Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

c-Myc Inhibitor 10074-G5 Induces Murine and Human Hematopoietic Stem and Progenitor Cell Expansion and HDR Modulator Rad51 Expression

Author(s): Merve Aksoz, Esra Albayrak, Galip Servet Aslan, Raife Dilek Turan, Lamia Yazgi Alyazici, Pınar Siyah, Emre Can Tuysuz, Serli Canikyan, Dogacan Yucel, Neslihan Meric, Zafer Gulbas, Fikrettin Sahin and Fatih Kocabas*

Volume 19, Issue 6, 2019

Page: [479 - 494] Pages: 16

DOI: 10.2174/1568009618666180905100608

Price: $65

Abstract

Background: c-Myc plays a major role in the maintenance of glycolytic metabolism and hematopoietic stem cell (HSC) quiescence.

Objective: Targeting modulators of HSC quiescence and metabolism could lead to HSC cell cycle entry with concomitant expansion.

Methods and Results: Here we show that c-Myc inhibitor 10074-G5 treatment leads to 2-fold increase in murine LSKCD34low HSC compartment post 7 days. In addition, c-Myc inhibition increases CD34+ and CD133+ human HSC number. c-Myc inhibition leads to downregulation of glycolytic and cyclindependent kinase inhibitor (CDKI) gene expression ex vivo and in vivo. In addition, c-Myc inhibition upregulates major HDR modulator Rad51 expression in hematopoietic cells. Besides, c-Myc inhibition does not alter proliferation kinetics of endothelial cells, fibroblasts or adipose-derived mesenchymal stem cells, however, it limits bone marrow derived mesenchymal stem cell proliferation. We further demonstrate that a cocktail of c-Myc inhibitor 10074-G5 along with tauroursodeoxycholic acid (TUDCA) and i-NOS inhibitor L-NIL provides a robust HSC maintenance and expansion ex vivo as evident by induction of all stem cell antigens analyzed. Intriguingly, the cocktail of c-Myc inhibitor 10074-G5, TUDCA and L-NIL improves HDR related gene expression.

Conclusion: These findings provide tools to improve ex vivo HSC maintenance and expansion, autologous HSC transplantation and gene editing through modulation of HSC glycolytic and HDR pathways.

Keywords: Hematopoietic stem cells, mesenchymal stem cells, small molecules, bone marrow, c-myc, homology-directed repair.

Graphical Abstract
[1]
Dahlberg, A.; Delaney, C.; Bernstein, I.D. Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood, 2011, 117(23), 6083-6090.
[2]
Aggarwal, R.; Lu, J.; Pompili, V.J.; Das, H. Hematopoietic stem cells: Transcriptional regulation, ex vivo expansion and clinical application. Curr. Mol. Med., 2012, 12(1), 34-49.
[3]
Pietras, E.M.; Warr, M.R.; Passegue, E. Cell cycle regulation in hematopoietic stem cells. J. Cell Biol., 2011, 195(5), 709-720.
[4]
Oelke, M.; Maus, M.V.; Didiano, D.; June, C.H.; Mackensen, A.; Schneck, J.P. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat. Med., 2003, 9(5), 619-624.
[5]
Nishino, T.; Wang, C.; Mochizuki-Kashio, M.; Osawa, M.; Nakauchi, H.; Iwama, A. Ex vivo expansion of human hematopoietic stem cells by garcinol, a potent inhibitor of histone acetyltransferase. PLoS One, 2011, 6(9)e24298
[6]
Zheng, J.; Umikawa, M.; Zhang, S.; Huynh, H.; Silvany, R.; Chen, B.P.; Chen, L.; Zhang, C.C. Ex vivo expanded hematopoietic stem cells overcome the MHC barrier in allogeneic transplantation. Cell Stem Cell, 2011, 9(2), 119-130.
[7]
Kocabas, F.; Zheng, J.; Thet, S.; Copeland, N.G.; Jenkins, N.A.; DeBerardinis, R.J.; Zhang, C.; Sadek, H.A. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood, 2012, 120(25), 4963-4672.
[8]
Walasek, M.A.; van Os, R.; de Haan, G. Hematopoietic stem cell expansion: challenges and opportunities. Ann. N. Y. Acad. Sci., 2012, 1266, 138-150.
[9]
Miharada, K.; Sigurdsson, V.; Karlsson, S. Dppa5 improves hematopoietic stem cell activity by reducing endoplasmic reticulum stress. Cell Rep., 2014, 7(5), 1381-1392.
[10]
Maciejewski, J.P.; Selleri, C.; Sato, T.; Cho, H.J.; Keefer, L.K.; Nathan, C.F.; Young, N.S. Nitric oxide suppression of human hematopoiesis in vitro. Contribution to inhibitory action of interferon-gamma and tumor necrosis factor-alpha. J. Clin. Invest., 1995, 96(2), 1085-1092.
[11]
Nogueira-Pedro, A.; Barbosa, C.M.; Segreto, H.R.; Lungato, L.; D’Almeida, V.; Moraes, A.A.; Miranda, A.; Paredes-Gamero, E.J.; Ferreira, A.T. Alpha-tocopherol induces hematopoietic stem/progenitor cell expansion and ERK1/2-mediated differentiation. J. Leukoc. Biol., 2011, 90(6), 1111-1117.
[12]
Pelengaris, S.; Khan, M.; Evan, G. c-MYC: More than just a matter of life and death. Nat. Rev. Cancer, 2002, 2(10), 764-776.
[13]
Vennstrom, B.; Sheiness, D.; Zabielski, J.; Bishop, J.M. Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J. Virol., 1982, 42(3), 773-779.
[14]
Laurenti, E.; Varnum-Finney, B.; Wilson, A.; Ferrero, I.; Blanco-Bose, W.E.; Ehninger, A.; Knoepfler, P.S.; Cheng, P.F.; MacDonald, H.R.; Eisenman, R.N. Bernstein, Trumpp A. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell, 2008, 3(6), 611-624.
[15]
Murphy, M.J.; Wilson, A.; Trumpp, A. More than just proliferation: Myc function in stem cells. Trends Cell Biol., 2005, 15(3), 128-137.
[16]
Eisenman, R.N. Deconstructing myc. Genes Dev., 2001, 15(16), 2023-2030.
[17]
Wilson, A.; Murphy, M.J.; Oskarsson, T.; Kaloulis, K.; Bettess, M.D.; Oser, G.M.; Pasche, A.C.; Knabenhans, C.; Macdonald, H.R.; Trumpp, A. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev., 2004, 18(22), 2747-2763.
[18]
Spangrude, G.J.; Brooks, D.M. Mouse strain variability in the expression of the hematopoietic stem cell antigen Ly-6A/E by bone marrow cells. Blood, 1993, 82(11), 3327-3332.
[19]
Vazquez, S.E.; Inlay, M.A.; Serwold, T. CD201 and CD27 identify hematopoietic stem and progenitor cells across multiple murine strains independently of Kit and Sca-1. Exp. Hematol., 2015, 43(7), 578-585.
[20]
Leonova, K.I.; Shneyder, J.; Antoch, M.P.; Toshkov, I.A.; Novototskaya, L.R.; Komarov, P.G.; Komarova, E.A.; Gudkov, A.V. A small molecule inhibitor of p53 stimulates amplification of hematopoietic stem cells but does not promote tumor development in mice. Cell Cycle, 2010, 9(7), 1434-1443.
[21]
Simsek, T.; Kocabas, F.; Zheng, J.; DeBerardinis, R.J.; Mahmoud, A.I.; Olson, E.N.; Schneider, J.W.; Zhang, C.C.; Sadek, H.A. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell, 2010, 7(3), 380-390.
[22]
Kocabas, F.; Zheng, J.; Zhang, C.; Sadek, H.A. Metabolic characterization of hematopoietic stem cells. Methods Mol. Biol., 2014, 1185, 155-164.
[23]
Zheng, J.; Lu, Z.; Kocabas, F.; Böttcher, R.T.; Costell, M.; Kang, X.; Liu, X.; DeBerardinis, R.J.; Wang, Q.; Chen, G.Q.; Sadek, H. Profilin 1 is essential for retention and metabolism of mouse hematopoietic stem cells in bone marrow. Blood, 2014, 123(7), 992-1001.
[24]
Rimmelé, P.; Liang, R.; Bigarella, C.L.; Kocabas, F.; Xie, J.; Serasinghe, M.N.; Chipuk, J.; Sadek, H.; Zhang, C.C.; Ghaffari, S. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep., 2015, 16(9), 1164-1176.
[25]
Kocabas, F.; Xie, L.; Xie, J.; Yu, Z.; DeBerardinis, R.J.; Kimura, W.; Thet, S.; Elshamy, A.F.; Abouellail, H.; Muralidhar, S.; Liu, X. Hypoxic metabolism in human hematopoietic stem cells. Cell Biosci., 2015, 5, 39.
[26]
Soleimani, M.; Nadri, S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat. Protoc., 2009, 4(1), 102-106.
[27]
Boztas, A.O.; Karakuzu, O.; Galante, G.; Ugur, Z.; Kocabas, F.; Altuntas, C.Z.; Yazaydin, A.O. Synergistic interaction of paclitaxel and curcumin with cyclodextrin polymer complexation in human cancer cells. Mol. Pharm., 2013, 10(7), 2676-2683.
[28]
Osthus, R.C.; Shim, H.; Kim, S.; Li, Q.; Reddy, R.; Mukherjee, M.; Xu, Y.; Wonsey, D.; Lee, L.A.; Dang, C.V. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem., 2000, 275(29), 21797-21800.
[29]
Kim, J.W.; Zeller, K.I.; Wang, Y.; Jegga, A.G.; Aronow, B.J.; O’Donnell, K.A.; Dang, C.V. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol. Cell. Biol., 2004, 24(13), 5923-5936.
[30]
Kim, J.W.; Tchernyshyov, I.; Semenza, G.L.; Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab., 2006, 3(3), 177-185.
[31]
Dang, C.V.; Le, A.; Gao, P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin. Cancer Res., 2009, 15(21), 6479-6483.
[32]
Dang, C.V.; O’Donnell, K.A.; Zeller, K.I.; Nguyen, T.; Osthus, R.C.; Li, F. The c-Myc target gene network. Semin. Cancer Biol., 2006, 16(4), 253-264.
[33]
Calvi, L.M.; Adams, G.B.; Weibrecht, K.W.; Weber, J.M.; Olson, D.P.; Knight, M.C.; Martin, R.P.; Schipani, E.; Divieti, P.; Bringhurst, F.R.; Milner, L.A. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 2003, 425(6960), 841-846.
[34]
Barančík, M.; Boháčová, V.; Kvačkajová, J.; Hudecová, S.; Križanová Og, B.A. SB203580, a specific inhibitor of p38-MAPK pathway, is a new reversal agent of P-glycoprotein-mediated multidrug resistance. Eur. J. Pharm. Sci., 2001, 14(1), 29-36.
[35]
Özcan, U.; Yilmaz, E.; Özcan, L.; Furuhashi, M.; Vaillancourt, E.; Smith, R.O.; Görgün, C.Z.; Hotamisligil, G.S. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science, 2006, 313(5790), 1137-1140.
[36]
Ozcan, L.; Ergin, A.S.; Lu, A.; Chung, J.; Sarkar, S.; Nie, D. Myers Jr.; M.G.; Ozcan, U. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab., 2009, 9(1), 35-51.
[37]
Berger, E.; Haller, D. Structure-function analysis of the tertiary bile acid TUDCA for the resolution of endoplasmic reticulum stress in intestinal epithelial cells. Biochem. Biophys. Res. Commun., 2011, 409(4), 610-615.
[38]
Reykdal, S.; Abboud, C.; Liesveld, J. Effect of nitric oxide production and oxygen tension on progenitor preservation in ex vivo culture. Exp. Hematol., 1999, 27(3), 441-450.
[39]
Shinohara, A.; Ogawa, H.; Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell, 1992, 69(3), 457-470.
[40]
Anand, R.; Beach, A.; Li, K.; Haber, J. Rad51-mediated double-strand break repair and mismatch correction of divergent substrates. Nature, 2017, 544(7650), 377.
[41]
Lukaszewicz, A.; Howard-Till, R.A.; Novatchkova, M.; Mochizuki, K.; Loid, J. MRE11 and COM1/SAE2 are required for double-strand break repair and efficient chromosome pairing during meiosis of the protist Tetrahymena. Chromosoma, 2010, 119(5), 505-518.
[42]
Stracker, T.H.; Theunissen, J.W.; Morales, M.; Petrini, J.H. The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair , 2004, 3(8-9), 845-854.
[43]
Pruitt, S.C.; Qin, M.; Wang, J.; Kunnev, D.; Freeland, A. A signature of genomic instability resulting from deficient replication licensing. PLoS Genet., 2017, 13(1)e1006547
[44]
Maher, R.L.; Branagan, A.M.; Morrical, S.W. Coordination of DNA replication and recombination activities in the maintenance of genome stability. J. Cell. Biochem., 2011, 112(10), 2672-2682.
[45]
Mincheva, A.; Todorov, I.; Werner, D.; Fink, T.M.; Lichter, P. The human gene for nuclear protein BM28 (CDCL1), a new member of the early S-phase family of proteins, maps to chromosome band 3q21. Cytogenet. Cell Genet., 1994, 65(4), 276-277.
[46]
Eide, T.; Taskén, K.A.; Carlson, C.; Williams, G.; Jahnsen, T.; Taskén, K.; Collas, P. Protein kinase A-anchoring protein AKAP95 interacts with MCM2, a regulator of DNA replication. J. Biol. Chem., 2003, 278(29), 26750-26756.
[47]
Komor, A.C.; Badran, A.H.; Liu, D.R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 2017, 168(1-2), 20-36.
[48]
Kim, J.S. Genome editing comes of age. Nat. Protoc., 2016, 11(9), 1573-1578.
[49]
Booth, C.; Gaspar, H.B.; Thrasher, A.J. Treating immunodeficiency through HSC gene therapy. Trends Mol. Med., 2016, 22(4), 317-327.
[50]
Hütter, G.; Bodor, J.; Ledger, S.; Boyd, M.; Millington, M.; Tsie, M.; Symonds, G. CCR5 targeted cell therapy for HIV and prevention of viral escape. Viruses, 2015, 7(8), 4186-4203.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy