Generic placeholder image

Current Bioactive Compounds


ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

General Research Article

Comparison of Cytocidal Activities of L-DOPA and Dopamine in S. cerevisiae and C. glabrata

Author(s): Carmen E. Iriarte and Ian G. Macreadie*

Volume 16 , Issue 1 , 2020

Page: [90 - 93] Pages: 4

DOI: 10.2174/1573407214666180108144216

Price: $65


Background: Parkinson's Disease results from a loss of dopaminergic neurons, and reduced levels of the neurotransmitter dopamine. Parkinson's Disease treatments involve increasing dopamine levels through administration of L-DOPA, which can cross the blood brain barrier and be converted to dopamine in the brain. The toxicity of dopamine has previously studied but there has been little study of L-DOPA toxicity.

Methods: We have compared the toxicity of dopamine and L-DOPA in the yeasts, Saccharomyces cerevisiae and Candida glabrata by cell viability assays, measuring colony forming units.

Results: L-DOPA and dopamine caused time-dependent cell killing in Candida glabrata while only dopamine caused such effects in Saccharomyces cerevisiae. The toxicity of L-DOPA is much lower than dopamine.

Conclusion: Candida glabrata exhibits high sensitivity to L-DOPA and may have advantages for studying the cytotoxicity of L-DOPA.

Keywords: L-DOPA, dopamine, yeast, neuronal models, oxidative stress, Parkinson's disease, Candida glabrata, Saccharomyces cerevisiae.

Graphical Abstract
Perez, C.A.; Tong, Y.; Guo, M. Iron chelators as potential therapeutic agents for Parkinson’s disease. Curr. Bioact. Compd., 2008, 4(3), 150-158.
[] [PMID: 19809592]
Lai, C.T.; Yu, P.H. Dopamine- and L-β-3,4-dihydroxyphenylalanine hydrochloride (L-Dopa)-induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Effects of oxidative stress and antioxidative factors. Biochem. Pharmacol., 1997, 53(3), 363-372.
[] [PMID: 9065740]
Banerjee, K.; Munshi, S.; Sen, O.; Pramanik, V.; Roy Mukherjee, T.; Chakrabarti, S. Dopamine cytotoxicity involves both oxidative and nonoxidative pathways in SH-SY5Y cells: Potential role of alpha-synuclein overexpression and proteasomal inhibition in the etiopathogenesis of Parkinson’s disease. Parkinsons Dis., 2014, 2014878935
[] [PMID: 24804146]
Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Jackson-Lewis, V.R. Oxidative stress and Parkinson’s disease. Front. Neuroanat., 2015, 9, 91.
[] [PMID: 26217195]
Cheng, N.; Maeda, T.; Kume, T.; Kaneko, S.; Kochiyama, H.; Akaike, A.; Goshima, Y.; Misu, Y. Differential neurotoxicity induced by L-DOPA and dopamine in cultured striatal neurons. Brain Res., 1996, 743(1-2), 278-283.
[] [PMID: 9017256]
Macreadie, I.G.; Bartone, N.; Sparrow, L. Inhibition of respiratory growth and survival in yeast by dopamine and counteraction with ascorbate or glutathione. J. Biomol. Screen., 2010, 15(3), 297-301.
[] [PMID: 20145104]
Breitenbach, M.; Ralser, M.; Perrone, G.G.; Iglseder, B.; Rinnerthaler, M.; Dawes, I.W. Oxidative stress and neurodegeneration: the yeast model system. Front. Biosci., 2013, 18, 1174-1193.
[] [PMID: 23747875]
Farrugia, G.; Balzan, R. Oxidative stress and programmed cell death in yeast. Front. Oncol., 2012, 2, 64.
[] [PMID: 22737670]
Pifl, C.; Zezula, J.; Spittler, A.; Kattinger, A.; Reither, H.; Caron, M.G.; Hornykiewicz, O. Antiproliferative action of dopamine and norepinephrine in neuroblastoma cells expressing the human dopamine transporter. FASEB J., 2001, 15(9), 1607-1609.
[] [PMID: 11427501]
Ben-Shachar, D.; Zuk, R.; Glinka, Y. Dopamine neurotoxicity: inhibition of mitochondrial respiration. J. Neurochem., 1995, 64(2), 718-723.
[] [PMID: 7830065]
Whelan, W.; Simon, S.; Beneke, E.; Rogers, A. Auxotrophic variants of Torulopsis glabrata. FEMS Microbiol. Lett., 1984, 24, 1-4.
Pifl, C.; Khorchide, M.; Kattinger, A.; Reither, H.; Hardy, J.; Hornykiewicz, O. α-Synuclein selectively increases manganese-induced viability loss in SK-N-MC neuroblastoma cells expressing the human dopamine transporter. Neurosci. Lett., 2004, 354(1), 34-37.
[] [PMID: 14698476]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy