Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Phytochemical Screening, Antimicrobial and Antioxidant Activities of Selected Mangrove Species

Author(s): Nilesh L. Dahibhate, Utpal Roy and Kundan Kumar*

Volume 16, Issue 2, 2020

Page: [152 - 163] Pages: 12

DOI: 10.2174/1573407214666180808121118

Price: $65

Abstract

Background: Mangrove plant extracts are used in folkloric medicine as aphrodisiac, sedative, antioxidant, antimicrobial and antimalarial. Screening for antimicrobial, phytochemical and antioxidant activities of fourteen mangroves plant species (Aegiceras corniculatum, Acanthus ilicifolius, Avicennia alba, Avicennia marina, Avicennia officinalis, Bruguiera cylindrica, Bruguiera gymnorhiza, Ceriops tagel, Excoecaria agallocha, Kandelia candel, Rhizophora apiculata, Rhizophora mucronata, Sonneratia alba, and Sonneratia caseolaris) in various solvents are reported in this work.

Methods: The antimicrobial screening was carried out using agar well diffusion method. In this study, nine pathogenic strains were used, including three Gram-positive and six Gram-negative bacteria. Phytochemical screening, total flavonoids, total phenolic and antioxidant activity was tested by DPPH radical scavenging assay. Four phenolic compounds (gallic acid, vanillin, tannic acid and quercetin) were quantified by LC-MS/MS in selected mangrove species.

Results: Antimicrobial screening showed Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Pseudomonas aeruginosa were most susceptible to ethyl acetate extract as compared to ethanol and methanol extract. Ethyl acetate extract of Avicennia marina and Bruguiera gymnorhiza showed strong antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Pseudomonas aeruginosa. Phytochemical analysis revealed the presence of saponins, phenolics, flavonoids, alkaloids, tannins, and terpenoids, which was found to be variable as per the solvent used for extraction. In addition, total phenolics and total flavonoids content with different solvents were found in the range of 11.08 to 196.76 mg GAE/g and 12.92 to 110.3 mg QE/g of extract respectively. Moreover, antioxidant capacities expressed in terms of IC50 (mg/mL) showed that methanol extract exhibited higher antioxidant capacity followed by ethanol extract. LC-MS/MS analysis showed gallic acid and tannic acid are present in higher concentration in Aegiceras corniculatum and Sonneratia caseolaris than other species. The vanillin and quercetin were found in the least concentration.

Conclusion: Mangroves species are rich source of antioxidant, phenolics and antimicrobial compounds.

Keywords: Mangroves, antimicrobial, secondary metabolites, antioxidant activity, phenolics, microorganism, pharmaceutical drugs.

Graphical Abstract
[1]
Chikezie, P.C.; Ibegbulem, C.O.; Mbagwu, F.N. Bioactive principles from medicinal plants. Res. J. Phytochem., 2015, 9, 88-115.
[http://dx.doi.org/10.3923/rjphyto.2015.88.115]
[2]
Mgbeahuruike, E.E.; Yrjönen, T.; Vuorela, H.; Holm, Y. Bioactive compounds from medicinal plants: Focus on Piper species. S. Afr. J. Bot., 2017, 112, 54-69.
[http://dx.doi.org/10.1016/j.sajb.2017.05.007]
[3]
Gong, K.K.; Li, P.L.; Qiao, D.; Zhang, X.W.; Chu, M.J.; Qin, G.F.; Tang, X.L.; Li, G.Q. Cytotoxic and antiviral triterpenoids from the mangrove plant Sonneratia paracaseolaris. Molecules, 2017, 22(8), 1-11.
[http://dx.doi.org/10.3390/molecules22081319] [PMID: 28792469]
[4]
Nasri, H. Toxicity and safety of medicinal plants. J. HerbMed. Pharmacol, 2013, 2, 21-22.
[5]
Costantino, V.; Fattorusso, E.; Menna, M.; Taglialatela-Scafati, O. Chemical diversity of bioactive marine natural products: An illustrative case study. Curr. Med. Chem., 2004, 11(13), 1671-1692.
[http://dx.doi.org/10.2174/0929867043364973] [PMID: 15279576]
[6]
Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med., 2011, 8(1), 1-10.
[PMID: 22238476]
[7]
Saxena, M.; Saxena, J.; Nema, R.; Singh, D.; Gupta, A. Phytochemistry of medicinal plants. J. Pharmacogn. Phytochem, 2013, 6, 168-182.
[8]
Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[9]
Kathiresan, K.; Rajendran, N. Mangrove ecosystems of the Indian Ocean region. Indian J. Geo-Mar. Sci., 2005, 34, 104-113.
[10]
Santini, A.; Novellino, E. Nutraceuticals: Beyond the diet before the drugs. Curr. Bioact. Compd., 2014, 10, 1-12.
[http://dx.doi.org/10.2174/157340721001140724145924]
[11]
Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin. Pharmacol., 2018, 84(4), 659-672.
[http://dx.doi.org/10.1111/bcp.13496] [PMID: 29433155]
[12]
Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci., 2017, 96, 53-61.
[http://dx.doi.org/10.1016/j.ejps.2016.09.003] [PMID: 27613382]
[13]
Du, S.J.; Qin, Z.H. Wang. M.A.; Zhu, W.; Han, C.R.; Bi, H.P. GC-MS analysis of the essential oils from Xylocarpus granatum. J. Hainan Normal Univ, 2007, 20, 247-250.
[14]
Udom, K.; Warinthorn, C.; Santi, T.P.; Gaysorn, V.; Zhao, F.; Simpson, J. A limonoid from Xylocarpus granatum. Phytochemistry, 1996, 41, 903-905.
[http://dx.doi.org/10.1016/0031-9422(95)00724-5]
[15]
Cui, J.; Deng, Z.; Li, J.; Fu, H.; Proksch, P.; Lin, W. Phragmalin-type limonoids from the mangrove plant Xylocarpus granatum. Phytochemistry, 2005, 66(19), 2334-2339.
[http://dx.doi.org/10.1016/j.phytochem.2005.06.020] [PMID: 16084539]
[16]
Sadhu, S.K.; Ahmed, F.; Ohtsuki, T.; Ishibashi, M. Flavonoids from Sonneratia caseolaris. J. Nat. Med., 2006, 60(3), 264-265.
[http://dx.doi.org/10.1007/s11418-006-0029-3] [PMID: 29435876]
[17]
Taniguchi, K.; Funasaki, M.; Kishida, A.; Sadhu, S.K.; Ahmed, F.; Ishibashi, M.; Ohsaki, A. Two new coumarins and a new xanthone from the leaves of Rhizophora mucronata. Bioorg. Med. Chem. Lett., 2018, 28(6), 1063-1066.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.022] [PMID: 29475587]
[18]
Bao, S.; Ding, Y.; Deng, Z.; Proksch, P.; Lin, W. Rhyncosides A-F, phenolic constituents from the Chinese mangrove plant Bruguiera sexangula var. rhynchopetala. Chem. Pharm. Bull. (Tokyo), 2007, 55(8), 1175-1180.
[http://dx.doi.org/10.1248/cpb.55.1175] [PMID: 17666840]
[19]
Zhang, D.; Wu, J.; Zhang, S.; Huang, J. Oleanane triterpenes from Aegiceras corniculatum. Fitoterapia, 2005, 76(1), 131-133.
[http://dx.doi.org/10.1016/j.fitote.2004.10.017] [PMID: 15664478]
[20]
Homhual, S.; Bunyapraphatsara, N.; Kondratyuk, T.; Herunsalee, A.; Chaukul, W.; Pezzuto, J.M.; Fong, H.H.; Zhang, H.J. Bioactive dammarane triterpenes from the mangrove plant Bruguiera gymnorrhiza. J. Nat. Prod., 2006, 69(3), 421-424.
[http://dx.doi.org/10.1021/np058112x] [PMID: 16562850]
[21]
Huong, P.T.; Diep, C.N.; Thanh, N.V.; Tu, V.A.; Hanh, T.H.; Cuong, N.T.; Thao, N.P.; Cuong, N.X.; Thao, T.; Thai, T.H.; Nam, N.H.; Ban, N.K.; Kiem, P.V.; Minh, C.V. A new cycloartane glucoside from Rhizophora stylosa. Nat. Prod. Commun., 2014, 9(9), 1255-1257.
[http://dx.doi.org/10.1177/1934578X1400900909] [PMID: 25918786]
[22]
Loder, J.W.; Russell, G.B. Tumour Inhibitory plants, Alkaloids of Bruguiera sexangula and Bruguiera exaristata (Rhizophoraceae). Aust. J. Chem., 1959, 22, 1271-1275.
[http://dx.doi.org/10.1071/CH9691271]
[23]
Wu, J.; Xiao, Q.; Xu, J.; Li, M.Y.; Pan, J.Y.; Yang, M.H. Natural products from true mangrove flora: Source, chemistry and bioactivities. Nat. Prod. Rep., 2008, 25(5), 955-981.
[http://dx.doi.org/10.1039/b807365a] [PMID: 18820760]
[24]
Premnathan, M.; Chandra, K.; Bajpai, S.K.; Kathiresan, K. A survey of some Indian marine plants for antiviral activity. Bot. Mar., 1992, 35, 321-324.
[http://dx.doi.org/10.1515/botm.1992.35.4.321]
[25]
Bandaranayake, W.M. Traditional and medicinal uses of mangroves. Mangroves Salt Marshes, 1998, 3, 133-148.
[http://dx.doi.org/10.1023/A:1009988607044]
[26]
Ravikumar, S.; Inbaneson, S.J.; Suganthi, P.; Venkatesan, M.; Ramu, A. Mangrove plants as a source of lead compounds for the development of new antiplasmodial drugs from South East coast of India. Parasitol. Res., 2011, 108(6), 1405-1410.
[http://dx.doi.org/10.1007/s00436-010-2184-4] [PMID: 21120528]
[27]
Du, S.; Wang, M.; Zhu, W.; Qin, Z. A new fungicidal lactone from Xylocarpus granatum (Meliaceae). Nat. Prod. Res., 2009, 23(14), 1316-1321.
[http://dx.doi.org/10.1080/14786410902726183] [PMID: 19735046]
[28]
Ravikumar, S.; Muthuraja, M.; Sivaperumal, P.; Gnanadesigan, M. Antibacterial activity of the mangrove leaves Exoecaria agallocha against selected fish pathogens. Asian J. Med. Sci., 2010, 2, 211-213.
[29]
Mondal, S.; Ghosh, D.; Ramakrishna, K. A complete profile on blind-your-eye mangrove Excoecaria agallocha L. (Euphorbiaceae): Ethnobotany, phytochemistry, and pharmacological aspects. Pharmacogn. Rev., 2016, 10(20), 123-138.
[http://dx.doi.org/10.4103/0973-7847.194049] [PMID: 28082796]
[30]
Patil, R.C.; Manohar, S.M.; Upadhye, M.V.; Katchi, V.I.; Rao, A.J.; Mule, A.; Moghe, A.S. Anti reverse transcriptase and anticancer activity of stem ethanol extracts of Excoecaria agallocha (Euphorbiaceae). Ceylon J. Sci, 2011, 40, 147-155.
[31]
Beula, J.M.; Gnanadesigan, M.; Rajkumar, P.B.; Ravikumar, S.; Anand, M. Antiviral, antioxidant and toxicological evaluation of mangrove plant from South East coast of India. Asian Pac. J. Trop. Biomed., 2012, 2, 352-357.
[http://dx.doi.org/10.1016/S2221-1691(12)60187-7]
[32]
Du, S.S.; Wang, C.F.; Li, J.; Zhang, H.M.; Liu, Q.Z.; Liu, Z.L.; Deng, Z.W. Antifeedant diterpenoids against Tribolium castaneum from the stems and twigs of Ceriops tagal (Rhizophoraceae). Molecules, 2011, 16(7), 6060-6067.
[http://dx.doi.org/10.3390/molecules16076060] [PMID: 21775935]
[33]
Dat, D.; Thao, N.P.; Tai, B.H.; Luyen, B.T.; Kim, S.; Koo, J.E.; Koh, Y.S.; Cuong, N.T.; Thanh, N.V.; Cuong, N.X.; Nam, N.H.; Kiem, P.V.; Minh, C.V.; Kim, Y.H. Chemical constituents from Kandelia candel with their inhibitory effects on pro-inflammatory cytokines production in LPS-stimulated Bone Marrow-Derived Dendritic Cells (BMDCs). Bioorg. Med. Chem. Lett., 2015, 25(7), 1412-1416.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.048] [PMID: 25769817]
[34]
Ali, M.S.; Ravikumar, S.; Beula, J.M.; Anuradha, V.; Yogananth, N. Insecticidal compounds from Rhizophoraceae mangrove plants for the management of dengue vector Aedes aegypti. J. Vector Borne Dis., 2014, 51(2), 106-114.
[PMID: 24947217]
[35]
Thatoi, H.N.; Patra, J.K.; Das, S.K. Free radical scavenging and antioxidant potential of mangrove plants: A review. Acta Physiol. Plant., 2014, 3, 561-579.
[http://dx.doi.org/10.1007/s11738-013-1438-z]
[36]
Nebula, M.; Harisankar, S.; Chandramohanakumar, N. Metabolites and bioactivities of Rhizophoraceae mangroves. Nat. Prod. Bioprospect., 2013, 5, 207-232.
[http://dx.doi.org/10.1007/s13659-013-0012-0]
[37]
Bose, J.; Rodrigo-Moreno, A.; Shabala, S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot., 2014, 65(5), 1241-1257.
[http://dx.doi.org/10.1093/jxb/ert430] [PMID: 24368505]
[38]
Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf., 2011, 10, 221-247.
[http://dx.doi.org/10.1111/j.1541-4337.2011.00156.x]
[39]
Gan, J.; Feng, Y.; He, Z.; Li, X.; Zhang, H. Correlations between antioxidant activity and alkaloids and phenols of maca (Lepidium meyenii). J. Food Qual., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/3185945]
[40]
Kathiresan, K. Mangrove forests of India. Curr. Sci., 2018, 114, 976-981.
[http://dx.doi.org/10.18520/cs/v114/i05/976-981]
[41]
Saddhe, A.A.; Jamdade, R.A.; Kumar, K. Assessment of mangroves from Goa, west coast India using DNA barcode. Springerplus, 2016, 5(1), 1554.
[http://dx.doi.org/10.1186/s40064-016-3191-4] [PMID: 27652127]
[42]
Saddhe, A.A.; Jamdade, R.A.; Kumar, K. Evaluation of multilocus marker efficacy for delineating mangrove species of West Coast India. PLoS One, 2017, 12(8)e0183245
[http://dx.doi.org/10.1371/journal.pone.0183245] [PMID: 28817640]
[43]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[44]
Tiwari, P.; Kumar, B.; Kaur, M.; Kaur, G.; Kaur, H. Phytochemical screening and extraction: A review. Internationale Pharmaceutica Sciencia, 2011, 1, 98-106.
[45]
Odeja, O.O.; Obi, G.; Ogwuche, C.E.; Elemike, E.E.; Oderinlo, O.O. Phytochemical screening, antioxidant and antimicrobial activities of Senna occidentalis L. leaves. Int. J. Herb Med, 2014, 2, 26-30.
[46]
Usman, H.; Abdulrahman, F.; Usman, A. Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thonningii (Moraceae). Afr. J. Tradit. Complement. Altern. Med., 2009, 6(3), 289-295.
[PMID: 20448855]
[47]
Slinkard, K.; Singleton, V. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic., 1977, 28, 49-55.
[48]
Chang, C.; Yang, H.; Wen, M.; Chern, C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Yao Wu Shi Pin Fen Xi, 2002, 3, 178-182.
[49]
Singh, G.; Passsari, A.K.; Leo, V.V.; Mishra, V.K.; Subbarayan, S.; Singh, B.P.; Kumar, B.; Kumar, S.; Gupta, V.K.; Lalhlenmawia, H.; Nachimuthu, S.K. Evaluation of phenolic content variability along with antioxidant, antimicrobial, and cytotoxic potential of selected traditional medicinal plants from India. Front. Plant Sci., 2016, 7, 407-418.
[http://dx.doi.org/10.3389/fpls.2016.00407] [PMID: 27066046]
[50]
Faulkner, D.J. Marine natural products. Nat. Prod. Rep., 2002, 19(1), 1-48.
[http://dx.doi.org/10.1039/b009029h] [PMID: 11902436]
[51]
Bandaranayake, W.M. Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecol. Manage., 2002, 10, 421-452.
[http://dx.doi.org/10.1023/A:1021397624349]
[52]
Engel, S.; Melany, P.; Paul, R.; William, F. Antimicrobial activities of extracts from tropical Atlantic marine plants against marine pathogens and saprophytes. Mar. Biol., 2006, 149, 991-1002.
[http://dx.doi.org/10.1007/s00227-006-0264-x]
[53]
Vazquez-Rodriguez, S.; Matos, M.J.; Borges, F.; Uriarte, E.; Santana, L. Bioactive coumarins from marine sources: Origin, structural features and pharmacological properties. Curr. Top. Med. Chem., 2015, 15(17), 1755-1766.
[http://dx.doi.org/10.2174/1568026615666150427125916] [PMID: 25915605]
[54]
Linhares, I.; Raposo, T.; Rodrigues, A.; Almeida, A. Frequency and antimicrobial resistance patterns of bacteria implicated in community urinary tract infections: A ten-year surveillance study (2000-2009). BMC Infect. Dis., 2013, 13, 19.
[http://dx.doi.org/10.1186/1471-2334-13-19] [PMID: 23327474]
[55]
Sahoo, G.; Mulla, N.S.; Ansari, Z.A.; Mohandass, C. Antibacterial activity of mangrove leaf extracts against human pathogens. Indian J. Pharm. Sci., 2012, 74(4), 348-351.
[http://dx.doi.org/10.4103/0250-474X.107068] [PMID: 23626390]
[56]
Yompakdee, C.; Thunyaharn, S.; Phaechamud, T. Bactericidal activity of methanol extracts of crabapple mangrove tree Sonneratia caseolaris Linn. againsts multi-drug resistant pathogens. Indian J. Pharm. Sci., 2012, 74(3), 230-236.
[http://dx.doi.org/10.4103/0250-474X.106065] [PMID: 23441048]
[57]
Jadhav, R.N.; Jadhav, B.L. Evaluation of Antimicrobial principles of Rhizophora species along Mumbai Coast. J. Adv. Sci. Res, 2012, 3, 30-33.
[58]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[59]
Taguri, T.; Tanaka, T.; Kouno, I. Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol. Pharm. Bull., 2004, 27(12), 1965-1969.
[http://dx.doi.org/10.1248/bpb.27.1965] [PMID: 15577214]
[60]
Sakagami, Y.; Mimura, M.; Kajimura, K.; Yokoyama, H.; Linuma, M.; Tanaka, T.; Ohyama, M. Anti-MRSA activity of sophoraflavanone G and synergism with other antibacterial agents. Lett. Appl. Microbiol., 1998, 27(2), 98-100.
[http://dx.doi.org/10.1046/j.1472-765X.1998.00386.x] [PMID: 9750330]
[61]
Sato, M.; Tsuchiya, H.; Takase, I.; Kureshiro, H.; Tanigaki, S.; Iinuma, M. Antibacterial activity of flavanone isolated from Sophora exigua against methicillin-resistant Staphylococcus aureus and its combination with antibiotics. Phytother. Res., 1995, 9, 509-512.
[http://dx.doi.org/10.1002/ptr.2650090709]
[62]
Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[63]
Goyal, M.M.; Rani, K.K. Antibacterial activity of the natural products from the leaves of Thespesia populnea. Acta Cienc. Indica Chem., 1989, 15, 117-124.
[64]
Katerere, D.R.; Gray, A.I.; Nash, R.J.; Waigh, R.D. Antimicrobial activity of pentacyclic triterpenes isolated from African Combretaceae. Phytochemistry, 2003, 63(1), 81-88.
[http://dx.doi.org/10.1016/S0031-9422(02)00726-4] [PMID: 12657301]
[65]
Avato, P.; Bucci, R.; Tava, A.; Vitali, C.; Rosato, A.; Bialy, Z.; Jurzysta, M. Antimicrobial activity of saponins from Medicago sp.: Structure-activity relationship. Phytother. Res., 2006, 20(6), 454-457.
[http://dx.doi.org/10.1002/ptr.1876] [PMID: 16619355]
[66]
Cushnie, T.P.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents, 2014, 44(5), 377-386.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.06.001] [PMID: 25130096]
[67]
Monte, J.; Abreu, A.C.; Borges, A.; Simões, L.C.; Simões, M. Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms. Pathogens, 2014, 3(2), 473-498.
[http://dx.doi.org/10.3390/pathogens3020473] [PMID: 25437810]
[68]
Fernandes, T.S.; Copetti, D.; do Carmo, G.; Neto, A.T.; Pedroso, M.; Silva, U.F.; Mostardeiro, M.A.; Burrow, R.E.; Dalcol, I.I.; Morel, A.F. Phytochemical analysis of bark from Helietta apiculata Benth and antimicrobial activities. Phytochemistry, 2017, 141, 131-139.
[http://dx.doi.org/10.1016/j.phytochem.2017.05.017] [PMID: 28614729]
[69]
Simlai, A.; Rai, A.; Mishra, S.; Mukherjee, K.; Roy, A. Antimicrobial and antioxidative activities in the bark extracts of Sonneratia caseolaris, a mangrove plant. EXCLI J., 2014, 13, 997-1010.
[PMID: 26417316]
[70]
Gayathri, G.A.; Gayathri, M. Preliminary qualitative phytochemical screening and in vitro hypoglycemic potential of Acanthus ilicifolius and Evolvulus emerginatus. Int. J. Pharm. Pharm. Sci., 2014, 6, 362-365.
[71]
Jithesh, M.N.; Prashanth, S.R.; Sivaprakash, K.R.; Parida, A.K. Antioxidative response mechanisms in halophytes: Their role in stress defence. J. Genet., 2006, 85(3), 237-254. . a
[http://dx.doi.org/10.1007/BF02935340] [PMID: 17406103]
[72]
Jithesh, M.N.; Prashanth, S.R.; Sivaprakash, K.R.; Parida, A. Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep., 2006, 25(8), 865-876. b.
[http://dx.doi.org/10.1007/s00299-006-0127-4] [PMID: 16534598]
[73]
Singh, A.; Duggal, S.; Suttee, A. Acanthus ilicifolius linn.-lesser known medicinal plants with significant pharmacological activities. Int. J. Phytomed., 2009, 1, 1-3.
[http://dx.doi.org/10.5138/ijpm.2009.0975.0185.05785]
[74]
Sun, Y.; Ding, Y.; Lin, W.H. Isolation and identification of compounds from marine mangrove plant Avicennia marina. Beijing Da Xue Xue Bao, 2009, 41(2), 221-225.
[PMID: 19377635]
[75]
Bhattacharya, A.; Sood, P.; Citovsky, V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol. Plant Pathol., 2010, 11(5), 705-719.
[http://dx.doi.org/10.1111/j.1364-3703.2010.00625.x] [PMID: 20696007]
[76]
Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; Chen, H.; Qin, W.; Wu, H.; Chen, S. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 2016, 21(10), 1-19.
[http://dx.doi.org/10.3390/molecules21101374] [PMID: 27754463]
[77]
Acamovic, T.; Brooker, J.D. Biochemistry of plant secondary metabolites and their effects in animals. Proc. Nutr. Soc., 2005, 64(3), 403-412.
[http://dx.doi.org/10.1079/PNS2005449] [PMID: 16048675]
[78]
Jaberian, H.; Piri, K.; Nazari, J. Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food Chem., 2013, 136(1), 237-244.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.084] [PMID: 23017418]
[79]
Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[80]
Santini, A.; Romano, R.; Meca, G.; Raiola, A.; Ritieni, A. Antioxidant activity and quality of apple juices and puree after in vitro digestion. J. Food Res., 2014, 10, 1-10.
[http://dx.doi.org/10.5539/jfr.v3n4p1]
[81]
Dave, R. In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview. Afr. J. Microbiol. Res., 2009, 31, 981-996.
[82]
Roome, T.; Dar, A.; Ali, S.; Naqvi, S.; Choudhary, M.I. A study on antioxidant, free radical scavenging, anti-inflammatory and hepatoprotective actions of Aegiceras corniculatum (stem) extracts. J. Ethnopharmacol., 2008, 118(3), 514-521.
[http://dx.doi.org/10.1016/j.jep.2008.05.021] [PMID: 18602778]
[83]
Banerjee, D.; Chakrabarti, S.; Hazra, A.K.; Banerjee, S.; Ray, J.; Mukerjee, B. Antioxidant activity and total phenolics of some mangroves in Sundarbans. Afr. J. Biotechnol., 2008, 7, 7805-7810.
[84]
Li, M.Y.; Xiao, Q.; Pan, J.Y.; Wu, J. Natural products from semi-mangrove flora: Source, chemistry and bioactivities. Nat. Prod. Rep., 2009, 26(2), 281-298.
[http://dx.doi.org/10.1039/B816245J] [PMID: 19177225]
[85]
Arumugam, M.; Pawar, U.R.; Gomathinayagam, M.; Lakshmanan, G.M.A.; Panneerselvam, R. Antibacterial and antioxidant activity between micropropagated and field grown plants of Excoecaria agallocha L. Int. Res. J. Pharm, 2012, 3, 235-240.
[86]
Subhan, N.; Alam, M.A.; Ahmed, F.; Awal, M.A.; Nahar, L.; Sarker, S.D. In vitro antioxidant property of the extract of Excoecaria agallocha (Euphorbiaceae). Daru, 2008, 16, 149-154.
[87]
Agoramoorthy, G.; Chen, F.; Venkatesalu, V.; Kuo, D.; Shea, P. Evaluation of antioxidant polyphenols from selected mangrove plants of India. Asian J. Chem., 2008, 20, 1311-1322.
[88]
Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Yao Wu Shi Pin Fen Xi, 2014, 22(3), 296-302.
[http://dx.doi.org/10.1016/j.jfda.2013.11.001] [PMID: 28911418]
[89]
Wei, S.D.; Zhou, H.C.; Lin, Y.M. Antioxidant activities of extract and fractions from the hypocotyls of the mangrove plant Kandelia candel. Int. J. Mol. Sci., 2010, 11(10), 4080-4093.
[http://dx.doi.org/10.3390/ijms11104080] [PMID: 21152321]
[90]
Suganthy, N.; Devi, K.P. In vitro antioxidant and anti-cholinesterase activities of Rhizophora mucronata. Pharm. Biol., 2016, 54(1), 118-129.
[http://dx.doi.org/10.3109/13880209.2015.1017886] [PMID: 25856713]
[91]
Swami, D.; Fulzele, D.; Malpathak, N. Identification and quantification of Embelin by validated HPTLC method and confirmation by LC-MS from mangrove plant Aegiceras corniculatum L. J. Chem. Pharm. Res., 2017, 9, 168-173.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy