Generic placeholder image

Recent Patents on Biotechnology


ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Review Article

Evolutionary Trends in Industrial Production of α-amylase

Author(s): Satya Eswari Jujjavarapu* and Swasti Dhagat

Volume 13 , Issue 1 , 2019

Page: [4 - 18] Pages: 15

DOI: 10.2174/2211550107666180816093436

Price: $65


Background: Amylase catalyzes the breakdown of long-chain carbohydrates to yield maltotriose, maltose, glucose and dextrin as end products. It is present in mammalian saliva and helps in digestion.

Objective: Their applications in biotechnology include starch processing, biofuel, food, paper, textile and detergent industries, bioremediation of environmental pollutants and in clinical and medical applications. The commercial microbial strains for production of α-amylase are Bacillus subtilis, B. licheniformis, B. amyloliquefaciens and Aspergillus oryzae. Industrial production of enzymes requires high productivity and cannot use wild-type strains for enzyme production. The yield of enzyme from bacteria can be increased by varying the physiological and genetic properties of strains.

Results: The genetic properties of a bacterium can be improved by enhancing the expression levels of the gene and secretion of the enzyme outside the cells, thereby improving the productivity by preventing degradation of enzymes. Overall, the strain for specific productivity should have the maximum ability for synthesis and secretion of an enzyme of interest. Genetic manipulation of α-amylase can also be used for the production of enzymes with different properties, for example, by recombinant DNA technology.

Conclusion: This review summarizes different techniques in the production of recombinant α- amylases along with the patents in this arena. The washing out of enzymes in reactions became a limitation in utilization of these enzymes in industries and hence immobilization of these enzymes becomes important. This paper also discusses the immobilization techniques for used α-amylases.

Keywords: Alpha-amylase, recombinant enzymes, bioprocess considerations, immobilization, experimental design, production.

Graphical Abstract
Tiwari S, Srivastava R, Singh C, et al. Amylases: an overview with special reference to alpha amylase. J Global Biosci 2015; 4: 1886-901.
Sundarram A, Murthy TPK. α-Amylase production and applications: a review. J Appl Environ Microbiol 2014; 2(4): 166-75.
Van Der Maarel MJ, Van Der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the α-Amylase family. J Biotechnol 2002; 94(2): 137-55.
Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A. a-Amylases from microbial sources–an overview on recent developments. Food Technol Biotechnol 2006; 44(2): 173-84.
Alpha-Amylase Baking Enzyme Market Analysis By Source [Fungi, Bacteria (Maltogenic, G4), Plant- Based], By Application (Breads, Cookies & Biscuits, Desserts) And Segment Forecasts To 2024. Available at:
Jamrath T, Lindner C, Popović MK, Bajpai R. Production of amylases and proteases by Bacillus caldolyticus from food industry wastes. Food Technol Biotechnol 2012; 50(3): 355-61.
Matthias O. Optimization of α-Amylase and glucoamylase production from three fungal strains isolated from Abakaliki, Ebonyi State. Eur J Exp Biol 2013; 3(4): 26-34.
Saha K, Maity S, Roy S, et al. Optimization of amylase production from B. amyloliquefaciens (MTCC 1270) using solid state fermentation. Int J Microbiol 2014; 2014(2): 764046.
Salman T, Kamal M, Ahmed M, et al. Medium optimization for the production of amylase by Bacillus subtilis RM16 in Shake-flask fermentation. Pak J Pharm Sci 2016; 29(2): 439-44.
Mishraa SK, Kumarb S, Kumarc S, Singhd RK. Optimization of process parameters for α-Amylase production using Artificial Neural Network (ANN) on agricultural wastes. Curr Trends Biotechnol Pharm 2016; 10(3): 248-60.
Paul JS, Lall B, Jadhav S, Tiwari K. Parameter’s optimization and kinetics study of α-Amylase enzyme of Bacillus sp. MB6 isolated from vegetable waste. Process Biochem 2017; 52: 123-9.
Tallapragada P, Dikshit R, Jadhav A, Sarah U. Partial purification and characterization of amylase enzyme under solid state fermentation from Monascus sanguineus. J Genet Eng Biotechnol 2017; 15(1): 95-101.
Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. Microbial α-Amylases: a biotechnological perspective. Process Biochem 2003; 38(11): 1599-616.
Bruinenberg P, Hulst A, Faber A, Voogd R. A process for surface sizing or coating of paper. EP0690170A1, 1996.
Kuddus M. Microbial cold-active α-Amylases: From fundamentals to recent developments. Curr ResTechnol Education Topics Appl Microbiol Microbial Biotechnol 2010; 2010: 1265-76.
Ahlawat S, Dhiman SS, Battan B, Mandhan R, Sharma J. Pectinase production by Bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric. Process Biochem 2009; 44(5): 521-6.
Feitkenhauer H. Anaerobic digestion of desizing wastewater: influence of pretreatment and anionic surfactant on degradation and intermediate accumulation. Enzyme Microb Technol 2003; 33(2-3): 250-8.
Chaudhuri SR. Microbial enzymes as detergent additives. US9359584B2, 2016.
Kirk O, Borchert TV, Fuglsang CC. Industrial enzyme applications. Curr Opin Biotechnol 2002; 13(4): 345-51.
Mitidieri S, Martinelli AHS, Schrank A, Vainstein MH. Enzymatic detergent formulation containing amylase from Aspergillus niger: a comparative study with commercial detergent formulations. Bioresour Technol 2006; 97(10): 1217-24.
Hmidet N, Ali NEH, Haddar A, et al. Alkaline proteases and thermostable α-Amylase co-produced by Bacillus licheniformis NH1: characterization and potential application as detergent additive. Biochem Eng J 2009; 47(1-3): 71-9.
Olsen HS, Falholt P. The role of enzymes in modern detergency. J Surfactants Deterg 1998; 1(4): 555-67.
Gavrilescu M, Chisti Y. Biotechnology-a sustainable alternative for chemical industry. Biotechnol Adv 2005; 23(7-8): 471-99.
Ghorai S, Banik SP, Verma D, et al. Fungal biotechnology in food and feed processing. Food Res Int 2009; 42(5-6): 577-87.
Mobini-Dehkordi M, Javan FA. Application of alpha-Amylase in biotechnology. J Biol Todays World 2012; 1(1): 15-20.
Kost J, Shefer S. Chemically-modified polysaccharides for enzymatically-controlled oral drug delivery. Biomaterials 1990; 11(9): 695-8.
Dumoulin Y, Cartilier LH, Mateescu MA. Cross-linked amylose tablets containing α-Amylase: an enzymatically-controlled drug release system. J Control Release 1999; 60(2-3): 161-7.
Fleming D, Rumbaugh KP. Approaches to dispersing medical biofilms. Microorganisms 2017; 5(2): 15.
Chi Z, Chi Z, Liu G, et al. Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnol Adv 2009; 27(4): 423-31.
Sanchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 2008; 99(13): 5270-95.
Jin B, Van Leeuwen H, Patel B, Yu Q. Utilisation of starch processing wastewater for production of microbial biomass protein and fungal α-Amylase by Aspergillus oryzae. Bioresour Technol 1998; 66(3): 201-6.
Lee S, Bae H, Song M, Hwang S. Bioconversion of starch processing waste to Phellinus linteus mycelium in solid-state cultivation. J Ind Microbiol Biotechnol 2008; 35(8): 859-65.
Aiyer PV. Amylases and their applications. Afr J Biotechnol 2005; 4(13): 1525-9.
Prakash O, Jaiswal N. α-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol 2010; 160(8): 2401-14.
Asgher M, Asad MJ, Rahman S, Legge R. A thermostable α-Amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J Food Eng 2007; 79(3): 950-5.
Gomes I, Gomes J, Steiner W. Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresour Technol 2003; 90(2): 207-14.
Stamford T, Stamford N, Coelho L, Araujo J. Production and characterization of a thermostable α-Amylase from Nocardiopsis sp. endophyte of yam bean. Bioresour Technol 2001; 76(2): 137-41.
Deutch C. Characterization of a salt‐tolerant extracellular α‐Amylase from Bacillus dipsosauri. Lett Appl Microbiol 2002; 35(1): 78-84.
Prakash B, Vidyasagar M, Madhukumar M, Muralikrishna G, Sreeramulu K. Production, purification, and characterization of two extremely halotolerant, thermostable, and alkali-stable α-Amylases from Chromohalobacter sp. TVSP 101. Process Biochem 2009; 44(2): 210-5.
Hutcheon GW, Vasisht N, Bolhuis A. Characterisation of a highly stable α-Amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 2005; 9(6): 487-95.
Amoozegar M, Malekzadeh F, Malik KA. Production of amylase by newly isolated moderate halophile, Halo Bacillus sp. strain MA-2. J Microbiol Methods 2003; 52(3): 353-9.
Coronado M-J, Vargas C, Hofemeister J, Ventosa A, Nieto JJ. Production and biochemical characterization of an α-Amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 2000; 183(1): 67-71.
Djekrif-Dakhmouche S, Gheribi-Aoulmi Z, Meraihi Z, Bennamoun L. Application of a statistical design to the optimization of culture medium for α-Amylase production by Aspergillus niger ATCC 16404 grown on orange waste powder. J Food Eng 2006; 73(2): 190-7.
Jensen B, Nebelong P, Olsen J, Reeslev M. Enzyme production in continuous cultivation by the thermophilic fungus, Thermomyces lanuginosus. Biotechnol Lett 2002; 24(1): 41-5.
Kunamneni A, Permaul K, Singh S. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. J Biosci Bioeng 2005; 100(2): 168-71.
Gopinath SC, Anbu P, Arshad M, et al. Biotechnological processes in microbial amylase production. BioMed Res Int 2017; 2017(3): 1-9.
Kallio P, Palva A, Palva I. Enhancement of α-Amylase production by integrating and amplifying the α-Amylase gene of Bacillus amyloliquefaciens in the genome of Bacillus subtilis. Appl Microbiol Biotechnol 1987; 27(1): 64-71.
Niu D, Zuo Z, Shi G-Y, Wang Z-X. High yield recombinant thermostable α-Amylase production using an improved Bacillus licheniformis system. Microb Cell Fact 2009; 8(1): 58.
Zhang X, Zhang X-F, Li H-P, et al. Atmospheric and Room Temperature Plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biotechnol 2014; 98(12): 5387-96.
Ma Y, Shen W, Chen X, et al. Significantly enhancing recombinant alkaline amylase production in Bacillus subtilis by integration of a novel mutagenesis-screening strategy with systems-level fermentation optimization. J Biol Eng 2016; 10(1): 13.
Leung YC, Lo WH, Errington J. Method for production of alpha-Amylase in recombinant Bacillus. US7550281B2, 2009.
Borchert T, Svendsen A, Bisgård-Frantzen H. Alpha- Amylase mutants. US5989169A, 2005.
Andersen C, Ostdal H, Skagerlind P. Alpha-Amylase variants with altered properties. US20180051268, 2008.
Andersen C, Jorgensen CT, Bisgaard-frantzen H, Svendsen A, Kjaerulff S. α -Amylase variants. US 20170002340, 2017.
Zambare V. Optimization of amylase production from Bacillus sp. using statistics based experimental design. Emir J Food Agric 2011; 23(1): 37-47.
Muniandy K, Kahar UM, Chong CS, et al. Application of statistical experimental design for optimization of novel α-Amylase production by AnoxyBacillus species. J Biol Sci 2013; 13(7): 605-13.
Rasiah IA, Rehm BH. One-step production of immobilized α-Amylase in recombinant Escherichia coli. Appl Environ Microbiol 2009; 75(7): 2012-6.
Datta S, Christena LR, Rajaram YRS. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 2013; 3(1): 1-9.
Namdeo M, Bajpai S. Immobilization of α-Amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J Mol Catal, B Enzym 2009; 59(1): 134-9.
Hosseinkhani S, Szittner R, Nemat-Gorgani M, Meighen EA. Adsorptive immobilization of bacterial luciferases on alkyl-substituted Sepharose 4B. Enzyme Microb Technol 2003; 32(1): 186-93.
Kumari A, Kayastha AM. Immobilization of soybean (Glycine max) α-Amylase onto Chitosan and Amberlite MB-150 beads: optimization and characterization. J Mol Catal, B Enzym 2011; 69(1): 8-14.
Soleimani M, Khani A, Najafzadeh K. α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J Mol Catal, B Enzym 2012; 74(1-2): 1-5.
Kahraman MV, Bayramoğlu G, Kayaman-Apohan N, Güngör A. UV-curable methacrylated/fumaric acid modified epoxy as a potential support for enzyme immobilization. React Funct Polym 2007; 67(2): 97-103.
Meyer L. Effect of Immobilization Method on Activity of α-Amylase The Ohio State University, Columbus, OH, USA, June 2007.
Gangadharan D, Sivaramakrishnan S, Nampoothiri KM, Pandey A. Solid culturing of Bacillus amyloliquefaciens for α-amylase production. Food Technol Biotechnol 2006; 44(2): 269-74.
Moreira FG. Lima FAd, Pedrinho SRF, et al. Production of amylases by Aspergillus tamarii. Revista de Microbiol 1999; 30(2): 157-62.
Laderman KA, Davis BR, Krutzsch HC, et al. The purification and characterization of an extremely thermostable alpha-Amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem 1993; 268(32): 24394-401.
Lévêque E, Janeček Š, Haye B, Belarbi A. Thermophilic archaeal amylolytic enzymes. Enzyme Microb Technol 2000; 26(1): 3-14.
Goto CE, Barbosa EP, Kistner LSC, et al. Production of amylase by Aspergillus fumigatus utilizing α-methyl-D-glycoside, a synthetic analogue of maltose, as substrate. FEMS Microbiol Lett 1998; 167(2): 139-43.
Saito N, Yamamoto K. Regulatory factors affecting alpha-Amylase production in Bacillus licheniformis. J Bacteriol 1975; 121(3): 848-56.
Bunni L, McHale L, McHale A. Production, isolation and partial characterization of an amylase system produced by Talaromyces emersonii CBS 814.70. Enzyme Microb Technol 1989; 11(6): 370-5.
Jensen B, Olsen J. Physicochemical properties of a purified alpha-Amylase from the thermophilic fungus Thermomyces lanuginosus. Enzyme Microb Technol 1992; 14(2): 112-6.
Ramachandran S, Patel AK, Nampoothiri KM, et al. Alpha amylase from a fungal culture grown on oil cakes and its properties. Braz Arch Biol Technol 2004; 47(2): 309-17.
Paquet V, Croux C, Goma G, Soucaille P. Purification and characterization of the extracellular alpha-Amylase from Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 1991; 57(1): 212-8.
Feller G, Le Bussy O, Gerday C. Expression of psychrophilic genes in mesophilic hosts: assessment of the folding state of a recombinant α-Amylase. Appl Environ Microbiol 1998; 64(3): 1163-5.
Haki G, Rakshit S. Developments in industrially important thermostable enzymes: a review. Bioresour Technol 2003; 89(1): 17-34.
Carlsen M, Nielsen J, Villadsen J. Growth and α-Amylase production by Aspergillus oryzae during continuous cultivations. J Biotechnol 1996; 45(1): 81-93.
Hayashida S, Teramoto Y. Production and characteristics of raw-starch-digesting α-Amylase from a protease-negative Aspergillus ficum mutant. Appl Environ Microbiol 1986; 52(5): 1068-73.
Knox AM, du Preez JC, Kilian SG. Starch fermentation characteristics of Saccharomyces cerevisiae strains transformed with amylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Enzyme Microb Technol 2004; 34(5): 453-60.
Møller K, Sharif MZ, Olsson L. Production of fungal α-Amylase by Saccharomyces kluyveri in glucose-limited cultivations. J Biotechnol 2004; 111(3): 311-8.
Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 2001; 65(1): 1-43.
Swamy M, Seenayya G. Thermostable pullulanase and α-Amylase activity from Clostridium thermosulfurogenes SV9-optmization of culture conditions for enzyme production. Process Biochem 1996; 31(2): 157-62.
Zaferanloo B, Bhattacharjee S, Ghorbani MM, Mahon PJ, Palombo EA. Amylase production by Preussia minima, a fungus of endophytic origin: optimization of fermentation conditions and analysis of fungal secretome by LC-MS. BMC Microbiol 2014; 14(1): 55.
Richardson TH, Tan X, Frey G, et al. A novel, high performance enzyme for starch liquefaction discovery and optimization of a low pH, thermostable α-Amylase. J Biol Chem 2002; 277(29): 26501-7.
Tee BL, Kaletunç G. Immobilization of a thermostable α‐amylase by covalent binding to an alginate matrix increases high temperature usability. Biotechnol Prog 2009; 25(2): 436-45.
Glymph J, Stutzenberger F. Production, purification, and characterization of alpha-Amylase from Thermomonospora curvata. Appl Environ Microbiol 1977; 34(4): 391-7.
Hamilton LM, Kelly CT, Fogarty WM. Purification and properties of the raw starch-degrading α-Amylase of Bacillus sp. IMD 434. Biotechnol Lett 1999; 21(2): 111-5.
Khoo S, Amirul A-A, Kamaruzaman M, Nazalan N, Azizan M. Purification and characterization of α-Amylase from Aspergillus flavus. Folia Microbiol 1994; 39(5): 392-8.
de Moraes LM, Astolfi Filho S, Ulhoa CJ. Purification and some properties of an α-Amylase glucoamylase fusion protein from Saccharomyces cerevisiae. World J Microbiol Biotechnol 1999; 15(5): 561-4.
de Arauz LJ, Jozala AF, Mazzola PG, Penna TCV. Nisin biotechnological production and application: a review. Trends Food Sci Technol 2009; 20(3): 146-54.
Souza PMd. Application of microbial α-Amylase in industry-A review. Braz J Microbiol 2010; 41(4): 850-61.
Iefuji H, Chino M, Miyoshi K, Iimura Y. Raw-starch-digesting and thermostable α-Amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biochem J 1996; 318(3): 989-96.
Imshenetskii A, Solntseva L. Production of amylase from cultures of thermophilic bacteria. Mikrobiologiya 1944; 13: 54-64.
Tetrault PA, Egon S. Process for preparing alpha amylase. US2695863A, 1954.
Montgomery CJ, Shetty JK, Singley EC. Thermal stabilization of alpha-Amylase. EP0189838A2, 1988.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy