Generic placeholder image

Mini-Reviews in Organic Chemistry


ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Nano Alumina Catalytic Applications in Organic Transformations

Author(s): Kobra Nikoofar*, Yeganeh Shahedi and Faezeh Jame Chenarboo

Volume 16, Issue 2, 2019

Page: [102 - 110] Pages: 9

DOI: 10.2174/1570193X15666180529122805

Price: $65


Alumina (Aluminium Oxide, Al2O3), a white odorless solid powder is an inexpensive and widely used inorganic material which is insoluble in water and organic solvents. It may also be called aloxide, aloxite, or alundum. Nano forms of this inorganic metal oxide could be seen in different crystalline polymorphic phases for alumina, such as α-Al2O3, β-Al2O3, γ-Al2O3, δ-Al2O3, θ-Al2O3, η-Al2O3, κ-Al2O3, χ-Al2O3, and ρ-Al2O3. Generally, the nano size of alumina showed better activity due to its common form because of the vast surface area which led to larger surface-to-volume ratio. Alumina is a versatile substance in many compounds which possess interesting utility in biology, industry, and drugs. Nano alumina have been utilized in different branches of industry, medicine, and biology. It could play key role in abrasives, ceramics, and dental composites, electronic, absorbent, nano-carriers for delivery of anticancer, and surgical implants. Besides, it possesses particular position, as a heterogeneous Lewis acid catalyst or catalyst support in chemistry. Due to interesting properties of nano alumina in this report we focused on its catalytic activity in organic transformations. The review subdivided with centralization on reactions that progressed with sole nano alumina and the reactions which improved by nano alumina support catalysts. In is noteworthy that although many reactions have been reported by alumina catalytic role, the ones which underwent by nano-size aluminum oxides are few. This fact denote that this substance is a potent-catalyst system in future organic chemistry domain. The review describes the various organic reactions promoted by nano alumina catalysts relevant up to 2017.

Keywords: Corundum, nano alumina, heterogeneous catalyst, multi-component reaction, alumina, organic synthesis.

Graphical Abstract
Stankic, S.; Suman, S.; Haque, F.; Vidic, J. Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnology, 2016, 14, 73-93.
Trueba, M.; Trasatti, S.P. γ-Alumina as a support for catalysts: A review of fundamental aspects. Eur. J. Inorg. Chem., 2005, 2005(17), 3393-3403.
Palkar, V. Sol-gel derived nanostructured γ -alumina porous spheres as an adsorbent in liquid chromatography. Nanostruct. Mater., 1999, 11(3), 369-374.
Amini, G.; Najafpour, G.D.; Rabiee, S.M.; Ghoreyshi, A.A. Synthesis and characterization of amorphous nano‐alumina powders with high surface area for biodiesel production. Chem. Eng. Technol., 2013, 36(10), 1708-1712.
Mimani, T. Fire synthesis. Resonance, 2000, 5, 50-57.
De Aza, A.H.; Chevalier, J.; Fantozzi, G.; Schehl, M.; Torrecillas, R. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomater, 2002, 23(3), 937-945.
Thorat, S.B.; Diaspro, A.; Salerno, M. In vitro investigation of coupling-agent-free dental restorative composite based on nano-porous alumina fillers. J. Dent., 2014, 42(3), 279-286.
Qi, W.; Zhe, L.; Yi, Y.; Jiandong, W. The effect of micro and nano alumina on the ability of impedance on the electrical tree of epoxy resin; Transact. China Electrotech. Soc, 2015, p. 6.
Wang, Y.; Santos, A.; Kaur, G.; Evdokiou, A.; Losic, D. Structurally engineered anodic alumina nanotubes as nano-carriers for delivery of anticancer therapeutics. Biomater, 2014, 35(21), 5517-5526.
Rozita, Y.; Brydson, R.; Comyn, T.P.; Scott, A.J.; Hammond, C.; Brown, A.; Chauruka, S.; Hassanpour, A.; Young, N.P.; Kirkland, A.I.; Sawada, H.; Smith, R.I. A study of commercial nanoparticulate γ-Al2O3 catalyst supports. ChemCatChem, 2013, 5, 1-13.
Bodaghi, M.; Mirhabibi, A.R.; Zolfonun, H.; Tahriri, M.; Karimi, M. Investigation of phase transition of γ-alumina to α-alumina via mechanical milling method. Phase Transit., 2008, 81, 571-580.
Parida, K.M.; Pradhan, A.C.; Das, J.; Sahu, N. Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method. Mater. Chem. Phys., 2009, 113(1), 244-248.
Razavi Hesabi, Z.; Hafizpour, H.R.; Simchi, A. An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling. Mater. Sci. Eng. A, 2007, 454-455, 89-98.
Tok, A.I.Y.; Boey, F.Y.C.; Zhao, X.L. Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis. J. Mater. Process. Technol., 2006, 178(1-3), 270-273.
Natali, M.; Carta, G.; Rigato, V.; Rossetto, G.; Salmaso, G.; Zanella, P. Chemical, morphological and nano-mechanical characterizations of Al2O3 thin films deposited by metal organic chemical vapour deposition on AISI 304 stainless steel. Electrochim. Acta, 2005, 50(23), 4615-4620.
Tiwari, S.; Sahu, R.K.; Pramanick, A.; Singh, R. Development of conversion coating on mild steel prior to sol gel nanostructured Al2O3 coating for enhancement of corrosion resistance. Surf. Coat. Tech., 2011, 205(21), 4960-4967.
Fu, Q.; Cao, C.B.; Zhu, H.S. Preparation of alumina films from a new sol-gel route. Thin Solid Films, 1999, 348(1), 99-102.
Rivera, T.; Sosa, R.; Azorin, J.; Zarate, J.; Ceja, A. Synthesis and luminescent characterization of sol-gel derived zirconia-alumina. Radiat. Meas., 2010, 45(3), 465-467.
Toniolo, G.C.; Lima, M.D.; Takimi, A.C.; Bergmann, C.P. Synthesis of alumina powders by the glycine-nitrate combustion process. Mater. Res. Bull., 2005, 40, 561-571.
Rajaeiyan, A.; Bagheri-Mohagheghi, M. Comparison of sol-gel and co-precipitation methods on the structural properties and phase transformation of γ and α-Al2O3 nanoparticles. Adv. Manuf., 2013, 1, 176-182.
Patnaik, P. Handbook of Inorganic Chemicals; McGraw-Hill: New York, 2002.
Aluminium oxide. Available at: Aluminium_oxide. (Accessed on: February 19, 2018)
Elam, J.W. Atomic layer deposition applications 6. The electrochemical Society: New Jersey , 2010.
Levin, I.; Brandon, D. Metastable alumina polymorphs: Crystal structures and transition sequences. J. Am. Ceram. Soc., 1998, 81(8), 1995-2012.
Xie, Y.; Kocaefe, D.; Kocaefe, Y.; Cheng, J.; Liu, W. The effect of novel synthetic methods and parameters control on morphology of nano-alumina particles. Nanoscale Res. Lett., 2016, 259, 1-11.
Greenwood, N.N.; Earnshaw, A. Chemistry of elements, 2nd ed; Butterworth and Heinemann: Oxford, 1997.
Aluminium Hydroxide Oxide. Available form, https://en.wikipedia. org/wiki/Aluminium_hydroxide_oxide (Accessed on: February 19, 2018)
Digne, M.; Sautet, P.; Raybaud, P.; Toulhoat, H.; Artacho, E. Structure and stability of aluminum hydroxides: A theoretical study. J. Phys. Chem., 2002, 106(20), 5155-5162.
Hammond, C. The basics of crystallography and diffraction; Oxford Science Publications: Oxford, 2009.
Tanna, J.A.; Chaudhary, R.G.; Gandhare, N.V.; Juneja, H.D. Alumina nanoparticles: A new and reusable catalyst for synthesis of dihydropyrimidinones derivatives. Adv. Mater. Lett, 2016, 7(8), 100-150.
Kiasat, A.R.; Hemat-Alian, L.; Saghanezhad, S.J. Nano Al2O3: An efficient and recyclable nanocatalyst for the one-pot preparation of 1-amidoalkyl-2-naphthols under solvent-free conditions. Res. Chem. Intermed., 2016, 42(2), 915-922.
Akselsen, Ø.W.; Skattebøl, L.; Hansen, T.V. Ortho-formylation of oxygenated phenols. Tetrahedron Lett., 2009, 50, 6339-6341.
Kiasat, A.R.; Almasi, H.; Saghanezhad, S.J. One-pot synthesis of hantzsch esters and polyhydroquinoline derivatives catalyzed by γ-Al2O3-nanoparticles under solvent-free thermal conditions. Rev. Roum. Chim., 2014, 50(1), 61-66.
Nasr-Esfahani, M.; Abdizadeh, T. Preparation, characterization and use of vanadatesulfuric acid as a new and eco-benign nanocatalyst for the synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes under solvent-free conditions. Rev. Roum. Chim., 2013, 58, 27-35.
Sadiadi, S.; Shiri, S.; Hekmatshoar, R.; Beheshtiha, Y.S. Nanocrystalline aluminium oxide: A mild and efficient reusable catalyst for the one-pot synthesis of poly-substituted quinolones via Friedlander hetero-annulation. Monatsh. Chem., 2009, 140, 1343-1347.
Teimouri, A.; Salavati, H.; Chermahini, A.N. Synthesis, characterization and application of various types of alumina and nano-γ-alumina sulfuric acid for the synthesis of 2,5-isubstituted 1,3,4-oxadiazoles. Acta Chim. Slov., 2014, 61, 51-58.
Das, V.K.; Devi, R.R.; Raul, P.K.; Thakor, A.J. Nano rod-shaped and reusable basic Al2O3 catalyst for N-formylation of amines under solvent-free conditions: A novel, practical and convenient ‘NOSE’ approach. Green Chem., 2012, 14, 847-854.
Sadjad, S.; Rasouli, S. An efficient synthesis of imidazo[1,2-a]azine using nanocrystalline alumina powder. Int. J. Nano. Dim, 2011, 1(3), 177-186.
Shelke, P.D.; Rajbhoj, A.S.; Nimase, M.S.; Tikone, G.A.; Zaware, B.H.; Jadhav, S.S. An efficient, solvent free one pot synthesis of tetrasubstitued imidazoles catalyzed by nanocrystalline γ-alumina. Orient. J. Chem., 2016, 32(4), 2007-2014.
Reddy, B.P.; Vijayakumar, V.; Arasu, M.V.; Al-Dhabi, N.A. γ-Alumina nanoparticle catalyzed efficient synthesis of highly substituted imidazoles. Molecules, 2015, 20, 19221-19235.
Gharib, A.; Vojdani Fard, L.; Noroozi Pesyan, N.; Jahangir, M.; Roshani, M. A convenient method for one-pot synthesis of β-acetamido ketones using nano-alumina sulfuric acid (nano-ASA) reusable catalyst. Know Res., 2015, A2
Teimouri, A.; Ghorbanian, L.; Moatari, A. Application of various types of alumina and nano-γ-alumina sulfuric acid in the synthesis of α-aminonitriles derivatives: Comparative study. Bull. Chem. Soc. Ethiop., 2014, 28(3), 441-450.
Kiasat, A.R.; Nroozizadeh, S.; Saghanezhad, S.; Ghahremani, M. Experimental and theoretical study on one-pot, three-component route to 2H-indazolo[2,1-b]phthalazine-triones catalyzed by nano-alumina sulforic acid. J. Mol. Struct., 2013, 1036, 216-225.
Maleki, B.; Sedigh Ashrafi, S. Nano α-Al2O3 supported ammonium dihydrogen phosphate (NH4H2PO4/Al2O3): Preparation, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-c]pyrazole derivatives. RSC Advances, 2014, 4, 42873-42891.
Wu, L.; Yin, Z. Sulfonic acid functionalized nano γ-Al2O3 catalyzed per-O-acetylated of carbohydrates. Carbohydr. Res., 2013, 365, 14-19.
Davis, B.G. Synthesis of glycoproteins. Chem. Rev., 2002, 102, 579-601.
Dwek, R.A. Glycobiology: Toward understanding the function of sugars. Chem. Rev., 1996, 96, 683-720.
Yin, Z.; Zheng, B.; Ai, F. Sulfonic acid functionalized nano γ-Al2O3: A new, efficient, and reusable catalyst for synthesis of thioamides. Phosphorus Sulfur Silicon, 2013, 188, 1412-1420.
Sharghi, H.; Aberi, M.; Aboonajmi, J. One-pot synthesis of 2,4-disubstituted quinolines via three-component reaction of amines, aldehydes and alkynes using Al2O3 nanoparticles/methanesulfonic acid (nano-AMA) as a new catalyst. J. Chem. Iran. Soc, 2016, 13(12), 2229-2237.
Wu, L.Q. Nano N -propylsulfonated γ-Al2O3: A new, efficient and reusable catalyst for synthesis of spiro[indoline-3,4-pyrazolo[3,4-e][1,4]thiazepine]diones in aqueous media. Appl. Organomet. Chem., 2013, 27, 148-154.
Davod, F.; Kiasat, A.R.; Enjilzadeh, M. cheraghchi, M. One-pot synthesis of 14-aryl-14 H-dibenzo[a,j]xanthene derivatives catalyzed by nano-alumina sulfuric acid through solvent-free conditions. Lett. Org. Chem., 2013, 13, 58-66.
Neal, L.M.; Hagelin-Weaver, H.E. C–H activation and C–C coupling of 4-methylpyridine using palladium supported on nanoparticle alumina. J. Mol. Catal. A., 2008, 284, 144-148.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy