Generic placeholder image

Current Medicinal Chemistry


ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Mechanisms Behind the Biological Activity of Flavonoids

Author(s): Ana María González-Paramás, Begoña Ayuda-Durán, Sofía Martínez, Susana González-Manzano and Celestino Santos-Buelga*

Volume 26 , Issue 39 , 2019

Page: [6976 - 6990] Pages: 15

DOI: 10.2174/0929867325666180706104829

Price: $65


Flavonoids are phenolic compounds widely distributed in the human diet. Their intake has been associated with a decreased risk of different diseases such as cancer, immune dysfunction or coronary heart disease. However, the knowledge about the mechanisms behind their in vivo activity is limited and still under discussion. For years, their bioactivity was associated with the direct antioxidant and radical scavenging properties of phenolic compounds, but nowadays this assumption is unlikely to explain their putative health effects, or at least to be the only explanation for them. New hypotheses about possible mechanisms have been postulated, including the influence of the interaction of polyphenols and gut microbiota and also the possibility that flavonoids or their metabolites could modify gene expression or act as potential modulators of intracellular signaling cascades. This paper reviews all these topics, from the classical view as antioxidants in the context of the Oxidative Stress theory to the most recent tendencies related with the modulation of redox signaling pathways, modification of gene expression or interactions with the intestinal microbiota. The use of C. elegans as a model organism for the study of the molecular mechanisms involved in biological activity of flavonoids is also discussed.

Keywords: Flavonoids, health implications, bioavailability, metabolites, gut microbiota, antioxidant, gene expression, C. elegans.

Andersen, Ø.M.; Markham, K.R. Flavonoids: Chemistry, Biochemistry and Applications; CRC Press: Boca Raton, FL, 2006.
Santos-Buelga, C.; González-Paramás, A.M.A.M. Flavonoids: functions, metabolism and biotechnology In: Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants; Vandamme and Revuelta; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016.
Kühnau, J. The flavonoids. A class of semi-essential food components: their role in human nutrition. World Rev. Nutr. Diet., 1976, 24, 117-191.
[] [PMID: 790781]
Correa, V.G.; Tureck, C.; Locateli, G.; Peralta, R.M.; Koehnlein, E.A.A. Estimate of consumption of phenolic compounds by Brazilian population. Rev. Nutr., 2015, 28, 185-196.
Bai, W.; Wang, C.; Ren, C. Intakes of total and individual flavonoids by US adults. Int. J. Food Sci. Nutr., 2014, 65(1), 9-20.
[] [PMID: 24020353]
Wang, X.; Ouyang, Y.Y.; Liu, J.; Zhao, G. Flavonoid intake and risk of CVD: a systematic review and meta-analysis of prospective cohort studies. Br. J. Nutr., 2014, 111(1), 1-11.
[] [PMID: 23953879]
Akamatsu, K. Uber die Wirkung der Flavonole auf das Froschhers. Ber. Physiol, 1931, 62, 443.
Fukuda, T. Über die pharmakologische wirkung der flavonverbindungen. Archiv F. Experiment. Pathol. u. Pharmakol, 1932, 164, 685-694.
Benthsath, A.; Rusznyak, S.T.; Szent-György, A. Vitamin nature of flavones. Nature, 1936, 138, 798.
Anonymous, Use of the term Vitamin P. Nature, 1950, 166, 543.
Hertog, M.G.; Feskens, E.J.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease: the zutphen elderly study. Lancet, 1993, 342(8878), 1007-1011.
[] [PMID: 8105262]
Hertog, M.G.; Kromhout, D.; Aravanis, C.; Blackburn, H.; Buzina, R.; Fidanza, F.; Giampaoli, S.; Jansen, A.; Menotti, A.; Nedeljkovic, S.; Pekkarinen, M.; Simic, B.S.; Toshima, H.; Feskens, E.J.M.; Hollman, P.C.H.; Katan, M.B. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med., 1995, 155(4), 381-386.
[] [PMID: 7848021]
Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal., 2013, 18(14), 1818-1892.
[] [PMID: 22794138]
Khan, H. Marya; Amin, S.; Kamal, M.A.; Patel, S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomed. Pharmacother., 2018, 101, 860-870.
[] [PMID: 29635895]
Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584.
[] [PMID: 12550068]
Halliwell, B.; Gutteridge, J.M.C. Free radicals in biology and medicine, 3rd ed; Oxford University Press: Oxford, 1998.
Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol., 1956, 11(3), 298-300.
[] [PMID: 13332224]
Sies, H. Oxidative stress: introductory remarks. In: Oxidative Stress; Sies, H., Ed.; Academic Press: London, 1985; pp. 1-8.
Treml, J.; Šmejkal, K. Flavonoids as potent scavengers of Hydroxyl radicals. Compr. Rev. Food Sci. Food Saf., 2016, 15(4), 720-738.
Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 2011, 82(4), 513-523.
[] [PMID: 21277359]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013, 2013162750
[] [PMID: 24470791]
Bors, W.; Michel, C.; Stettmaier, K. Antioxidant effects of flavonoids. Biofactors, 1997, 6(4), 399-402.
[] [PMID: 9388305]
Bors, W.; Heller, W.; Michel, C.; Saran, M. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol., 1990, 186, 343-355.
[] [PMID: 2172711]
Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 1996, 20(7), 933-956.
[] [PMID: 8743980]
Halliwell, B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch. Biochem. Biophys., 2008, 476(2), 107-112.
[] [PMID: 18284912]
Metodiewa, D.; Jaiswal, A.K.; Cenas, N.; Dickancaité, E.; Segura-Aguilar, J. Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic. Biol. Med., 1999, 26(1-2), 107-116.
[] [PMID: 9890646]
Dueñas, M.; González-Manzano, S.; González-Paramás, A.; Santos-Buelga, C. Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. J. Pharm. Biomed. Anal., 2010, 51(2), 443-449.
[] [PMID: 19442472]
Cherrak, S.A.; Mokhtari-Soulimane, N.; Berroukeche, F.; Bensenane, B.; Cherbonnel, A.; Merzouk, H.; Elhabiri, M. In vitro antioxidant versus metal ion chelating properties of flavonoids: A structure-activity investigation. PLoS One, 2016, 11(10)e0165575
[] [PMID: 27788249]
Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem., 2011, 125(2), 288-306.
Cheng, I.F.; Breen, K. On the ability of four flavonoids, baicilein, luteolin, naringenin, and quercetin, to suppress the Fenton reaction of the iron-ATP complex. Biometals, 2000, 13(1), 77-83.
[] [PMID: 10831228]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[] [PMID: 10924197]
Arora, A.; Nair, M.G.; Strasburg, G.M. Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic. Biol. Med., 1998, 24(9), 1355-1363.
[] [PMID: 9641252]
Soczyńska-Kordala, M.; Bakowska, A.; Oszmiański, J.; Gabrielska, J. Metal ion-flavonoid associations in bilayer phospholipid membranes. Cell. Mol. Biol. Lett., 2001, 6(2A), 277-281.
[PMID: 11598647]
Brown, J.E.; Khodr, H.; Hider, R.C.; Rice-Evans, C.A. Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem. J., 1998, 330(Pt 3), 1173-1178.
[] [PMID: 9494082]
Nagata, H.; Takekoshi, S.; Takagi, T.; Honma, T.; Watanabe, K. Antioxidative action of flavonoids, quercetin and catechin, mediated by the activation of glutathione peroxidase. Tokai J. Exp. Clin. Med., 1999, 24(1), 1-11.
[PMID: 10530620]
Masella, R.; Di Benedetto, R.; Varì, R.; Filesi, C.; Giovannini, C. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J. Nutr. Biochem., 2005, 16(10), 577-586.
[] [PMID: 16111877]
González-Manzano, S.; González-Paramás, A.M.; Delgado, L.; Patianna, S.; Surco-Laos, F.; Dueñas, M.; Santos-Buelga, C. Oxidative status of stressed Caenorhabditis elegans treated with epicatechin. J. Agric. Food Chem., 2012, 60(36), 8911-8916.
[] [PMID: 22651237]
Chen, C.; Yu, R.; Owuor, E.D.; Kong, A.N. Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch. Pharm. Res., 2000, 23(6), 605-612.
[] [PMID: 11156183]
Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr., 2005, 45(4), 287-306.
[] [PMID: 16047496]
Tang, S.Y.; Halliwell, B. Medicinal plants and antioxidants: what do we learn from cell culture and Caenorhabditis elegans studies? Biochem. Biophys. Res. Commun., 2010, 394(1), 1-5.
[] [PMID: 20188074]
Lee-Hilz, Y.Y.; Boerboom, A.M.J.F.; Westphal, A.H.; Berkel, W.J.; Aarts, J.M.M.J.G.; Rietjens, I.M.C.M. Pro-oxidant activity of flavonoids induces EpRE-mediated gene expression. Chem. Res. Toxicol., 2006, 19(11), 1499-1505.
[] [PMID: 17112238]
Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.C.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A.M. Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 2001, 74(4), 418-425.
[] [PMID: 11566638]
Ferriola, P.C.; Cody, V.; Middleton, E., Jr Protein kinase C inhibition by plant flavonoids. Kinetic mechanisms and structure-activity relationships. Biochem. Pharmacol., 1989, 38(10), 1617-1624.
[] [PMID: 2730676]
Hertzog, D.I.; Tica, O-S. Molecular mechanisms underlying the anti-cancerous action of flavonoids. Curr. Health Sci. J., 2012, 38, 145-149.
Choi, J.S.; Chung, H.Y.; Kang, S.S.; Jung, M.J.; Kim, J.W.; No, J.K.; Jung, H.A. The structure-activity relationship of flavonoids as scavengers of peroxynitrite. Phytother. Res., 2002, 16(3), 232-235.
[] [PMID: 12164267]
Frank, J.; Budek, A.; Lundh, T.; Parker, R.S.; Swanson, J.E.; Lourenço, C.F.; Gago, B.; Laranjinha, J.; Vessby, B.; Kamal-Eldin, A. Dietary flavonoids with a catechol structure increase alpha-tocopherol in rats and protect the vitamin from oxidation in vitro. J. Lipid Res., 2006, 47(12), 2718-2725.
[] [PMID: 16951402]
Zhu, Q.Y.; Huang, Y.; Chen, Z.Y. Interaction between flavonoids and α-tocopherol in human low density lipoprotein. J. Nutr. Biochem., 2000, 11(1), 14-21.
[] [PMID: 15539338]
Laranjinha, J. Translation of Chemical Properties of Polyphenols into Biological Activity with Impact on Human Health. In: Recent Advances in Polyphenols Research; Santos-Buelga, C.; Escribano, M.T.; Lattanzio, V., Eds.; Wiley- Blackwell: Chichester, 2010; 2, pp. 269-282.
Hollman, P.C.H. Unravelling of the health effects of polyphenols is a complex puzzle complicated by metabolism. Arch. Biochem. Biophys., 2014, 559, 100-105.
[] [PMID: 24796225]
Cao, G.; Russell, R.M.; Lischner, N.; Prior, R.L. Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J. Nutr., 1998, 128(12), 2383-2390.
[] [PMID: 9868185]
Williams, R.J.; Spencer, J.P.; Rice-Evans, C. Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med., 2004, 36(7), 838-849.
[] [PMID: 15019969]
Thilakarathna, S.H.; Rupasinghe, H.P.V. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 2013, 5(9), 3367-3387.
[] [PMID: 23989753]
Clifford, M.N. Diet-derived phenols in plasma and tissues and their implications for health. Planta Med., 2004, 70(12), 1103-1114.
[] [PMID: 15643541]
Kroon, P.A.; Clifford, M.N.; Crozier, A.; Day, A.J.; Donovan, J.L.; Manach, C.; Williamson, G. How should we assess the effects of exposure to dietary polyphenols in vitro? Am. J. Clin. Nutr., 2004, 80(1), 15-21.
[] [PMID: 15213022]
Day, A.J.; Gee, J.M.; DuPont, M.S.; Johnson, I.T.; Williamson, G. Absorption of quercetin-3-glucoside and quercetin-4′-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem. Pharmacol., 2003, 65(7), 1199-1206.
[] [PMID: 12663055]
Kottra, G.; Daniel, H. Flavonoid glycosides are not transported by the human Na+/glucose transporter when expressed in Xenopus laevis oocytes, but effectively inhibit electrogenic glucose uptake. J. Pharmacol. Exp. Ther., 2007, 322(2), 829-835.
[] [PMID: 17495124]
Requena, T.; Monagas, M.; Pozo-Bayón, M.A.; Martín-Álvarez, P.J.; Bartolomé, B.; del Campo, R.; Ávila, M.; Martínez-Cuesta, M.C.; Peláez, C.; Moreno-Arribas, M.V. Perspectives of the potential implications of wine polyphenols on human oral and gut microbiota. Trends Food Sci. Technol., 2010, 21, 332-344.
Shoji, T.; Masumoto, S.; Moriichi, N.; Akiyama, H.; Kanda, T.; Ohtake, Y.; Goda, Y. Apple procyanidin oligomers absorption in rats after oral administration: analysis of procyanidins in plasma using the porter method and high-performance liquid chromatography/tandem mass spectrometry. J. Agric. Food Chem., 2006, 54(3), 884-892.
[] [PMID: 16448199]
Ariza, M.T.; Reboredo-Rodríguez, P.; Cervantes, L.; Soria, C.; Martínez-Ferri, E.; González-Barreiro, C.; Cancho-Grande, B.; Battino, M.; Simal-Gándara, J. Bioaccessibility and potential bioavailability of phenolic compounds from achenes as a new target for strawberry breeding programs. Food Chem., 2018, 248, 155-165.
[] [PMID: 29329839]
Terao, J. Flavonols: metabolism, bioavailability, and health impacts. In: Plant Phenolics and Human Health: Biochemistry, Nutrition, and Pharmacology; Fraga, C.G., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 185-196.
Poquet, L.; Clifford, M.N.; Williamson, G. Bioavailability of flavanols and phenolic acids. In: Plant Phenolics and Human Health: Biochemistry, Nutrition, and Pharmacology; Fraga, C.G., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 51-89.
Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr., 2000, 130(8S)(Suppl.), 2073S-2085S.
[] [PMID: 10917926]
Zhang, X.; Dong, D.; Wang, H.; Ma, Z.; Wang, Y.; Wu, B. Stable knock-down of efflux transporters leads to reduced glucuronidation in UGT1A1-overexpressing HeLa cells: the evidence for glucuronidation-transport interplay. Mol. Pharm., 2015, 12(4), 1268-1278.
[] [PMID: 25741749]
Dueñas, M.; Surco-Laos, F.; González-Manzano, S.; González-Paramás, A.M.; Santos-Buelga, C. Antioxidant properties of major metabolites of quercetin. Eur. Food Res. Technol., 2011, 232, 103-111.
O’Leary, K.A.; Day, A.J.; Needs, P.W.; Sly, W.S.; O’Brien, N.M.; Williamson, G. Flavonoid glucuronides are substrates for human liver β-glucuronidase. FEBS Lett., 2001, 503(1), 103-106.
[] [PMID: 11513863]
Shimoi, K.; Saka, N.; Nozawa, R.; Sato, M.; Amano, I.; Nakayama, T.; Kinae, N. Deglucuronidation of a flavonoid, luteolin monoglucuronide, during inflammation. Drug Metab. Dispos., 2001, 29(12), 1521-1524.
[PMID: 11717168]
Lee-Hilz, Y.Y.; Stolaki, M.; van Berkel, W.J.; Aarts, J.M.; Rietjens, I.M. Activation of EpRE-mediated gene transcription by quercetin glucuronides depends on their deconjugation. Food Chem. Toxicol., 2008, 46(6), 2128-2134.
[] [PMID: 18375031]
Terao, J.; Murota, K.; Kawai, Y. Conjugated quercetin glucuronides as bioactive metabolites and precursors of aglycone in vivo. Food Funct., 2011, 2(1), 11-17.
[] [PMID: 21773581]
Menendez, C.; Dueñas, M.; Galindo, P.; González-Manzano, S.; Jimenez, R.; Moreno, L.; Zarzuelo, M.J.; Rodríguez-Gómez, I.; Duarte, J.; Santos-Buelga, C.; Perez-Vizcaino, F. Vascular deconjugation of quercetin glucuronide: the flavonoid paradox revealed? Mol. Nutr. Food Res., 2011, 55(12), 1780-1790.
[] [PMID: 22144045]
Stevens, J.F.; Maier, C.S. The chemistry of gut microbial metabolism of polyphenols. Phytochem. Rev., 2016, 15(3), 425-444.
[] [PMID: 27274718]
Serra, A.; Macià, A.; Romero, M.P.; Reguant, J.; Ortega, N.; Motilva, M.J. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chem., 2012, 130, 383-393.
Braune, A.; Engst, W.; Elsinghorst, P.W.; Furtmann, N.; Bajorath, J.; Gütschow, M.; Blaut, M. Chalcone isomerase from Eubacterium ramulus catalyzes the ring contraction of flavanonols. J. Bacteriol., 2016, 198(21), 2965-2974.
[] [PMID: 27551015]
Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Interaction between phenolics and gut microbiota: role in human health. J. Agric. Food Chem., 2009, 57(15), 6485-6501.
[] [PMID: 19580283]
Aura, A.M.; O’Leary, K.A.; Williamson, G.; Ojala, M.; Bailey, M.; Puupponen-Pimiä, R.; Nuutila, A.M.; Oksman-Caldentey, K.M.; Poutanen, K. Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. J. Agric. Food Chem., 2002, 50(6), 1725-1730.
[] [PMID: 11879065]
Aura, A.M. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem. Rev., 2008, 7, 407-429.
Aura, A.M.; Martin-Lopez, P.; O’Leary, K.A.; Williamson, G.; Oksman-Caldentey, K.M.; Poutanen, K.; Santos-Buelga, C. In vitro metabolism of anthocyanins by human gut microflora. Eur. J. Nutr., 2005, 44(3), 133-142.
[] [PMID: 15309431]
Fleschhut, J.; Kratzer, F.; Rechkemmer, G.; Kulling, S.E. Stability and biotransformation of various dietary anthocyanins in vitro. Eur. J. Nutr., 2006, 45(1), 7-18.
[] [PMID: 15834757]
Czank, C.; Cassidy, A.; Zhang, Q.; Morrison, D.J.; Preston, T.; Kroon, P.A.; Botting, N.P.; Kay, C.D. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a (13)C-tracer study. Am. J. Clin. Nutr., 2013, 97(5), 995-1003.
[] [PMID: 23604435]
Moco, S.; Martin, F.P.; Rezzi, S. Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J. Proteome Res., 2012, 11(10), 4781-4790.
[] [PMID: 22905879]
Williamson, G.; Clifford, M.N. Colonic metabolites of berry polyphenols: the missing link to biological activity? Br. J. Nutr., 2010, 104(Suppl. 3), S48-S66.
[] [PMID: 20955650]
Rechner, A.R.; Smith, M.A.; Kuhnle, G.; Gibson, G.R.; Debnam, E.S.; Srai, S.K.; Moore, K.P.; Rice-Evans, C.A. Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic. Biol. Med., 2004, 36(2), 212-225.
[] [PMID: 14744633]
Feliciano, R.P.; Istas, G.; Heiss, C.; Rodriguez-Mateos, A. Plasma and urinary phenolic profiles after acute and repetitive intake of wild blueberry. Molecules, 2016, 21(9), 1120.
[] [PMID: 27571052]
Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; Bertalan, M.; Borruel, N.; Casellas, F.; Fernandez, L.; Gautier, L.; Hansen, T.; Hattori, M.; Hayashi, T.; Kleerebezem, M.; Kurokawa, K.; Leclerc, M.; Levenez, F.; Manichanh, C.; Nielsen, H.B.; Nielsen, T.; Pons, N.; Poulain, J.; Qin, J.; Sicheritz-Ponten, T.; Tims, S.; Torrents, D.; Ugarte, E.; Zoetendal, E.G.; Wang, J.; Guarner, F.; Pedersen, O.; de Vos, W.M.; Brunak, S.; Doré, J.; Antolín, M.; Artiguenave, F.; Blottiere, H.M.; Almeida, M.; Brechot, C.; Cara, C.; Chervaux, C.; Cultrone, A.; Delorme, C.; Denariaz, G.; Dervyn, R.; Foerstner, K.U.; Friss, C.; van de Guchte, M.; Guedon, E.; Haimet, F.; Huber, W.; van Hylckama-Vlieg, J.; Jamet, A.; Juste, C.; Kaci, G.; Knol, J.; Lakhdari, O.; Layec, S.; Le Roux, K.; Maguin, E.; Mérieux, A.; Melo Minardi, R.; M’rini, C.; Muller, J.; Oozeer, R.; Parkhill, J.; Renault, P.; Rescigno, M.; Sanchez, N.; Sunagawa, S.; Torrejon, A.; Turner, K.; Vandemeulebrouck, G.; Varela, E.; Winogradsky, Y.; Zeller, G.; Weissenbach, J.; Ehrlich, S.D.; Bork, P. MetaHIT consortium. Enterotypes of the human gut microbiome. Nature, 2011, 473(7346), 174-180.
[] [PMID: 21508958]
Espín, J.C.; González-Sarrías, A.; Tomás-Barberán, F.A. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem. Pharmacol., 2017, 139, 82-93.
[] [PMID: 28483461]
Cueva, C.; Gil-Sánchez, I.; Ayuda-Durán, B.; González-Manzano, S.; González-Paramás, A.M.; Santos-Buelga, C.; Bartolomé, B.; Moreno-Arribas, M.V. An integrated view of the effects of wine polyphenols and their relevant metabolites on gut and host health. Molecules, 2017, 22(1), 99.
[] [PMID: 28067835]
Lee, H.C.; Jenner, A.M.; Low, C.S.; Lee, Y.K. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol., 2006, 157(9), 876-884.
[] [PMID: 16962743]
Okubo, T.; Ishihara, N.; Oura, A.; Serit, M.; Kim, M.; Yamamoto, T.; Mitsuoka, T. In vivo effect of tea polyphenol intake on human intestinal microflora and metabolism. Biosci. Biotechnol. Biochem., 1992, 56(4), 588-591.
[] [PMID: 27280652]
Mansuri, M.L.; Parihar, P.; Solanki, I.; Parihar, M.S. Flavonoids in modulation of cell survival signalling pathways. Genes Nutr., 2014, 9(3), 400.
[] [PMID: 24682883]
C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science, 1998, 282(5396), 2012-2018.
[] [PMID: 9851916]
Tissenbaum, H.A. Genetics, life span, health span, and the aging process in Caenorhabditis elegans. J. Gerontol. A Biol. Sci. Med. Sci., 2012, 67(5), 503-510.
[] [PMID: 22499764]
Wormbook: the online review of C. elegans biology. Available at. (Accessed January 20, 2018)
Saul, N.; Pietsch, K.; Menzel, R.; Stürzenbaum, S.R.; Steinberg, C.E.W. Catechin induced longevity in C. elegans: from key regulator genes to disposable soma. Mech. Ageing Dev., 2009, 130(8), 477-486.
[] [PMID: 19501612]
Saul, N.; Pietsch, K.; Stürzenbaum, S.R.; Menzel, R.; Steinberg, C.E. Diversity of polyphenol action in Caenorhabditis elegans: between toxicity and longevity. J. Nat. Prod., 2011, 74(8), 1713-1720.
[] [PMID: 21805983]
Bartholome, A.; Kampkötter, A.; Tanner, S.; Sies, H.; Klotz, L.O. Epigallocatechin gallate-induced modulation of FoxO signaling in mammalian cells and C. elegans: FoxO stimulation is masked via PI3K/Akt activation by hydrogen peroxide formed in cell culture. Arch. Biochem. Biophys., 2010, 501(1), 58-64.
[] [PMID: 20513639]
Surco-Laos, F.; Duenas, M.; Gonzalez-Manzano, S.; Cabello, J.; Santos-Buelga, C.; González-Paramás, A.M. Influence of catechins and their methylated metabolites on lifespan and resistance to oxidative and thermal stress of Caenorhabditis elegans and epicatechin uptake. Food Res. Int., 2012, 46, 514-521.
Sunagawa, T.; Shimizu, T.; Kanda, T.; Tagashira, M.; Sami, M.; Shirasawa, T. Procyanidins from apples (Malus pumila Mill.) extend the lifespan of Caenorhabditis elegans. Planta Med., 2011, 77(2), 122-127.
[] [PMID: 20717869]
Surco-Laos, F.; Cabello, J.; Gómez-Orte, E.; González-Manzano, S.; González-Paramás, A.M.; Santos-Buelga, C.; Dueñas, M. Effects of O-methylated metabolites of quercetin on oxidative stress, thermotolerance, lifespan and bioavailability on Caenorhabditis elegans. Food Funct., 2011, 2(8), 445-456.
[] [PMID: 21776484]
Koch, K.; Havermann, S.; Büchter, C.; Wätjen, W. Caenorhabditis elegans as model system in pharmacology and toxicology: effects of flavonoids on redox-sensitive signalling pathways and ageing. ScientificWorldJournal, 2014, 2014920398
[] [PMID: 24895670]
Dueñas, M.; Surco-Laos, F.; González-Manzano, S.; González-Paramás, A.M.; Gómez-Orte, E.; Cabello, J.; Santos-Buelga, C. Deglycosylation is a key step in biotransformation and lifespan effects of quercetin-3-O-glucoside in Caenorhabditis elegans. Pharmacol. Res., 2013, 76, 41-48.
[] [PMID: 23856528]
Ahn, D.; Lee, E.B.; Kim, B.J. -; Lee, S.Y.; Lee, T.G.; Ahn, M-S; Lim, H.W.; Cha, D.S.; Jeon, H.; Kim, D.K. Antioxidant and lifespan extending property of quercetin-3-O-dirhamnoside from Curcuma longa L. in Caenorhabditis elegans. J. Korean Soc. Appl. Biol. Chem., 2014, 57(6), 709-714.
Perez-Vizcaino, F.; Duarte, J.; Santos-Buelga, C. The flavonoid paradox: conjugation and deconjugation as key steps for the biological activity of flavonoids. J. Sci. Food Agric., 2012, 92(9), 1822-1825.
[] [PMID: 22555950]
Grünz, G.; Haas, K.; Soukup, S.; Klingenspor, M.; Kulling, S.E.; Daniel, H.; Spanier, B. Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech. Ageing Dev., 2012, 133(1), 1-10.
[] [PMID: 22155175]
Kampkötter, A.; Timpel, C.; Zurawski, R.F.; Ruhl, S.; Chovolou, Y.; Proksch, P.; Wätjen, W. Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2008, 149(2), 314-323.
[] [PMID: 18024103]
Ayuda-Durán, B.; González-Manzano, S.; Miranda-Vizuete, A.; Dueñas, M.; Santos-Buelga, C.; González-Paramás, A.M. Epicatechin modulates stress-resistance in C. elegans via insulin/IGF-1 signaling pathway. PLoS One, 2019, 14(1) e0199483
[] [PMID: 30689636]
Abbas, S.; Wink, M. Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans. Planta Med., 2009, 75(3), 216-221.
[] [PMID: 19085685]
Pallauf, K.; Duckstein, N.; Rimbach, G. A literature review of flavonoids and lifespan in model organisms. Proc. Nutr. Soc., 2017, 76(2), 145-162.
[] [PMID: 27609098]
Pietsch, K.; Saul, N.; Chakrabarti, S.; Stürzenbaum, S.R.; Menzel, R.; Steinberg, C.E. Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans. Biogerontology, 2011, 12(4), 329-347.
[] [PMID: 21503726]
Büchter, C.; Ackermann, D.; Havermann, S.; Honnen, S.; Chovolou, Y.; Fritz, G.; Kampkötter, A.; Wätjen, W. Myricetin-mediated lifespan extension in Caenorhabditis elegans is modulated by DAF-16. Int. J. Mol. Sci., 2013, 14(6), 11895-11914.
[] [PMID: 23736695]
Martorell, P.; Forment, J.V.; de Llanos, R.; Montón, F.; Llopis, S.; González, N.; Genovés, S.; Cienfuegos, E.; Monzó, H.; Ramón, D. Use of Saccharomyces cerevisiae and Caenorhabditis elegans as model organisms to study the effect of cocoa polyphenols in the resistance to oxidative stress. J. Agric. Food Chem., 2011, 59(5), 2077-2085.
[] [PMID: 21288028]
Pietsch, K.; Saul, N.; Menzel, R.; Stürzenbaum, S.R.; Steinberg, C.E. Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology, 2009, 10(5), 565-578.
[] [PMID: 19043800]
Mendenhall, A.R.; Tedesco, P.M.; Taylor, L.D.; Lowe, A.; Cypser, J.R.; Johnson, T.E. Expression of a single-copy hsp-16.2 reporter predicts life span. J. Gerontol. A Biol. Sci. Med. Sci., 2012, 67(7), 726-733.
[] [PMID: 22227523]
Strayer, A.; Wu, Z.; Christen, Y.; Link, C.D.; Luo, Y. Expression of the small heat-shock protein Hsp16-2 in Caenorhabditis elegans is suppressed by Ginkgo biloba extract EGb 761. FASEB J., 2003, 17(15), 2305-2307.
[] [PMID: 14525938]
Zhang, L.; Jie, G.; Zhang, J.; Zhao, B. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radic. Biol. Med., 2009, 46(3), 414-421.
[] [PMID: 19061950]
Surh, Y.J.; Kundu, J.K.; Na, H.K. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med., 2008, 74(13), 1526-1539.
[] [PMID: 18937164]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy