Generic placeholder image

Current Hypertension Reviews


ISSN (Print): 1573-4021
ISSN (Online): 1875-6506

General Review Article

Three Generations of β-blockers: History, Class Differences and Clinical Applicability

Author(s): Gabriel T. do Vale*, Carla S. Ceron, Natália A. Gonzaga, Janaina A. Simplicio and Júlio C. Padovan

Volume 15 , Issue 1 , 2019

Page: [22 - 31] Pages: 10

DOI: 10.2174/1573402114666180918102735


Background: Beta-adrenergic receptors are expressed in cardiomyocytes and activated by either noradrenaline released from sympathetic synapses or circulating catecholamines. Their corresponding receptors have three subtypes, namely, β1, β2 and β3, which are members of the G protein-coupled receptors (GPCRs) family. Activation of β1-adrenergic receptors causes various physiological reactions including cardiac contraction and renin secretion from juxtaglomerular cells of the kidney. Antagonists of β-adrenergic receptors, known as β-blockers, have been used effectively for over four decades and have beneficial effects in the treatment of cardiovascular diseases. There are three generations of β-blockers according to their pharmacological properties. Firstgeneration β-blockers are non-selective, blocking both β1- and β2-receptors; second-generation β- blockers are more cardioselective in that they are more selective for β1-receptors; and thirdgeneration β-blockers are highly selective drugs for β1-receptors. The latter also display vasodilator actions by blocking α1-adrenoreceptors and activating β3-adrenergic receptors. In addition, thirdgeneration β-blockers exhibit angiogenic, antioxidant, anti-proliferative, anti-hypertrophic and antiapoptotic activities among other effects that are still under investigation.

Conclusion: The objective of this review is to describe the evolution observed during the development of the three distinctive generations, thereby highlighting the advantages of third-generation β- blockers over the other two drug classes.

Keywords: β-blockers, antagonists, β-adrenergic receptors, cardiovascular diseases, clinical applicability, G protein–coupled receptors (GPCRs).

Graphical Abstract
Dale HH. On some physiological actions of ergot. J Physiol 1906; 34(3): 163-206.
Alquist RP. A study of the adrenotropic receptors. Am J Physiol 1948; 153(3): 586-600.
Richardson DW, Kontos HA, Raper AJ, Patterson JL. Modification by beta-adrenergic blockade of the circulatory responses to acute hypoxia in man. J Clin Invest 1967; 46(1): 77-87.
Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TGJ. Differentiation of receptor systems activated by sympathomimetic amines. Nature 1967; 214(5088): 597-8.
Yarden Y, Rodriguez H, Wong SK, et al. The avian beta-adrenergic receptor: primary structure and membrane topology. Proc Natl Acad Sci USA 1986; 83(18): 6795-9.
Dixon RA, Kobika BK, Strader DJ, et al. Cloning of the gene and cDNA for mammalian beta-adrenergic receptor homology with rhodopsin. Nature 1986; 321(6065): 75-9.
Emorine LJ, Marullo S, Briend-Sutren MM, et al. Molecular characterization of the human beta 3-adrenergic receptor. Science 1989; 245(4922): 1118-21.
Goldstein DS, Eisenhofer G, Kopin IJ. Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Ther 2003; 305(3): 800-11.
Galougahi KK, Liu CC, Bundgaard H, Rasmussen HH. Beta-adrenergic regulation of the cardiac Na+-K+ ATPase mediated by oxidative signaling. Trends Cardiovasc Med 2012; 22(4): 83-7.
Audigane L, Kerfant BG, El Harchi A, et al. Rabbit, a relevant model for the study of cardiac beta 3-adrenoceptors. Exp Physiol 2009; 94: 400-11.
Massion PB, Balligand JL. Modulation of cardiac contraction, relaxation and rate by the endothelial nitric oxide synthase (eNOS): Lessons from genetically modified mice. J Physiol 2003; 546: 63-75.
Cannavo A, Liccardo D, Koch WJ. Targeting cardiac beta-adrenergic signaling via GRK2 inhibition for heart failure therapy. Front Physiol 2013; 4: 264.
Najafi A, Sequeira V, Kuster DWD, Van der Velden J. Beta-adrenergic receptor signalling and its functional consequences in the diseased heart. Eur J Clin Invest 2016; 46(4): 362-74.
Post SR, Hammond HK, Insel PA. Beta-adrenergic receptors and receptor signaling in heart failure. Annu Rev Pharmacol Toxicol 1999; 39: 343-60.
Kamp TJ, Hell JW. Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 2000; 87: 1095-102.
Kushnir A, Marks AR. The ryanodine receptor in cardiac physiology and disease. Adv Pharmacol 2010; 59: 1-30.
Walker JS, Walker LA, Margulies K, Buttrick P, de Tombe P. Protein kinase A changes calcium sensitivity but not crossbridge kinetics in human cardiac myofibrils. Am J Physiol Heart Circ Physiol 2011; 301(1): H138-46.
Koss KL, Kranias EG. Phospholamban: A prominent regulator of myocardial contractility. Circ Res 1996; 79(6): 1059-63.
Xiao RP, Cheng H, Zhou YY, Kuschel M, Lakatta EG. Recent advances in cardiac beta 2-adrenergic signal transduction. Circ Res 1999; 85: 1092-100.
Montezano AC, Nguyen Dinh Cat A, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep 2014; 16(6): 431.
Johnson JA, Davis JO, Gotshall RW, et al. Evidence for an intrarenal beta receptor in control of renin release. Am J Physiol 1976; 230(2): 410-8.
Kaumann AJ, Hall JA, Murray KJ, Wells FC, Brown MJ. A comparison of the effects of adrenaline and noradrenaline on human heart: the role of β1- and β2-adrenoceptors in the stimulation of adenylate cyclase and contractile force. Eur Heart J 1989; 10(Suppl. B): 29-37.
Berg T. Beta1-blockers lower norepinephrine release by inhibiting presynaptic, facilitating β1-adrenoceptors in normotensive and hypertensive rats. Front Neurol 2014; 5: 51.
Liggett SB. Molecular and genetic basis of beta 2-adrenergic receptor function. J Allergy Clin Immunol 1999; 104(2 Pt 2): S42-6.
Roberts SJ, Papaioannou M, Evans BA, Summers RJ. Characterization of beta-adrenoreceptor mediated smooth muscle relaxation and the detection of mRNA for beta 1-, beta 2- and beta 3-adrenoceptors in rat ileum. Br J Pharmacol 1999; 127(4): 949-61.
Peterson L, Ismond KP, Chapman E, Flood P. Potential benefits of therapeutic use of β2-adrenergic receptor agonists in neuroprotection and Parkinson’s disease. J Immunol Res 2014; 2014: 1037-80.
Skeberdis VA. Structure and function of beta 3-adrenergic receptors. Medicina (Kaunas) 2004; 40(5): 407-13.
Reiter MJ. Cardiovascular drug class: Beta-blockers. Prog Cardiovasc Dis 2004; 47(1): 11-33.
Black JW, Stephenson JS. Pharmacology of a new adrenergic beta-receptor-blocking compound (Nethalide). Lancet 1962; 2(7251): 311-4.
Black JW, Crowther AF, Shanks RG, Smith LH, Dornhorst AC. A new adrenergic betareceptor antagonist. Lancet 1964; 1(7342): 1080-1.
Siebert CD, Hänsicke A, Nagel T. Stereochemical comparison of nebivolol with other beta-blockers. Chirality 2008; 20(2): 103-9.
Hansson L, Zweifer AJ. The effect of propranolol on plasma renin activity and blood pressure in mild essential hypertension. Acta Med Scand 1974; 195: 397-401.
MacLleod SM, Hamet P, Kapian H, et al. Antihypertensive efficacy of propranolol given twice daily. Can Med Assoc J 1979; 121(6): 737-40.
Chadda K, Goldstein S, Byington R, Curb JD. Effect of propranolol after acute myocardial infarction in patients with congestive heart failure. Circulation 1986; 73(3): 503-10.
Pine M, Favrot L, Smith S, McDonald K, Chidsey CA. Correlation of plasma propranolol concentration with therapeutic response in patients with angina pectoris. Circulation 1975; 52(5): 886-93.
Boskabady MH, Snashall PD. Bronchial responsiveness to beta-adrenergic stimulation and enhanced beta-blockade in asthma. Respirology 2000; 5: 111-8.
Lager I, Blohmé G, Smith U. Effect of cardioselective and non-selective beta-blockade on the hypoglycaemic response in insulin-dependent diabetics. Lancet 1979; 1(8114): 458-62.
Marsden CD, Foley TH, Owen DA, McAllister RG. Peripheral beta-adrenergic receptors concerned with tremor. Clin Sci 1967; 33(1): 53-65.
Kerr D, MacDonald IA, Heller SR, Tattersall RB. Beta-adrenoceptor blockade and hypoglycaemia. A randomized, double-blind, placebo controlled comparison of metoprolol CR, atenolol and propranolol LA in normal subjects. Br J Clin Pharmacol 1990; 29(6): 685-93.
Dunlop D, Shanks RG. Selective blockade of adrenoceptive beta-receptors in the heart. Br J Pharmacol Chemother 1968; 32(1): 201-18.
Barrett AM, Carter J, Fitzgerald JD, Hull R, Le Count D. A new type of cardioselective adrenoceptive blocking drug. Br J Pharmacol 1973; 48(2): 340P.
Nobre F, da Silva CA, Coelho EB, Salgado HC, Fazan RJ. Antihypertensive agents have different ability to modulate arterial pressure and heart rate variability in 2K1C rats. Am J Hypertens 2006; 19(10): 1079-83.
Agarwal R, Sinha AD, Pappas MK, Abraham TN, Tegegne GG. Hypertension in hemodialysis patients treated with atenolol or lisinopril: A randomized controlled trial. Nephrol Dial Transplant 2014; 29(3): 672-81.
Tardif JC, Ford I, Tendera M, Bourassa MG, Fox K. INITIATIVE Investigators. Efficacy of ivabradine, a new selective l(f) inhibitor, compared with atenolol in patients with chronic stable angina. Eur Heart J 2005; 26(23): 2529-36.
Ablad B, Carlsson E, Ek L. Pharmacological studies of two new cardioselective adrenergic beta-receptor antagonists. Life Sci I 1973; 12(3): 107-19.
Ljung B, Ablad B, Drews L, Fellenius E, Kjellstedt A, Wallborg M. Anti-hypertensive effect of metoprolol in spontaneously hypertensive rats. Clin Sci Mol Med Suppl 1976; 3: 443S-5S.
Sumbria M, Negi PC, Sahai AK, Kaundal PK. To compare the effect of Telmisartan with Metoprolol on arterial stiffness in hypertension: Prospective randomized parallel group trial. Indian Heart J 2014; 66(4): 415-21.
Cocco G, Chu D. The anti-ischemic effect of metoprolol in patients with chronic angina pectoris is gender-specific. Cardiology 2006; 106(3): 147-53.
No authors listed Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999; 353(9169): 2001-7.
Farmer JB, Kennedy I, Levy GP, Marshall RJ. Pharmacology of AH 5158; a drug which blocks both - and -adrenoceptors. Br J Pharmacol 1972; 45(4): 660-75.
Kennedy I, Levy GP. Combined alpha- and beta-adrenoceptor blocking drug AH 5158: further studies on alpha adrenoceptor blockade in anaesthetized animals. Br J Pharmacol 1975; 53(4): 585-92.
Bartsch W, Sponer G, Strein K, Muller-Beckmann B. Von Mollendorff, Abshagen U. Pharmakologie und klinische Pharmakologie des neuen vasodilatierenden B-Rezeptoren-Blockers BM 14.190. Therapiewoche 1982; 32: 46.
Eggertsen R, Sivertsson R, Andren L, Hansson L. Hemodynamic effects of combined beta-adrenoceptor blockade and precapillary vasodilation in hypertension. Acta Med Scand Suppl 1985; 693: 115-20.
Sabellek WM, Schulte KL, Streitberg B, Gotzen R. Two-year follow-up of 24-hour indirect blood pressure monitoring: An open study. Drugs 1988; 36: 66-112.
Chen J, Huang C, Zhang B, Huang O, Chen J, Xu L. The effects of carvedilol on cardiac structural remodeling: The role of endogenous nitric oxide in the activity of carvedilol. Mol Med Rep 2013; 7(4): 1155-8.
Kaksi JC, Rodriguez-Plaza L, Brown J, Maseri A. Efficacy of carvedilol (BM 14.190), a new beta-blocking drug with vasodilating properties, in exercise-induced ischemia. Am J Cardiol 1985; 56(1): 35-40.
Kowalski J, Banach M, Barylski M, Irzmanski R, Pawlicki L. Carvedilol modifies antioxidant status of patients with stable angina. Cell Mol Biol Lett 2008; 13(2): 230-9.
Van der Does R, Hauf-Zachariou U, Pfarr E, et al. Comparison of safety and efficacy of carvedilol and metoprolol in stable angina pectoris. Am J Cardiol 1999; 83(5): 643-9.
Zepeda RJ, Castilo R, Rodrigo R, et al. Effect of carvedilol and nebivolol on oxidative stress-related parameters and endothelial function in patients with essential hypertension. Basic Clin Pharmacol Toxicol 2012; 111(5): 309-16.
Le DE, Pascotto M, Leong-Poi H, Sari I, Micari A, Kaul S. Anti-inflammatory and pro-angiogenic effects of beta-blockers in a canine model of chronic ischemic cardiomyopathy: Comparison between carvedilol and metoprolol. Basic Res Cardiol 2013; 108(6): 384.
Jonsson G, Abdelnoor M, Seljeflot I, et al. The antioxidative effects of long-term treatment are more pronounced for carvedilol than for atenolol in post-myocardial infarction patients. J Cardiovasc Pharmacol 2007; 49(1): 27-32.
Van de Water A, Janssens W, Van Neuten J, et al. Pharmacological and hemodynamic profile of nebivolol, a chemically novel, potent, and selective beta 1-adrenergic antagonist. J Cardiovasc Pharmacol 1988; 11(5): 552-63.
Fongemie J, Felix-Getzik E. A review of nebivolol pharmacology and clinical evidence. Drugs 2015; 75: 1349-71.
Weiss R, Weber M, Carr A, Sullivan W. A randomized, double blind, placebo-controlled parallel-group study to assess the efficacy and safety of nebivolol, a novel beta-blocker, in patients with mild to moderate hypertension. J Clin Hypertens 2007; 9(9): 667-76.
Saunders E, Smith W, DeSalvo K, Sullivan W. The efficacy and tolerability of nebivolol in hypertensive African-American patients. J Clin Hypertens 2007; 9(11): 866-75.
Greathouse M. Nebivolol efficacy and safety in patients with stage I–II hypertension. Clin Cardiol 2010; 33(4): E20-7.
Zhang Z, Ding L, Jin Z, et al. Nebivolol protects against myocardial infarction injury via stimulation of beta 3-adrenergic receptors and nitric oxide signaling. PLoS One 2014; 9(5): e98179.
Ceron CS, Rizzi E, Guimarães DA, Martins-Oliveira A, Gerlach RF, Tanus-Santos JE. Nebivolol attenuates prooxidant and profibrotic mechanisms involving TGF-β and MMPs, and decreases vascular remodeling in renovascular hypertension. Free Radic Biol Med 2013; 65: 47-56.
Rizzi E, Guimarães DA, Ceron CS, et al. Beta1-Adrenergic blockers exert antioxidant effects, reduce matrix metalloproteinase activity, and improve renovascular hypertension-induced cardiac hypertrophy. Free Radic Biol Med 2014; 73: 308-17.
Zhou X, Ma L, Habibi J, et al. Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the zucker obese rat. Hypertension 2010; 55(4): 880-8.
Vanhoutte PM, Gao Y. Beta blockers, nitric oxide, and cardiovascular disease. Curr Opin Pharmacol 2013; 13: 265-73.
Doumas M, Tsakiris A, Douma S, et al. Beneficial effects of switching from betablockers to nebivolol on the erectile function of hypertensive patients. Asian J Androl 2006; 8(2): 177-82.
Brixius K, Middeke M, Lichtenthal A, Jahn E, Schwinger RH. Nitric oxide, erectile dysfunction and beta-blocker treatment (MR NOED study): Benefit of nebivolol versus metoprolol in hypertensive men. Clin Exp Pharmacol Physiol 2007; 34(4): 327-31.
Weber MA, Schiffrin EL, White WB, et al. Clinical practice guidelines for the management of hypertension in the community. A statement by the American Society of Hypertension and the International Society of Hypertension. J Hypertens (Greenwich) 2014; 16(1): 14-26.
James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014; 311(5): 507-20.
Lacourcière Y, Lefebvre J, Poirier L, Archambault F, Arnott W. A double-blind crossover comparison of nebivolol and lisinopril in the treatment of ambulatory hypertension. Am J Ther 1994; 1(1): 74-80.
Van Nueten L, Lacourcière Y, Vyssoulis G, et al. Nebivolol versus nifedipine in the treatment of essential hypertension: A double-blind, randomized, comparative trial. Am J Ther 1998; 5(4): 237-43.
Van Bortel L, Bulpitt C, Fici F. Quality of life and antihypertensive effect with nebivolol and losartan. Am J Hypertens 2005; 18(8): 1060-6.

© 2022 Bentham Science Publishers | Privacy Policy