2016, 30(12), 1398-1403.
[http://dx.doi.org/10.1080/14786419.2015.1062005] [PMID: 26211432]
[148]
Mencherini, T.; Picerno, P.; Festa, M.; Russo, P.; Capasso, A.; Aquino, R. Triterpenoid constituents from the roots of Paeonia rockii ssp. rockii. J. Nat. Prod., 2011, 74(10), 2116-2121.
[http://dx.doi.org/10.1021/np200359v] [PMID: 21954959]
[149]
Sansone, F.; Picerno, P.; Mencherini, T.; Porta, A.; Lauro, M.R.; Russo, P.; Aquino, R.P. Technological properties and enhancement of antifungal activity of a Paeonia rockii extract encapsulated in a chitosan-based matrix. J. Food Eng., 2014, 120, 260-267.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.07.039]
[150]
Tenore, G.C.; Caruso, D.; Buonomo, G.; D’Avino, M.; Santamaria, R.; Irace, C.; Piccolo, M.; Maisto, M.; Novellino, E. Annurca Apple Nutraceutical Formulation Enhances Keratin Expression in a Human Model of Skin and Promotes Hair Growth and Tropism in a Randomized Clinical Trial. J. Med. Food, 2018, 21(1), 90-103.
[http://dx.doi.org/10.1089/jmf.2017.0016] [PMID: 28956697]
[151]
Lü, Z.; Zhang, Z.; Wu, H.; Zhou, Z.; Yu, J. Phenolic Composition and Antioxidant Capacities of Chinese Local Pummelo Cultivars’. Peel. Horticultural Plant Journal, 2016, 2, 133-140.
[http://dx.doi.org/10.1016/j.hpj.2016.05.001]
[152]
Hwang, S.L.; Shih, P.H.; Yen, G.C. Neuroprotective effects of citrus flavonoids. J. Agric. Food Chem., 2012, 60(4), 877-885.
[http://dx.doi.org/10.1021/jf204452y] [PMID: 22224368]
[153]
Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid composition of Citrus juices. Molecules, 2007, 12(8), 1641-1673.
[http://dx.doi.org/10.3390/12081641] [PMID: 17960080]
[154]
Nakajima, V.M.; Macedo, G.A.; Macedo, J.A. Citrus bioactive phenolics: Role in the obesity treatment. Lebensm. Wiss. Technol., 2014, 59, 1205-1212.
[http://dx.doi.org/10.1016/j.lwt.2014.02.060]
[155]
Marín, F.R.; Soler-Rivas, C.; Benavente-García, O.; Castillo, J.; Pérez-Alvarez, J.A. By-products from different citrus processes as a source of customized functional fibres. Food Chem., 2007, 100, 736-741.
[http://dx.doi.org/10.1016/j.foodchem.2005.04.040]
[156]
Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresour. Technol., 2003, 87(2), 167-198.
[http://dx.doi.org/10.1016/S0960-8524(02)00167-0] [PMID: 12765356]
[157]
Montgomery, R. Development of biobased products. Bioresour. Technol., 2004, 91(1), 1-29.
[http://dx.doi.org/10.1016/S0960-8524(03)00154-8] [PMID: 14585619]
[158]
Martínez, M.; Yáñez, R.; Alonsó, J.L.; Parajó, J.C. Chemical production of pectic oligosaccharides from Orange peel wastes. Ind. Eng. Chem. Res., 2010, 49, 8470-8476.
[http://dx.doi.org/10.1021/ie101066m]
[159]
Casquete, R.; Castro, S.M.; Martín, A.; Ruiz-Moyano, S.; Saraiva, J.A.; Córdoba, M.G.; Teixeira, P. Evaluation of the effect of high pressure on total phenolic content, antioxidant and antimicrobial activity of citrus peels. Innov. Food Sci. Emerg. Technol., 2015, 31, 37-44.
[http://dx.doi.org/10.1016/j.ifset.2015.07.005]
[160]
Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition, 2017, 34, 29-46.
[http://dx.doi.org/10.1016/j.nut.2016.09.006] [PMID: 28063510]
[161]
Putnik, P.; Bursać Kovačević, D.; Režek Jambrak, A.; Barba, F.J.; Cravotto, G.; Binello, A.; Lorenzo, J.M.; Shpigelman, A. Innovative “green” and novel strategies for the extraction of bioactive added value compounds from citruswastes - A review. Molecules, 2017, 22(5)E680
[http://dx.doi.org/10.3390/molecules22050680] [PMID: 28448474]
[162]
Mahato, N.; Sharma, K.; Sinha, M.; Cho, M.H. Citrus waste derived nutra-/pharmaceuticals for health benefits: Current trends and future perspectives. J. Funct. Foods, 2018, 40, 307-316.
[http://dx.doi.org/10.1016/j.jff.2017.11.015]
[163]
Sawalha, S.M.S.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Quantification of main phenolic compounds in sweet and bitter orange peel using CE-MS/MS. Food Chem., 2009, 116, 567-574.
[http://dx.doi.org/10.1016/j.foodchem.2009.03.003]
[164]
Angel Siles López, J.; Li, Q.; Thompson, I.P. Biorefinery of waste orange peel. Crit. Rev. Biotechnol., 2010, 30(1), 63-69.
[http://dx.doi.org/10.3109/07388550903425201] [PMID: 20148755]
[165]
Tasneem, M.; Siddique, F.; Ahmad, A.; Farooq, U. Stabilizers: indispensable substances in dairy products of high rheology. Crit. Rev. Food Sci. Nutr., 2014, 54(7), 869-879.
[http://dx.doi.org/10.1080/10408398.2011.614702] [PMID: 24499066]
[166]
Yangilar, F. The Application of Dietary Fibre in Food Industry: Structural Features, Effects on Health and Definition, Obtaining and Analysis of Dietary Fibre: A Review. J. Food Nutr. Res., 2013, 1, 13-23.
[http://dx.doi.org/10.12691/jfnr-1-3-1]
[167]
Liu, L.; Fishman, M.L.; Hicks, K.B. Pectin in controlled drug delivery – a review. Cellulose, 2006, 14, 15-24.
[http://dx.doi.org/10.1007/s10570-006-9095-7]
[168]
Rafiq, S.; Kaul, R.; Sofi, S.A.; Bashir, N.; Nazir, F.; Ahmad Nayik, G. Citrus peel as a source of functional ingredient: A review. J. Saudi Soc. Agric. Sci., 2016.
[http://dx.doi.org/10.1016/j.jssas.2016.07.006]
[169]
Guillon, F.; Champ, M. Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Res. Int., 2000, 33, 233-245.
[http://dx.doi.org/10.1016/S0963-9969(00)00038-7]
[170]
Lockyer, S.; Spiro, A.; Stanner, S. Dietary fibre and the prevention of chronic disease – should health professionals be doing more to raise awareness? Nutr. Bull., 2016, 41, 214-231.
[http://dx.doi.org/10.1111/nbu.12212]
[171]
Maxwell, E.G.; Colquhoun, I.J.; Chau, H.K.; Hotchkiss, A.T.; Waldron, K.W.; Morris, V.J.; Belshaw, N.J. Modified sugar beet pectin induces apoptosis of colon cancer cells via an interaction with the neutral sugar side-chains. Carbohydr. Polym., 2016, 136, 923-929.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.063] [PMID: 26572430]
[172]
Shan, Y. Comprehensive Utilization of Citrus By-Products; , 2016. ISBN 9780128098608..
[173]
Chedea, V.S.; Kefalas, P.; Socaciu, C. Patterns of carotenoid pigments extracted from two orange peel wastes (Valencia and Navel var.). J. Food Biochem., 2010, 34, 101-110.
[http://dx.doi.org/10.1111/j.1745-4514.2009.00267.x]
[174]
Okwu, D.E. Citrus fruits: A rich source of phytochemicals and their roles in human health. International Journal of Chemical Sciences, 2008, 6, 451-471.
[http://dx.doi.org/10.1271/bbb.70.178]
[175]
Fraser, P.D.; Bramley, P.M. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res., 2004, 43(3), 228-265.
[http://dx.doi.org/10.1016/j.plipres.2003.10.002] [PMID: 15003396]
[176]
Lin, C.M.; Sheu, S.R.; Hsu, S.C.; Tsai, Y.H. Determination of bactericidal efficacy of essential oil extracted from orange peel on the food contact surfaces. Food Control, 2010, 21, 1710-1715.
[http://dx.doi.org/10.1016/j.foodcont.2010.06.008]
[177]
Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines (Basel), 2016, 3(4), 25.
[http://dx.doi.org/10.3390/medicines3040025] [PMID: 28930135]
[178]
Sanei-Dehkordi, A.; Sedaghat, M.M.; Vatandoost, H.; Abai, M.R. Chemical compositions ofthe peelessential oil ofcitrus aurantiumandits natural larvicidal activity against the malaria vector Anopheles stephensi (Diptera: Culicidae) in comparison with Citrus paradisi. J. Arthropod Borne Dis., 2016, 10(4), 577-585.
[PMID: 28032110]
[179]
Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod., 2014, 62, 250-264.
[http://dx.doi.org/10.1016/j.indcrop.2014.05.055]
[180]
Yen, H.F.; Hsieh, C.T.; Hsieh, T.J.; Chang, F.R.; Wang, C.K. In vitro anti-diabetic effect and chemical component analysis of 29 essential oils products. Yao Wu Shi Pin Fen Xi, 2015, 23(1), 124-129.
[http://dx.doi.org/10.1016/j.jfda.2014.02.004] [PMID: 28911435]
[181]
Chidambara Murthy, K.N.; Jayaprakasha, G.K.; Patil, B.S. D-limonene rich volatile oil from blood oranges inhibits angiogenesis, metastasis and cell death in human colon cancer cells. Life Sci., 2012, 91(11-12), 429-439.
[http://dx.doi.org/10.1016/j.lfs.2012.08.016] [PMID: 22935404]
[182]
Yang, C.; Chen, H.; Chen, H.; Zhong, B.; Luo, X.; Chun, J. Antioxidant and anticancer activities of essential oil from gannan navel orange peel. Molecules, 2017, 22(8), 1-10.
[http://dx.doi.org/10.3390/molecules22081391] [PMID: 28829378]
[183]
Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem., 2007, 104, 466-479.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.054]
[184]
Omoba, O.S.; Obafaye, R.O.; Salawu, S.O.; Boligon, A.A.; Athayde, M.L. HPLC-DAD Phenolic Characterization and Antioxidant Activities of Ripe and Unripe Sweet Orange Peels. Antioxidants, 2015, 4(3), 498-512.
[http://dx.doi.org/10.3390/antiox4030498] [PMID: 26783839]
[185]
Lachos-Perez, D.; Baseggio, A.M.; Mayanga-Torres, P.C.; Maróstica, M.R.; Rostagno, M.A.; Martínez, J.; Forster-Carneiro, T. Subcritical water extraction of flavanones from defatted orange peel. J. Supercrit. Fluids, 2018, 138, 7-16.
[http://dx.doi.org/10.1016/j.supflu.2018.03.015]
[186]
Mencherini, T.; Campone, L.; Piccinelli, A.L.; Mesa, M.G.; Sánchez, D.M.; Aquino, R.P.; Rastrelli, L. HPLC-PDA-MS and NMR characterization of a hydroalcoholic extract of Citrus aurantium L. var. amara peel with antiedematogenic activity. J. Agric. Food Chem., 2013, 61(8), 1686-1693.
[http://dx.doi.org/10.1021/jf302815t] [PMID: 22957519]
[187]
Jabri-Karoui, I.; Marzouk, B. Bioactive compounds, antioxidant activities and heat stability of corn oil enriched with tunisian citrus aurantium L. peel extract. JAOCS. J. Am. Oil Chem. Soc., 2014, 91, 1367-1375.
[http://dx.doi.org/10.1007/s11746-014-2485-3]
[188]
Lauro, M.R.; Crascì, L.; Giannone, V.; Ballistreri, G.; Fabroni, S.; Sansone, F.; Rapisarda, P.; Panico, A.M.; Puglisi, G. An alginate/cyclodextrin spray drying matrix to improve shelf life and antioxidant efficiency of a blood orange by-product extract rich in polyphenols: MMPs inhibition and antiglycation activity in dysmetabolic diseases. Oxid. Med. Cell. Longev., 2017.20172867630
[http://dx.doi.org/10.1155/2017/2867630] [PMID: 29230268]
[189]
Genovese, S.; Fiorito, S.; Locatelli, M.; Carlucci, G.; Epifano, F. Analysis of biologically active oxyprenylated ferulic acid derivatives in Citrus fruits. Plant Foods Hum. Nutr., 2014, 69(3), 255-260.
[http://dx.doi.org/10.1007/s11130-014-0427-8] [PMID: 24928688]
[190]
Lagha-Benamrouche, S.; Madani, K. Phenolic contents and antioxidant activity of orange varieties (Citrus sinensis L. and Citrus aurantium L.) cultivated in Algeria: Peels and leaves. Ind. Crops Prod., 2013, 50, 723-730.
[http://dx.doi.org/10.1016/j.indcrop.2013.07.048]
[191]
Molan, A.; Ismail, M.H.; Nsaif, R.H. Phenolic Contents and Antioxidant Activity of Peels and Seeds of Orange (Citrus Sinensis) Cultivated in. World J. Pharm. Pharm. Sci., 2016, 5, 473-482.
[http://dx.doi.org/10.20959/wjpps20164-6478]
[192]
Chen, X.M.; Tait, A.R.; Kitts, D.D. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chem., 2017, 218, 15-21.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.016] [PMID: 27719891]
[193]
Chen, Z.T.; Chu, H.L.; Chyau, C.C.; Chu, C.C.; Duh, P.D. Protective effects of sweet orange (Citrus sinensis) peel and their bioactive compounds on oxidative stress. Food Chem., 2012, 135(4), 2119-2127.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.041] [PMID: 22980779]
[194]
Ahamad, S.R. Phytochemical, Heavy Metal and Metabolomic Anti-diabetic analysis of Citrus sinensis. Bulletin of Environment. Pharmacology and Life Sciences, 2015, 5, 22-27.
[195]
Sathiyabama, R.G.; Rajiv Gandhi, G.; Denadai, M.; Sridharan, G.; Jothi, G.; Sasikumar, P.; Siqueira Quintans, J.S.; Narain, N.; Cuevas, L.E.; Coutinho, H.D.M.; Ramos, A.G.B.; Quintans-Júnior, L.J.; Gurgel, R.Q. Evidence of insulin-dependent signalling mechanisms produced by Citrus sinensis (L.) Osbeck fruit peel in an insulin resistant diabetic animal model. Food Chem. Toxicol., 2018, 116(Pt B), 86-99.
[http://dx.doi.org/10.1016/j.fct.2018.03.050] [PMID: 29614383]
[196]
Lawal, D.; Bala, J.A.; Aliyu, S.Y.; Huguma, M.A. Phytochemical Screening and In Vitro Anti-Bacterial Studies of the Ethanolic Extract of Citrus Senensis (Linn.) Peel against some Clinical Bacterial Isolates. International Journal of Innovation and Applied Studies, 2013, 2, 138-145.
[197]
Yerou, K. O.; Ibri, K.; Bouhadi, D.; Hariri, A.; Meddah, B.; Touil, A. T. the Use of Orange (Citrus Sinensis) Peel As Antimicrobial and Anti-Oxidant Agents; 2017.
[198]
Hamdan, D.I.; Mahmoud, M.F.; Wink, M.; El-Shazly, A.M. Effect of hesperidin and neohesperidin from bittersweet orange (Citrus aurantium var. bigaradia) peel on indomethacin-induced peptic ulcers in rats. Environ. Toxicol. Pharmacol., 2014, 37(3), 907-915.
[http://dx.doi.org/10.1016/j.etap.2014.03.006] [PMID: 24691249]
[199]
Wang, L.; Wang, J.; Fang, L.; Zheng, Z.; Zhi, D.; Wang, S.; Li, S.; Ho, C.T.; Zhao, H. Anticancer activities of citrus peel polymethoxyflavones related to angiogenesis and others. BioMed Res. Int., 2014.2014453972
[http://dx.doi.org/10.1155/2014/453972] [PMID: 25250322]
[200]
Lim, S.W.; Lee, D.R.; Choi, B.K.; Kim, H.S.; Yang, S.H.; Suh, J.W.; Kim, K.S. Protective effects of a polymethoxy flavonoids-rich Citrus aurantium peel extract on liver fibrosis induced by bile duct ligation in mice. Asian Pac. J. Trop. Med., 2016, 9(12), 1158-1164.
[http://dx.doi.org/10.1016/j.apjtm.2016.10.009] [PMID: 27955743]
[201]
Spandana, U.; Sreedevi, A.; Havilah Esther, S.; Lakshmaiah, P. Effect of hespertin isolated from orange peels on Cisplatin-induced nephrotoxicity. Int. J. Pharma Bio Sci., 2016, 7, 15-P21.
[202]
Kaderides, K.; Goula, A.M. Development and characterization of a new encapsulating agent from orange juice by-products. Food Res. Int., 2017, 100(Pt 1), 612-622.
[http://dx.doi.org/10.1016/j.foodres.2017.07.057] [PMID: 28873728]
[203]
Edrisi Sormoli, M.; Langrish, T.A.G. Spray drying bioactive orange-peel extracts produced by Soxhlet extraction: Use of WPI, antioxidant activity and moisture sorption isotherms. Lebensm. Wiss. Technol., 2016, 72, 1-8.
[http://dx.doi.org/10.1016/j.lwt.2016.04.033]
[204]
Crascì, L.; Lauro, M.R.; Puglisi, G.; Panico, A. Natural antioxidant polyphenols on inflammation management: Anti-glycation activity vs metalloproteinases inhibition. Crit. Rev. Food Sci. Nutr., 2018, 58(6), 893-904.
[http://dx.doi.org/10.1080/10408398.2016.1229657] [PMID: 27646710]
[205]
Uchida, K. Forum: Role of Oxidation in Atherosclerosis role of reactive aldehyde in cardiovascular diseases. Free Radic. Biol. Med., 2000, 28, 1685-1696.
[http://dx.doi.org/10.1016/S0891-5849(00)00226-4] [PMID: 10946210]
[206]
Spinelli, S.; Lecce, L.; Likyova, D.; Del Nobile, M.A.; Conte, A. Bioactive compounds from orange epicarp to enrich fish burgers. J. Sci. Food Agric., 2018, 98(7), 2582-2586.
[http://dx.doi.org/10.1002/jsfa.8750] [PMID: 29064562]
[207]
Figoli, A.; Donato, L.; Carnevale, R.; Tundis, R.; Statti, G.A.; Menichini, F.; Drioli, E. Bergamot essential oil extraction by pervaporation. Desalination, 2006, 193, 160-165.
[http://dx.doi.org/10.1016/j.desal.2005.06.060]
[208]
Sawamura, M.; Onishi, Y.; Ikemoto, J.; Tu, N.T.M.; Phi, N.T.L. Characteristic odour components of bergamot (Citrus bergamia Risso) essential oil. Flavour Fragrance J., 2006, 21, 609-615.
[http://dx.doi.org/10.1002/ffj.1604]
[209]
Gattuso, G.; Caristi, C.; Gargiulli, C.; Bellocco, E.; Toscano, G.; Leuzzi, U. Flavonoid glycosides in bergamot juice (Citrus bergamia Risso). J. Agric. Food Chem., 2006, 54(11), 3929-3935.
[http://dx.doi.org/10.1021/jf060348z] [PMID: 16719517]
[210]
Sommella, E.; Pepe, G.; Pagano, F.; Tenore, G.C.; Marzocco, S.; Manfra, M.; Calabrese, G.; Aquino, R.P.; Campiglia, P. UHPLC profiling and effects on LPS-stimulated J774A.1 macrophages of flavonoids from bergamot (Citrus bergamia) juice, an underestimated waste product with high anti-inflammatory potential. J. Funct. Foods, 2014, 7, 641-649.
[http://dx.doi.org/10.1016/j.jff.2013.12.021]
[211]
Barreca, D.; Bellocco, E.; Leuzzi, U.; Gattuso, G. Flavonoid Cglycosides in Citrus juices from Southern Italy: Distribution and influence on the antioxidant activity; , , 2014. 1185, p. ISBN 9780841229761.
[212]
Salerno, R.; Casale, F.; Calandruccio, C.; Procopio, A. Characterization of flavonoids in Citrus bergamia (Bergamot) polyphenolic fraction by liquid chromatography–high resolution mass spectrometry (LC/HRMS). PharmaNutrition, 2016, 4, S1-S7.
[http://dx.doi.org/10.1016/j.phanu.2015.10.001]
[213]
Picerno, P.; Sansone, F.; Mencherini, T.; Prota, L.; Aquino, R.P.; Rastrelli, L.; Lauro, M.R. Citrus bergamia juice: phytochemical and technological studies. Nat. Prod. Commun., 2011, 6(7), 951-955.
[http://dx.doi.org/10.1177/1934578X1100600707] [PMID: 21834231]
[214]
Postorino, E.; Finotti, E.; Castaldo, D.; Pirrello, A. La composizione chimica del “pastazzo” di bergamotto, 2002.
[215]
Di Donna, L.; Gallucci, G.; Malaj, N.; Romano, E.; Tagarelli, A.; Sindona, G. Recycling of industrial essential oil waste: Brutieridin and Melitidin, two anticholesterolaemic active principles from bergamot albedo. Food Chem., 2011, 125, 438-441.
[http://dx.doi.org/10.1016/j.foodchem.2010.09.025]
[216]
Currò, M.; Risitano, R.; Ferlazzo, N.; Cirmi, S.; Gangemi, C.; Caccamo, D.; Ientile, R.; Navarra, M. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways. Sci. Rep., 2016, 6, 20809.
[http://dx.doi.org/10.1038/srep20809] [PMID: 26853104]
[217]
Risitano, R.; Currò, M.; Cirmi, S.; Ferlazzo, N.; Campiglia, P.; Caccamo, D.; Ientile, R.; Navarra, M. Flavonoid fraction of Bergamot juice reduces LPS-induced inflammatory response through SIRT1-mediated NF-κB inhibition in THP-1 monocytes. PLoS One, 2014, 9(9)e107431
[http://dx.doi.org/10.1371/journal.pone.0107431] [PMID: 25260046]
[218]
Impellizzeri, D.; Bruschetta, G.; Di Paola, R.; Ahmad, A.; Campolo, M.; Cuzzocrea, S.; Esposito, E.; Navarra, M. The anti-inflammatory and antioxidant effects of bergamot juice extract (BJe) in an experimental model of inflammatory bowel disease. Clin. Nutr., 2015, 34(6), 1146-1154.
[http://dx.doi.org/10.1016/j.clnu.2014.11.012] [PMID: 25491246]
[219]
Impellizzeri, D.; Cordaro, M.; Campolo, M.; Gugliandolo, E.; Esposito, E.; Benedetto, F.; Cuzzocrea, S.; Navarra, M. Anti-inflammatory and antioxidant effects of flavonoid-rich fraction of bergamot juice (BJe) in a mouse model of intestinal ischemia/reperfusion injury. Front. Pharmacol., 2016, 7, 203.
[http://dx.doi.org/10.3389/fphar.2016.00203] [PMID: 27471464]
[220]
Ferlazzo, N.; Cirmi, S.; Russo, M.; Trapasso, E.; Ursino, M.R.; Lombardo, G.E.; Gangemi, S.; Calapai, G.; Navarra, M. NF-κB mediates the antiproliferative and proapoptotic effects of bergamot juice in HepG2 cells. Life Sci., 2016, 146, 81-91.
[http://dx.doi.org/10.1016/j.lfs.2015.12.040] [PMID: 26764233]
[221]
Visalli, G.; Ferlazzo, N.; Cirmi, S.; Campiglia, P.; Gangemi, S.; Di Pietro, A.; Calapai, G.; Navarra, M. Bergamot juice extract inhibits proliferation by inducing apoptosis in human colon cancer cells. Anticancer. Agents Med. Chem., 2014, 14(10), 1402-1413.
[http://dx.doi.org/10.2174/1871520614666140829120530] [PMID: 25173561]
[222]
Navarra, M.; Ursino, M.R.; Ferlazzo, N.; Russo, M.; Schumacher, U.; Valentiner, U. Effect of Citrus bergamia juice on human neuroblastoma cells in vitro and in metastatic xenograft models. Fitoterapia, 2014, 95, 83-92.
[http://dx.doi.org/10.1016/j.fitote.2014.02.009] [PMID: 24594241]
[223]
Trovato, A.; Taviano, M.F.; Pergolizzi, S.; Campolo, L.; De Pasquale, R.; Miceli, N. Citrus bergamia Risso & Poiteau juice protects against renal injury of diet-induced hypercholesterolemia in rats. Phytother. Res., 2010, 24(4), 514-519.
[http://dx.doi.org/10.1002/ptr.2971] [PMID: 19655295]
[224]
Miceli, N.; Mondello, M.R.; Monforte, M.T.; Sdrafkakis, V.; Dugo, P.; Crupi, M.L.; Taviano, M.F.; De Pasquale, R.; Trovato, A. Hypolipidemic effects of Citrus bergamia Risso et Poiteau juice in rats fed a hypercholesterolemic diet. J. Agric. Food Chem., 2007, 55(26), 10671-10677.
[http://dx.doi.org/10.1021/jf071772i] [PMID: 18038978]
[225]
Mollace, V.; Sacco, I.; Janda, E.; Malara, C.; Ventrice, D.; Colica, C.; Visalli, V.; Muscoli, S.; Ragusa, S.; Muscoli, C.; Rotiroti, D.; Romeo, F. Hypolipemic and hypoglycaemic activity of bergamot polyphenols: from animal models to human studies. Fitoterapia, 2011, 82(3), 309-316.
[http://dx.doi.org/10.1016/j.fitote.2010.10.014] [PMID: 21056640]
[226]
Ramalhosa, E.; Delgado, T.; Estevinho, L.; Pereira, J.A. Hazelnut (Corylus avellana L.); Cultivars and Antimicrobial Activity. Nuts and Seeds in Health and Disease Prevention, 2011, pp. 627-636.
[227]
Ciarmiello, L.F.; Mazzeo, M.F.; Minasi, P.; Peluso, A.; De Luca, A.; Piccirillo, P.; Siciliano, R.A.; Carbone, V. Analysis of different European hazelnut (Corylus avellana L.) cultivars: authentication, phenotypic features, and phenolic profiles. J. Agric. Food Chem., 2014, 62(26), 6236-6246.
[http://dx.doi.org/10.1021/jf5018324] [PMID: 24927513]
[228]
Alasalvar, C.; Karamać, M.; Kosińska, A.; Rybarczyk, A.; Shahidi, F.; Amarowicz, R. Antioxidant activity of hazelnut skin phenolics. J. Agric. Food Chem., 2009, 57(11), 4645-4650.
[http://dx.doi.org/10.1021/jf900489d] [PMID: 19422224]
[229]
Contini, M.; Baccelloni, S.; Massantini, R.; Anelli, G. Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature. Food Chem., 2008, 110, 659-669.
[http://dx.doi.org/10.1016/j.foodchem.2008.02.060]
[230]
Del Rio, D.; Calani, L.; Dall’Asta, M.; Brighenti, F. Polyphenolic composition of hazelnut skin. J. Agric. Food Chem., 2011, 59(18), 9935-9941.
[http://dx.doi.org/10.1021/jf202449z] [PMID: 21819158]
[231]
Shahidi, F.; Alasalvar, C.; Liyana-Pathirana, C.M. Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J. Agric. Food Chem., 2007, 55(4), 1212-1220.
[http://dx.doi.org/10.1021/jf062472o] [PMID: 17249682]
[232]
Stévigny, C.; Rolle, L.; Valentini, N.; Zeppa, G. Optimization of extraction of phenolic content from hazelnut shell using response surface methodology. J. Sci. Food Agric., 2007, 87.
[http://dx.doi.org/10.1002/jsfa.2994]
[233]
Ottaggio, L.; Bestoso, F.; Armirotti, A.; Balbi, A.; Damonte, G.; Mazzei, M.; Sancandi, M.; Miele, M. Taxanes from shells and leaves of Corylus avellana. J. Nat. Prod., 2008, 71(1), 58-60.
[http://dx.doi.org/10.1021/np0704046] [PMID: 18163585]
[234]
Ciemniewska-Żytkiewicz, H.; Verardo, V.; Pasini, F.; Bryś, J.; Koczoń, P.; Caboni, M.F. Determination of lipid and phenolic fraction in two hazelnut (Corylus avellana L.) cultivars grown in Poland. Food Chem., 2015, 168, 615-622.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.107] [PMID: 25172755]
[235]
Esposito, T.; Sansone, F.; Franceschelli, S.; Del Gaudio, P.; Picerno, P.; Aquino, R.P.; Mencherini, T. Hazelnut (Corylus avellana l.) shells extract: Phenolic composition, antioxidant effect and cytotoxic activity on human cancer cell lines. Int. J. Mol. Sci., 2017, 18(2)E392
[http://dx.doi.org/10.3390/ijms18020392] [PMID: 28208804]
[236]
Masullo, M.; Cerulli, A.; Mari, A.; de Souza Santos, C.C.; Pizza, C.; Piacente, S. LC-MS profiling highlights hazelnut (Nocciola di Giffoni PGI) shells as a byproduct rich in antioxidant phenolics. Food Res. Int., 2017, 101, 180-187.
[http://dx.doi.org/10.1016/j.foodres.2017.08.063] [PMID: 28941682]
[237]
Yuan, B.; Lu, M.; Eskridge, K.M.; Isom, L.D.; Hanna, M.A. Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus avellana L.) shells. Food Chem., 2018, 244, 7-15.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.116] [PMID: 29120806]
[238]
Surek, E.; Buyukkileci, A.O. Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohydr. Polym., 2017, 174, 565-571.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.109] [PMID: 28821105]
[239]
Esatbeyoglu, T.; Wray, V.; Winterhalter, P. Identification of two novel Prodelphinidin A-type dimers from roasted hazelnut skins (Corylus avellana L.). J. Agric. Food Chem., 2013, 61(51), 12640-12645.
[http://dx.doi.org/10.1021/jf404549w] [PMID: 24313330]
[240]
Piccinelli, A.L.; Pagano, I.; Esposito, T.; Mencherini, T.; Porta, A.; Petrone, A.M.; Gazzerro, P.; Picerno, P.; Sansone, F.; Rastrelli, L.; Aquino, R.P. HRMS Profile of a Hazelnut Skin Proanthocyanidin-rich Fraction with Antioxidant and Anti-Candida albicans Activities. J. Agric. Food Chem., 2016, 64(3), 585-595.
[http://dx.doi.org/10.1021/acs.jafc.5b05404] [PMID: 26739867]
[241]
Odabaş, H.İ.; Koca, I. Application of response surface methodology for optimizing the recovery of phenolic compounds from hazelnut skin using different extraction methods. Ind. Crops Prod., 2016, 91, 114-124.
[http://dx.doi.org/10.1016/j.indcrop.2016.05.033]
[242]
Montella, R.; Coïsson, J.D.; Travaglia, F.; Locatelli, M.; Malfa, P.; Martelli, A.; Arlorio, M. Bioactive compounds from hazelnut skin (Corylus avellana L.): Effects on Lactobacillus plantarum P17630 and Lactobacillus crispatus P17631. J. Funct. Foods, 2013, 5, 306-315.
[http://dx.doi.org/10.1016/j.jff.2012.11.001]
[243]
Contini, M.; Baccelloni, S.; Frangipane, M.T.; Merendino, N.; Massantini, R. Increasing espresso coffee brew antioxidant capacity using phenolic extract recovered from hazelnut skin waste. J. Funct. Foods, 2012, 4, 137-146.
[http://dx.doi.org/10.1016/j.jff.2011.09.005]
[244]
Zeppa, G.; Belviso, S.; Bertolino, M.; Cavallero, M.C.; Dal Bello, B.; Ghirardello, D.; Giordano, M.; Giorgis, M.; Grosso, A.; Rolle, L.; Gerbi, V. The effect of hazelnut roasted skin from different cultivars on the quality attributes, polyphenol content and texture of fresh egg pasta. J. Sci. Food Agric., 2015, 95(8), 1678-1688.
[http://dx.doi.org/10.1002/jsfa.6871] [PMID: 25123494]
[245]
Bertolino, M.; Belviso, S.; Dal Bello, B.; Ghirardello, D.; Giordano, M.; Rolle, L.; Gerbi, V.; Zeppa, G. Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties ofyogurt. Lebensm. Wiss. Technol., 2015, 63, 1145-1154.
[http://dx.doi.org/10.1016/j.lwt.2015.03.113]
[246]
Yildiz, E.; Demirkesen, I.; Mert, B. High Pressure Microfluidization of Agro by-product to Functionalized Dietary Fiber and Evaluation as a Novel Bakery Ingredient. J. Food Qual., 2016, 39, 599-610.
[http://dx.doi.org/10.1111/jfq.12246]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy