Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Application of Traditional Chinese Herbal Medicine By-products as Dietary Feed Supplements and Antibiotic Replacements in Animal Production

Author(s): Abedin Abdallah, Pei Zhang, Qingzhen Zhong* and Zewei Sun*

Volume 20, Issue 1, 2019

Page: [54 - 64] Pages: 11

DOI: 10.2174/1389200219666180523102920

Price: $65

Abstract

Background: Misuse of synthetic antibiotics in livestock leads to the transfer of antibiotic resistant pathogens into humans and deposits toxic residues in meat and milk. There is therefore an urgent need for safe and viable alternative approaches to improve the nutrition and wellbeing of farm animals. An alternative source that has been widely exploited is Traditional Chinese Herbal Medicine (TCHM). These herbs contain several but less toxic bioactive compounds which are generally regarded as biodegradable. Recently, advances in the knowledge of the importance of TCHM have led to a rapid increase in its production and hence, increasing the amount of by-products generated. Such by-products have become a serious environmental challenge because producers regard them as industrial waste and discard them directly. This review summarizes scientific findings on the bioactive compounds in TCHM and TCHM by-products, discusses functional dietary patterns and outlines challenges that may hinder full utilization of TCHM by-products in animal production.

Methods: Information for this review was obtained through scientific databases and websites such as Pubmed and Google scholar from 2004 to 2017 using experimental studies on bioactive compounds in TCHM and their effects in animal production.

Results: Studies have shown that TCHM by-products contain high amounts of bioactive compounds which confer several nutritional and health benefits to animals and thus could be incorporated as feed additives.

Conclusion: The findings for this review indicate that TCHM by-products apart from being a good alternative for synthetic antibiotics could also minimize the current environmental challenges associated with its disposal.

Keywords: Animal production, antibiotics, antioxidants, bioactive compounds, environmental pollution, traditional Chinese herbal medicine.

Graphical Abstract
[1]
Guil-Guerrero, J.L.; Ramos, L.; Moreno, C.; Zúñiga-Paredes, J.C.; Carlosama-Yépez, M.; Ruales, P. Plant-food by-products to improve farm-animal health. Anim. Feed Sci. Technol., 2016, 220, 121-135.
[2]
Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA, 2015, 112(18), 5649-5654.
[3]
Guil-Guerrero, J.L.; Ramos, L.; Moreno, C.; Zúñiga-Paredes, J.C.; Carlosama-Yepez, M.; Ruales, P. Plant foods by-products as sources of health-promoting agents for animal production: A review focusing on the tropics. Agron. J., 2016, 108(5), 1759-1774.
[4]
Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of Veterinary Antibiotics (VAs) in the environment. Chemosphere, 2006, 65(5), 725-759.
[5]
Adham, A.A.; Sabry, M.B.; Gamal, A.A.R.; Sabry, A.S. Effect of cinnamaldehyde thymol mixture on growth performance and some ruminal and blood constituents in growing lambs fed high concentrate diet. Life Sci. J., 2014, 11(3), 240-248.
[6]
Wang, X.; Xie, H.; Liu, F.; Wang, Y. Production performance, immunity, and heat stress resistance in Jersey cattle fed a concentrate fermented with probiotics in the presence of a Chinese herbal combination. Anim. Feed Sci. Technol., 2017, 228, 59-65.
[7]
Qiao, G.H.; Zhou, X.H.; Li, Y.; Zhang, H.S.; Li, J.H.; Wang, C.M.; Lu, Y. Effect of several supplemental Chinese herbs additives on rumen fermentation, antioxidant function and nutrient digestibility in sheep. J. Anim. Physiol. Anim. Nutr. (Berl.), 2012, 96(5), 930-938.
[8]
Zhou, H.; Wang, C.; Ye, J.; Chen, H.; Tao, R. Effects of dietary supplementation of fermented Ginkgo biloba L. residues on growth performance, nutrient digestibility, serum biochemical parameters and immune function in weaned piglets. Anim. Sci. J., 2015, 86(8), 790-799.
[9]
Huang, Y.; Yoo, J.S.; Kim, H.J.; Wang, Y.; Chen, Y.J.; Cho, J.H.; Kim, I.H. Effects of dietary supplementation with blended essential oils on growth performance, nutrient digestibility, blood profiles and fecal characteristics in weanling pigs. Asian-Australas. J. Anim. Sci., 2010, 23(5), 607-613.
[10]
Zhou, Y.; Selvam, A.; Wong, J.W. Effect of Chinese medicinal herbal residues on microbial community succession and anti-pathogenic properties during co-composting with food waste. Bioresour. Technol., 2016, 217, 190-199.
[11]
Jiang, Y.; Wang, L.; Zhang, L.; Wang, T.; Zhou, Y.; Ding, C.; Yang, R.; Wang, X.; Yu, L. Optimization of extraction and antioxidant activity of polysaccharides from Salvia miltiorrhiza Bunge residue. Int. J. Biol. Macromol., 2015, 79, 533-541.
[12]
Meng, F.; Yang, S.; Wang, X.; Chen, T.; Wang, X.; Tang, X.; Zhang, R.; Shen, L. Reclamation of Chinese herb residues using probiotics and evaluation of their beneficial effect on pathogen infection. J. Infect. Public Health, 2017, 10(6), 749-754.
[13]
He, A.; Yohannes, A.; Feng, X.T.; Yao, S. Processing of waste material of radix physochlainae for preparation of fine chemicals after extraction. IOP Conf. Series Mater. Sci. Eng., 2017, 170, 012034.
[14]
Meneses, M.; Megías, M.D.; Madrid, J.A. M.T.; Hernández, F.; Oliva, J., Evaluation of the phytosanitary, fermentative and nutritive characteristics of the silage made from crude artichoke (Cynara scolymus L.) by-product feeding for ruminants. Small Rumin. Res., 2007, 70(2), 292-296.
[15]
Sallam, S.M.A.; Bueno, I.C.S.; Godoy, P.B.; Nozella, E.F.; Vitti, D.M.S.; Abdalla, A.L. Nutritive value assessment of the artichoke (Cynara scolymus) by-product as an alternative feed resource for ruminants. Trop. Subtrop. Agroecosystems, 2008, 8(2), 181-189.
[16]
Jaramillo, D.P.; Buffa, M.N.; Rodríguez, M.; Pérez-Baena, I.; Guamis, B.; Trujillo, A.J. Effect of the inclusion of artichoke silage in the ration of lactating ewes on the properties of milk and cheese characteristics during ripening. J. Dairy Sci., 2010, 93(4), 1412-1419.
[17]
Gong, J.; Yin, F.; Hou, Y.; Yin, Y. Review: Chinese herbs as alternatives to antibiotics in feed for swine and poultry production: Potential and challenges in application. Can. J. Anim. Sci., 2014, 94(2), 223-241.
[18]
Manheimer, E.; Wieland, S.; Kimbrough, E.; Cheng, K.; Berman, B.M. Evidence from the Cochrane Collaboration for traditional Chinese medicine therapies. J. Altern. Complement. Med., 2009, 15(9), 1001-1014.
[19]
Kong, X.F.; Wu, G.Y.; Liao, Y.P.; Hou, Z.P.; Liu, H.J.; Yin, F.G.; Li, T.J.; Huang, R.L.; Zhang, Y.M.; Deng, D. Effects of Chinese herbal ultra-fine powder as a dietary additive on growth performance, serum metabolites and intestinal health in early-weaned piglets. Livest. Sci., 2007, 108(1), 272-275.
[20]
Yin, F.G.; Liu, Y.L.; Yin, Y.L.; Kong, X.F.; Huang, R.L.; Li, T.J.; Wu, G.Y.; Hou, Y. Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids, 2009, 37(2), 263-270.
[21]
Kong, X.F.; Wu, G.Y.; Liao, Y.P.; Hou, Z.P.; Liu, H.J.; Yin, F.G.; Li, T.J.; Huang, R.L.; Zhang, Y.M.; Deng, D. Dietary supplementation with Chinese herbal ultra‐fine powder enhances cellular and humoral immunity in early‐weaned piglets. Livest. Sci., 2007, 108(1), 94-98.
[22]
Kong, X.F.; Yin, Y.; Wu, G.; Liu, H.; Yin, F.; Li, T.; Huang, R.; Ruan, Z.; Xiong, H.; Deng, Z. Dietary supplementation with Acanthopanax senticosus extract modulates cellular and humoral immunity in weaned piglets. Asian-Australas. J. Anim. Sci., 2007, 20(9), 1453-1461.
[23]
Yin, F.G.; Yin, Y.L.; Kong, X.F.; Liu, Y.L.; He, Q.H.; Li, T.J.; Huang, R.; Hou, Y.; Shu, X.; Tan, L. Dietary supplementation with Acanthopanax senticosus extract modulates gut microflora in weaned piglets. Asian-Australas. J. Anim. Sci., 2008, 21(9), 1330-1338.
[24]
Guaadaoui, A.; Benaicha, S.a.; Elmajdoub, N.; Bellaoui, M.; Hamal, A. What is a bioactive compound? A combined definition for a preliminary consensus. Int. J. Nutr. Food Sci., 2014, 3(3), 174-179.
[25]
Aryee, A.N.A.; Boye, J.I. Current and emerging trends in the formulation and manufacture of nutraceuticals and functional food products. In: Nutraceutical and Functional Food Processing Technology; Joyce Irene Boye, Ed. John Wiley & Sons: New Jersey, 2015. Chap. 1, pp. 1-52.
[26]
Sadeghi, A.; Hakimzadeh, V.; Karimifar, B. Microwave Assisted Extraction of bioactive compounds from food: A review. Int. J. Food Sci. Nutr. Eng., 2017, 7(1), 19-27.
[27]
Hashemi, S.R.; Davoodi, H. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet. Res. Commun., 2011, 35(3), 169-180.
[28]
Dalle, Z.A.; Celia, C.; Szendrő, Z. Herbs and spices inclusion as feedstuff or additive in growing rabbit diets and as additive in rabbit meat: A review. Livest. Sci., 2016, 189, 82-90.
[29]
Kallel, F.; Driss, D.; Chaari, F.; Belghith, L.; Bouaziz, F.; Ghorbel, R.; Chaabouni, S.E. Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: influence of extracting solvents on its antimicrobial and antioxidant properties. Ind. Crops Prod., 2014, 62, 34-41.
[30]
Zhang, X.; Li, D.; Meng, Q.; He, C.; Ren, L. Effect of mulberry leaf extracts on color, lipid oxidation, antioxidant enzyme activities and oxidative breakdown products of raw ground beef during refrigerated storage. J. Food Qual., 2016, 39(3), 159-170.
[31]
Kılıç, B.; Simşek, A.; Claus, J.R.; Atılgan, E. Encapsulated phosphates reduce lipid oxidation in both ground chicken and ground beef during raw and cooked meat storage with some influence on color, pH, and cooking loss. Meat Sci., 2014, 97(1), 93-103.
[32]
Ahmed, S.T.; Islam, M.M.; Bostami, A.B.; Mun, H.S.; Kim, Y.J.; Yang, C.J. Meat composition, fatty acid profile and oxidative stability of meat from broilers supplemented with pomegranate (Punica granatum L.) by-products. Food Chem., 2015, 188, 481-488.
[33]
Zhao, P.; Li, H.; Lei, Y.; Li, T.; Kim, S.; Kim, I. Effect of fermented medicinal plants on growth performance, nutrient digestibility, fecal noxious gas emissions, and diarrhea score in weanling pigs. J. Sci. Food Agric., 2016, 96(4), 1269-1274.
[34]
Lee, S.J.; Kim, D.H.; Guan, L.; Ahn, S.K.; Cho, K.W.; Lee, S.S. Guan le, L.; Ahn, S.K.; Cho, K.W.; Lee, S.S., Effect of medicinal plant by-products supplementation to total mixed ration on growth performance, carcass characteristics and economic efficacy in the late fattening period of Hanwoo steers. Asian-Australas. J. Anim. Sci., 2015, 28(12), 1729-1735.
[35]
Kim, S.U.; Jung, J.Y.; Park, S.G.; Jo, S.S. Effects of feeding medicinal herbs on growth performance and carcass quality in finishing pigs. Korean J. Vet. Serv., 2008, 31(4), 555-566.
[36]
Ghasemi, S.; Naserian, A.A.; Valizadeh, R.; Tahmasebi, A.M.; Vakili, A.R.; Behgar, M. Effects of pistachio by-product in replacement of lucerne hay on microbial protein synthesis and fermentative parameters in the rumen of sheep. Anim. Prod. Sci., 2012, 52(11), 1052-1057.
[37]
Kim, Y.J.; Lee, G.D.; Choi, I.H. Effects of dietary supplementation of red ginseng marc and α-tocopherol on the growth performance and meat quality of broiler chicken. J. Sci. Food Agric., 2014, 94(9), 1816-1821.
[38]
Jami, E.; Shabtay, A.; Nikbachat, M.; Yosef, E.; Miron, J.; Mizrahi, I. Effects of adding a concentrated pomegranate-residue extract to the ration of lactating cows on in vivo digestibility and profile of rumen bacterial population. J. Dairy Sci., 2012, 95(10), 5996-6005.
[39]
Ao, X.; Yan, L.; Meng, Q.W.; Zhou, T.X.; Wang, J.P.; Kim, H.J.; Cho, J.H.; Kim, I.H. Effects of Saururus chinensis extract supplementation on growth performance, meat quality and slurry noxious gas emission in finishing pigs. Livest. Sci., 2011, 138(1-3), 187-192.
[40]
Yan, L.; Meng, Q.W.; Kim, I.H. Effect of an herb extract mixture on growth performance, nutrient digestibility, blood characteristics, and fecal microbial shedding in weanling pigs. Livest. Sci., 2012, 145(1-3), 189-195.
[41]
Yu, Q.P.; Feng, D.Y.; Xia, M.H.; He, X.J.; Liu, Y.H.; Tan, H.Z.; Zou, S.G.; Ou, X.H.; Zheng, T.; Cao, Y.; Wu, X.J.; Zheng, X.Q.; Wu, F.; Zuo, J.J. Effects of a traditional Chinese medicine formula supplementation on growth performance, carcass characteristics, meat quality and fatty acid profiles of finishing pigs. Livest. Sci., 2017, 202, 135-142.
[42]
Zhou, T.X.; Zhang, Z.F.; Kim, I.H. Effects of dietary coptis chinensis herb extract on growth performance, nutrient digestibility, blood characteristics and meat quality in growing-finishing pigs. Asian-Australas. J. Anim. Sci., 2013, 26(1), 108-115.
[43]
Hwang, J.W.; Cheong, S.H.; Kim, Y.S.; Lee, J.W.; You, B.I.; Moon, S.H.; Jeon, B.T.; Park, P.J. Effects of dietary supplementation of oriental herbal medicine residue and methylsulfonylmethane on the growth performance and meat quality of ducks. Anim. Prod. Sci., 2017, 57(5), 948-957.
[44]
Ko, S.Y.; Bae, I.H.; Yee, S.T.; Lee, S.S.; Uuganbayar, D.; Oh, J.I.; Yang, C.J. Comparison of the effect of green tea by-product and green tea probiotics on the growth performance, meat quality, and immune response of finishing pigs. Asian-Australas. J. Anim. Sci., 2008, 21(10), 1486-1494.
[45]
Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science, 2010, 327(5967), 812-818.
[46]
Lee, K.W.; Kim, J.S.; Oh, S.T.; Kang, C.W.; An, B.K. Effects of dietary sanguinarine on growth performance, relative organ weight, cecal microflora, serum cholesterol level and meat quality in broiler chickens. J. Poult. Sci., 2015, 52(1), 15-22.
[47]
Li, T.Y.; Yang, J.R.; Yeh, H.S.; Lien, T.F. Effects of supplemental various levels of Chinese traditional herbal medicine complex on the growth performance, immunity, serum traits and meat quality of simulated Taiwan country chickens. J. Anim. Sci. Adv., 2012, 2(1), 166-176.
[48]
Yan, L.; Meng, Q.W.; Lee, J.H.; Wang, J.P.; Kim, I.H. Effects of dietary wild-ginseng adventitious root meal on growth performance, blood profiles, relative organ weight and meat quality in broiler chickens. Asian-Australas. J. Anim. Sci., 2011, 24(2), 258-263.
[49]
Lien, T.F.; Lin, K.J.; Yang, L.L.; Chen, L.G. Effects of supplemental levels of bazhen on growth performances, serum traits, immunity, meat quality and antioxidant activity of taiwan country chickens. Asian-Australas. J. Anim. Sci., 2013, 26(5), 675-682.
[50]
Chen, D.; Zhao, S.S.; Leung, K.S. Improved quality assessment of proprietary Chinese medicines based on multi-chemical class fingerprinting. J. Sep. Sci., 2009, 32(17), 2892-2902.
[51]
He, L.; Guo-ying, Z.; Jian-ping, X.; Jun-ang, L.; Huai-yun, Z.; Yimin, T. Research progress on polysaccharides from Ginkgo biloba. J. Med. Plants Res., 2012, 6(2), 171-176.
[52]
Yıldırım, A.; Şekeroğlu, A.; Eleroğlu, H.; Şen, M.I.; Duman, M. Effects of Korean ginseng (Panax ginseng C.A. Meyer) root extract on egg production performance and egg quality of laying hens. S. Afr. J. Anim. Sci., 2013, 43(2), 194-207.
[53]
Jiang, X.R.; Zhang, H.J.; Wang, J.; Wu, S.G.; Yue, H.Y.; Lü, H.Y.; Cui, H.; Bontempo, V.; Qi, G.H. Effect of dried tangerine peel extract supplementation on the growth performance and antioxidant status of broiler chicks. Ital. J. Anim. Sci., 2016, 15(4), 642-648.
[54]
Ahmed, S.T.; Mun, H.S.; Islam, M.M.; Yang, C.J. Effects of fermented corni fructus and fermented kelp on growth performance, meat quality, and emission of ammonia and hydrogen sulphide from broiler chicken droppings. Br. Poult. Sci., 2014, 55(6), 745-751.
[55]
Park, J.H.; Kang, S.N.; Chu, G.M.; Jin, S.K. Growth performance, blood cell profiles, and meat quality properties of broilers fed with Saposhnikovia divaricata, Lonicera japonica, and Chelidonium majus extracts. Livest. Sci., 2014, 165, 87-94.
[56]
Cao, F.L.; Zhang, X.H.; Yu, W.W.; Zhao, L.G.; Wang, T. Effect of feeding fermented Ginkgo biloba leaves on growth performance, meat quality, and lipid metabolism in broilers. Poult. Sci., 2012, 91(5), 1210-1221.
[57]
Çam, M.; Hışıl, Y. Pressurised water extraction of polyphenols from pomegranate peels. Food Chem., 2010, 123(3), 878-885.
[58]
Kharchoufi, S.; Licciardello, F.; Siracusa, L.; Muratore, G.; Hamdi, M.; Restuccia, C. Antimicrobial and antioxidant features of ‘Gabsiʼ pomegranate peel extracts. Ind. Crops Prod., 2018, 111(Suppl. C), 345-352.
[59]
Liang, X.; Yamazaki, K.; Kamruzzaman, M.; Bi, X.; Panthee, A.; Sano, H. Effects of Chinese herbal medicine on plasma glucose, protein and energy metabolism in sheep. J. Anim. Sci. Biotechnol., 2013, 4(1), 51.
[60]
Lien, T.F.; Liao, C.M.; Lin, K.J. Effects of supplemental Chinese traditional herbal medicine complex on the growth performance, carcass characteristics, and meat quality of male Holstein calves. J. Appl. Anim. Res., 2014, 42(2), 222-227.
[61]
Zhang, J.; Xie, X.; Li, C.; Fu, P. Systematic review of the renal protective effect of Astragalus membranaceus (root) on diabetic nephropathy in animal models. J. Ethnopharmacol., 2009, 126(2), 189-196.
[62]
Liu, J.; Hu, X.; Yang, Q.; Yu, Z.; Zhao, Z.; Yi, T.; Chen, H. Comparison of the immunoregulatory function of different constituents in radix astragali and radix hedysari. J. Biomed. Biotechnol., 2010, 2010, 479426.
[63]
Zhong, R.Z.; Yu, M.; Liu, H.W.; Sun, H.X.; Cao, Y.; Zhou, D.W. Effects of dietary Astragalus polysaccharide and Astragalus membranaceus root supplementation on growth performance, rumen fermentation, immune responses, and antioxidant status of lambs. Anim. Feed Sci. Technol., 2012, 174(1-2), 60-67.
[64]
Mun, H.S.; Ahmed, S.T.; Hwang, J.A.; Kim, Y.J.; Yang, C.J. Evaluation of fermented Alisma canaliculatum with probiotics as potential feed additives for finishing Hanwoo (Bos taurus coreanae) steers. Anim. Prod. Sci., 2014, 54(8), 1064-1074.
[65]
Gholizadeh, H.; Naserian, A.A.; Valizadeh, R.; Tahmasbi, A.M. Effect of feeding pistachio byproduct on performance and blood metabolites in Holstein dairy cows. Int. J. Agric. Biol., 2010, 12(6), 867-870.
[66]
Gholizadehnivlouei, H.; Naserian, A.A.; Valizadeh, R.; Tahmasbi, A.M. Effects of feeding pistachio hull and interaruminal infusion of urea on feed intake, ruminal and abomasum N-NH3 and blood metabolites in Iranian Balochi sheep Br. Soc. Anim. Sci, 2009. 3-30
[67]
Mahdavi, A.; Zaghari, M.; Zahedifar, M.; Nikkhah, A.; Alemi, F.; Hosseini, A.; Mirabdolbaghi, Z.; Lotfolahiyan, H. The effects of dried pistachio epicarp on lambs’ performance. Adv. Anim. Biosci., 2010, 1(1), 236-236.
[68]
Zhao, L.; Nicholson, J.K.; Lu, A.; Wang, Z.; Tang, H.; Holmes, E.; Shen, J.; Zhang, X.; Li, J.V.; Lindon, J.C. Targeting the human genome-microbiome axis for drug discovery: inspirations from global systems biology and traditional Chinese medicine. J. Proteome Res., 2012, 11(7), 3509-3519.
[69]
Bandaranayake, W.M. Quality control, screening, toxicity, and regulation of herbal drugs Mod. phytomedicine, 2006. 25-57.
[70]
Folashade, O.; Omoregie, H.; Ochogu, P. Standardization of herbal medicines-A review. Int. J. Biodivers. Conserv., 2012, 4(3), 101-112.
[71]
Luo, W.; Zhao, M.; Yang, B.; Shen, G.; Rao, G. Identification of bioactive compounds in Phyllenthus emblica L. fruit and their free radical scavenging activities. Food Chem., 2009, 114(2), 499-504.
[72]
Ma, W.; Wang, K.J.; Cheng, C.S.; Yan, G.Q.; Lu, W.L.; Ge, J.F.; Cheng, Y.X.; Li, N. Bioactive compounds from Cornus officinalis fruits and their effects on diabetic nephropathy. J. Ethnopharmacol., 2014, 153(3), 840-845.
[73]
Li, Y.J.; Chen, J.; Li, Y.; Li, P. Identification and quantification of free radical scavengers in the flower buds of Lonicera species by online HPLC-DPPH assay coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Biomed. Chromatogr., 2012, 26(4), 449-457.
[74]
Teng, Y.; Sun, C.H.; Li, G.; Sun, G.; Nomachi, Y.; Yokota, J.; Yoshioka, S.; Gang, J.; Jiao, S.; Zhang, Y.; Miyamura, M. Protective effects of Flos lonicera extract on acute liver injury by dimethylnitrosamine-induced in rats. J. Nat. Med., 2010, 64(3), 288-294.
[75]
Ren, M.T.; Chen, J.; Song, Y.; Sheng, L.S.; Li, P.; Qi, L.W. Identification and quantification of 32 bioactive compounds in Lonicera species by high performance liquid chromatography coupled with time-of-flight mass spectrometry. J. Pharm. Biomed. Anal., 2008, 48(5), 1351-1360.
[76]
Bawa, A.S.; Khanum, F. Anti-inflammatory activity of Rhodiola rosea--“a second-generation adaptogen. Phytother. Res., 2009, 23(8), 1099-1102.
[77]
Ming, D.S.; Hillhouse, B.J.; Guns, E.S.; Eberding, A.; Xie, S.; Vimalanathan, S.; Towers, G.H. Bioactive compounds from Rhodiola rosea (Crassulaceae). Phytother. Res., 2005, 19(9), 740-743.
[78]
Yang, X.; Xiong, X.; Wang, H.; Wang, J. Protective effects of panax notoginseng saponins on cardiovascular diseases: a comprehensive overview of experimental studies. Evid. Based Complement. Alternat. Med., 2014, 2014, 204840.
[79]
Tung, B.; Hai, N. Phytochemical and pharmacology effect of Panax notoginseng. J. Appl. Pharm. Sci., 2016, 6(8), 174-178.
[80]
Lahmass, L.; Ouahhoud, S.; Elmansuri, M.; Sabouni, A.; Elyoubi, M.; Benabbas, R.; Choukri, M.; Saalaoui, E. Determination of antioxidant properties of six by-products of Crocus sativus L. (Saffron), 2018, 9 (8), 1349-1357
[81]
Baba, S.A.; Malik, A.H.; Wani, Z.A.; Mohiuddin, T.; Shah, Z.; Abbas, N.; Ashraf, N. Phytochemical analysis and antioxidant activity of different tissue types of Crocus sativus and oxidative stress alleviating potential of saffron extract in plants, bacteria, and yeast. S. Afr. J. Bot., 2015, 99, 80-87.
[82]
Hemmati, M.; Asghari, S.; Zohoori, E.; Karamian, M. Hypoglycemic effects of three Iranian edible plants; jujube, barberry and saffron: Correlation with serum adiponectin level. Pak. J. Pharm. Sci., 2015, 28(6), 2095-2099.
[83]
Hosseinzadeh, H.; Karimi, G.R.; Rakhshanizadeh, M. Anticonvulsant effects of aqueous and ethanolic extracts of Hypericum perforatum L. in mice. J. Med. Plant, 2004, 2(10), 23-30.
[84]
Asdaq, S.M.B.; Inamdar, M.N. Potential of Crocus sativus (saffron) and its constituent, crocin, as hypolipidemic and antioxidant in rats. Appl. Biochem. Biotechnol., 2010, 162(2), 358-372.
[85]
Samarghandian, S.; Boskabady, M.H.; Davoodi, S. Use of in vitro assays to assess the potential antiproliferative and cytotoxic effects of saffron (Crocus sativus L.) in human lung cancer cell line. Pharmacogn. Mag., 2010, 6(24), 309-314.
[86]
Li, C.; Feng, J.; Huang, W.Y.; An, X.T. Composition of polyphenols and antioxidant activity of rabbiteye blueberry (Vaccinium ashei) in Nanjing. J. Agric. Food Chem., 2013, 61(3), 523-531.
[87]
Huang, W.Y.; Zhang, H.C.; Liu, W.X.; Li, C.Y. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J. Zhejiang Univ. Sci. B, 2012, 13(2), 94-102.
[88]
Xu, J.; Zhao, Y.; Zhang, X.; Zhang, L.; Hou, Y.; Dong, W. Transcriptome analysis and ultrastructure observation reveal that hawthorn fruit softening is due to cellulose/hemicellulose degradation. Front. Plant Sci., 2016, 7, 1524.
[89]
Wen, L.; Guo, X.; Liu, R.H.; You, L.; Abbasi, A.M.; Fu, X. Phenolic contents and cellular antioxidant activity of Chinese hawthorn “Crataegus pinnatifida”. Food Chem., 2015, 186, 54-62.
[90]
Li, T.P.; Zhu, R.G.; Dong, Y.P.; Liu, Y.H.; Li, S.H.; Chen, G. Effects of pectin pentaoligosaccharide from Hawthorn (Crataegus pinnatifida Bunge. var. Major) on the activity and mRNA levels of enzymes involved in fatty acid oxidation in the liver of mice fed a high-fat diet. J. Agric. Food Chem., 2013, 61(31), 7599-7605.
[91]
Tadić, V.M.; Dobrić, S.; Marković, G.M.; Dordević, S.M.; Arsić, I.A.; Menković, N.R.; Stević, T. Anti-inflammatory, gastroprotective, free-radical-scavenging, and antimicrobial activities of hawthorn berries ethanol extract. J. Agric. Food Chem., 2008, 56(17), 7700-7709.
[92]
Prasad, N.K.; Yang, B.; Zhao, M.; Wang, B.S.; Chen, F.; Jiang, Y. Effects of high-pressure treatment on the extraction yield, phenolic content and antioxidant activity of litchi (Litchi chinensis Sonn.) fruit pericarp. Int. J. Food Sci. Technol., 2009, 44(5), 960-966.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy