Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

General Research Article

Antioxidant and Prebiotic Properties of γ- Radiation Processed Alginate

Author(s): Bhoir Shraddha Anant* and Chawla Surinder Pritamdas

Volume 15, Issue 2, 2019

Page: [242 - 248] Pages: 7

DOI: 10.2174/1573407214666171220163321

Price: $65

Abstract

Background: Recently, many carbohydrates and their derivatives are being investigated for bioactivity. In the present study, we aimed at developing a novel antioxidant and prebiotic component by radiation processing of sodium alginate.

Method: Gamma irradiated (0.5 to 40 kGy) aqueous solution of sodium alginate was characterised by UV-visible, fluorescence, Fourier transform infrared (FT-IR) spectroscopy and thin layer chromatography (TLC) analysis. Antioxidant potential of processed alginate was determined using different in vitro assays and prebiotic activity was evaluated by co-culturing of E. coli and Lactobacillus plantarum.

Observation: Approximately, 50% of superoxide radicals and 75% of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals were scavenged by oligomers at concentrations of 1 mg/ml and 5 mg/ml, respectively. The ability to chelate iron and to inhibit the oxidation of β-carotene was not affected. Radiation processing improved the prebiotic activities as seen by enhanced cell number of L. plantarum by one log and reduction in E. coli count. The efficiency in reducing E. coli depended directly on the absorbed dose.

Conclusion: Results suggest that radiation processing of alginate is a practical method for improving its antioxidant and prebiotic activity and thus improving the applicability of alginate in nutraceutical industries.

Keywords: Alginate, antioxidant, bioactive carbohydrates, irradiation, prebiotics, peroxidation.

Graphical Abstract
[1]
Branen, A.L. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc., 1975, 52(2), 59-63.
[2]
Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Compr. Rev. Food Sci. Food Saf., 2014, 13(4), 377-399.
[3]
Juanying, O.; Sun, Z. Feruloylated oligosaccharides: structure, metabolism and function. J. Funct Food., 2014, 90-100.
[4]
Sun, T.; Yao, Q.; Zhou, D.; Mao, F. Antioxidant activity of N-carboxymethyl chitosan oligosaccharides. Bioorg. Med. Chem. Lett., 2008, 18(21), 5774-5776.
[5]
Chen, H.M.; Yan, X.J. Antioxidant activities of agaro-oligosaccharides with different degrees of polymerization in cell-based system. Biochim. Biophys. Acta, 2005, 1722(1), 103-111.
[6]
Yu, X.; Yin, J.; Li, L.; Luan, C.; Zhang, J.; Zhao, C.; Li, S. Prebiotic potential of xylooligosaccharides derived from corn cobs and there in vitro antioxidant activity when combined with Lactobacillus. J. Microbiol. Biotechnol., 2015, 25(7), 1084-1092.
[7]
Bian, J.; Peng, F.; Peng, X.P.; Peng, P.; Xu, F.; Sun, R.C. Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresour. Technol., 2013, 127, 236-241.
[8]
Zheng, C.H.; Yu-mei, R.A.; Xia, Y.A.; Qi, B.A.; Zhi-qing, Z.H. Preparation and Antioxidant Activity of Xylo-oligosaccharide from Wheat Bran. J. Nucl. Agri. Sci, 2014, 4, 15.
[9]
Leal, D.; Matsuhiro, B.; Rossi, M.; Caruso, F. FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydr. Res., 2008, 343(2), 308-316.
[10]
Yang, J.S.; Xie, Y.J.; He, W. Research progress on chemical modification of alginate: A review., 2011, 84(1), 33-39.
[11]
Lee, K.Y.; Mooney, D.J. Alginate: properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.
[12]
Dong, Q.Y.; Chen, M.Y.; Xin, Y.; Qin, X.Y.; Cheng, Z.; Shi, L.E.; Tang, Z.X. Alginate‐based and protein‐based materials for probiotics encapsulation: a review. Int. J. Food Sci. Technol., 2013, 48(7), 1339-1351.
[13]
Falkeborg, M.; Cheong, L.Z.; Gianfico, C.; Sztukiel, K.M.; Kristensen, K.; Glasius, M.; Xu, X.; Guo, Z. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chem., 2014, 164, 185-194.
[14]
Iwamoto, M.; Kurachi, M.; Nakashima, T.; Kim, D.; Yamaguchi, K.; Oda, T.; Iwamoto, Y.; Muramatsu, T. Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells. FEBS Lett., 2005, 579(20), 4423-4429.
[15]
Tøndervik, A.; Sletta, H.; Klinkenberg, G.; Emanuel, C.; Powell, L.C.; Pritchard, M.F.; Khan, S.; Craine, K.M.; Onsøyen, E.; Rye, P.D.; Wright, C.; Thomas, D.W.; Hill, K.E. Alginate oligosaccharides inhibit fungal cell growth and potentiate the activity of antifungals against Candida and Aspergillus spp. PLoS One, 2014, 9(11), e112518.
[16]
de Sousa, A.P.; Torres, M.R.; Pessoa, C.; de Moraes, M.O. Rocha, Filho, F.D.; Alves, A.P.; Costa-Lotufo, L.V. In vivo growth-inhibition of Sarcoma 180 tumor by alginates from brown seaweed Sargassum vulgare. Carbohydr. Polym., 2007, 69(1), 7-13.
[17]
Nakazono, S.; Cho, K.; Isaka, S.; Abu, R.; Yokose, T.; Murata, M.; Ueno, M.; Tachibana, K.; Hirasaka, K.; Kim, D.; Oda, T. Anti-obesity effects of enzymatically-digested alginate oligomer in mice model fed a high-fat-diet. Bioact. Carbohydr.Diet. Fibre., 2016, 7(2), 1-8.
[18]
Wang, Y.; Han, F.; Hu, B.; Li, J.; Yu, W. In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate. Nutr. Res., 2006, 26(11), 597-603.
[19]
Ramnani, P.; Chitarrari, R.; Tuohy, K.; Grant, J.; Hotchkiss, S.; Philp, K.; Campbell, R.; Gill, C.; Rowland, I. In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds. Anaerobe, 2012, 18(1), 1-6.
[20]
Khan, S.; Tøndervik, A.; Sletta, H.; Klinkenberg, G.; Emanuel, C.; Onsøyen, E.; Myrvold, R.; Howe, R.A.; Walsh, T.R.; Hill, K.E.; Thomas, D.W. Overcoming drug resistance with alginate oligosaccharides able to potentiate the action of selected antibiotics. Antimicrob. Agents Chemother., 2012, 56(10), 5134-5141.
[21]
Kelishomi, Z.H.; Goliaei, B.; Mahdavi, H.; Nikoofar, A.; Rahimi, M.; Moosavi-Movahedi, A.A.; Mamashli, F.; Bigdeli, B. Antioxidant activity of low molecular weight alginate produced by thermal treatment. Food Chem., 2016, 196, 897-902.
[22]
Le, Q.L.U. Vo, Thi, T.H. A study of degradation mechanism of alginate by gamma-irradiation. Radioisotopes, 2009, 58(1), 1-1.
[23]
Nagasawa, N.; Mitomo, H.; Yoshii, F.; Kume, T. Radiation-induced degradation of sodium alginate. Polym. Degrad. Stabil., 2000, 69(3), 279-285.
[24]
Kanatt, S.R.; Chander, R.; Sharma, A. Antioxidant potential of mint (Mentha spicata L.) in radiation-processed lamb meat. Food Chem., 2007, 100(2), 451-458.
[25]
Kanatt, S.R.; Chander, R.; Sharma, A. Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. Int. J. Food Sci. Technol., 2010, 45(2), 216-222.
[26]
Dorman, H.J.; Koşar, M.; Kahlos, K.; Holm, Y.; Hiltunen, R. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agric. Food Chem., 2003, 51(16), 4563-4569.
[27]
Liu, J.; Willfor, S.; Xu, C. A review of bioactive plant polysaccharides: Biological activi-ties, functionalization and biomedical applications. Bioactive Carbohydrates and Dietary fibre, 2015, 5(1), 31-61.
[28]
Bezáková, Z.; Hermannová, M.; Dřímalová, E.; Malovíková, A.; Ebringerová, A.; Velebný, V. Effect of microwave irradiation on the molecular and structural properties of hyaluronan. Carbohydr. Polym., 2008, 73(4), 640-646.
[29]
Ueno, M.; Hiroki, T.; Takeshita, S.; Jiang, Z.; Kim, D.; Yamaguchi, K.; Oda, T. Comparative study on antioxidative and macrophage-stimulating activities of polyguluronic acid (PG) and polymannuronic acid (PM) prepared from alginate. Carbohydr. Res., 2012, 352, 88-93.
[30]
Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol., 2004, 26(2), 211-219.
[31]
Yan, G.L.; Guo, Y.M.; Yuan, J.M.; Liu, D.; Zhang, B.K. Sodium alginate oligosaccharides from brown algae inhibit Salmonella Enteritidis colonization in broiler chickens. Poult. Sci., 2011, 90(7), 1441-1448.
[32]
Akiyama, H.; Endo, T.; Nakakita, R.; Murata, K.; Yonemoto, Y.; Okayama, K. Effect of depolymerized alginates on the growth of bifidobacteria. Biosci. Biotechnol. Biochem., 1992, 56(2), 355-356.
[33]
Santini, A.; Novellino, E. Nutraceuticals: beyond the diet before the drugs. Curr. Bioact. Compd., 2014, 10(1), 1-12.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy