Generic placeholder image

Current Bioactive Compounds


ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Synthesis of Thymol Derivatives as Potential Non-Irritant Antimicrobial and Insecticidal Agents

Author(s): Mostafa M.M. El-Miligy*, Aly A. Hazzaa, Saad R. El-Zemity and Ahmed K. Al-Kubeisi

Volume 15 , Issue 1 , 2019

Page: [125 - 137] Pages: 13

DOI: 10.2174/1573407213666171115161626

Price: $65


Background: Thymol has been reported to have a variety of antimicrobial and insecticidal activities but it has irritation side effect due to its phenolic nature.

Methods: A new series of potential non-irritant non-phenolic thymol derivatives were designed to hybridize the well-known biologically active thymol scaffold with various five membered heterocyclic antimicrobial and insecticidal pharmacophores like 1,3,4-oxadiazole, 1,3,4-thiadiazole, 1,2,4-triazole, thiazole and 4-thiazolidinone through different spacers. The target compounds were biologically evaluated for their in vitro antibacterial, antifungal and insecticidal activities.

Results: Compounds 4b and 9c showed weak antibacterial activity against S. aureus and B.subtilis with the inhibition zone diameters ranging from 2 to 7 mm and 4 mm respectively compared with ciprofloxacin with the inhibition zone diameter of 21 mm. Compounds 9a, 7d and 13b showed weak antibacterial compounds against B. subtilis with inhibition zone diameters 4, 4 and 6 mm respectively. Compounds 12b, 9c and 7a showed 20% insecticidal activity at a concentration of 0.157 mg/cm2 for each compound against Tribolium castaneum (Herbst) and Sitophilus oryzae (L.). Compound 6 showed moderate larvicidal activity against Culex pipiens with 40% mortality at a concentration of 1000 ppm.

Conclusion: Compound 9c showed weak dual antimicrobial and insecticidal activities.

Keywords: Thymol, insecticide, antimicrobial, azoles, azolidinones, morphology.

Graphical Abstract
Mezzoug, N.; Elhadri, A.; Dallouh, A.; Amkiss, S.; Skali, N.S.; Abrini, J.; Zhiri, A.; Baudoux, D.; Diallo, B.; El Jaziri, M.; Idaomar, M. Investigation of the mutagenic and antimutagenic effects of Origanum compactum essential oil and some of its constituents. Mutat. Res., 2007, 629(2), 100-110.
Andersen, A. Final report on the safety assessment of sodium p-chloro-m-cresol, p-chloro-m-cresol, chlorothymol, mixed cresols, m-cresol, o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol. Int. J. Toxicol., 2006, 25(Suppl. 1), 29-127.
Beale, J. M.; Block, J. H. Wilson and Gisvold's textbook of Organic Medicinal and Pharmaceutical Chemistry, 2011. 12
Guo, N.; Liu, J.; Wu, X.; Bi, X.; Meng, R.; Wang, X.; Xiang, H.; Deng, X.; Yu, L. Antifungal activity of thymol against clinical isolates of fluconazole-sensitive and -resistant Candida albicans. J. Med. Microbiol., 2009, 58(Pt 8), 1074-1079.
Choi, I.H.; Shin, S.C.; Park, I.K. Nematicidal activity of onion (Allium cepa) oil and its components against the pine wood nematode (Bursaphelenchus xylophilus). Nematology, 2007, 9, 231-235.
Kong, J-O.; Lee, S-M.; Moon, Y-S.; Lee, S-G.; Ahn, Y-J. Nematicidal Activity of Plant Essential Oils against Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae). J. Asia Pac. Entomol., 2006, 9(2), 173-178.
Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag. Sci., 2002, 58(11), 1101-1106.
Hutter, C.; Laing, P. Possible role of thymol in the pathogenesis of ‘halothane hepatitis’. Eur. J. Anaesthesiol., 1993, 10(3), 237-238.
Filoche, S.K.; Soma, K.; Sissons, C.H. Antimicrobial effects of essential oils in combination with chlorhexidine digluconate. Oral Microbiol. Immunol., 2005, 20(4), 221-225.
Zaidi, S.F.; Yamada, K.; Kadowaki, M.; Usmanghani, K.; Sugiyama, T. Bactericidal activity of medicinal plants, employed for the treatment of gastrointestinal ailments, against Helicobacter pylori. J. Ethnopharmacol., 2009, 121(2), 286-291.
Nath, D.; Sethi, N.; Srivastava, S.; Jain, A.; Srivastava, R. Survey on indigenous medicinal plants used for abortion in some districts of Uttar Pradesh. Fitoterapia, 1997, 68(3), 223-225.
Kaur, H. Estrogenic activity of some herbal galactogogue constituents. Indian J. Anim. Nutr., 1998, 15(3), 232-234.
Gilani, A.H.; Jabeen, Q.; Ghayur, M.N.; Janbaz, K.H.; Akhtar, M.S. Studies on the antihypertensive, antispasmodic, bronchodilator and hepatoprotective activities of the Carum copticum seed extract. J. Ethnopharmacol., 2005, 98(1-2), 127-135.
Wagner, H.; Wierer, M.; Bauer, R. In vitro inhibition of prostaglandin biosynthesis by essential oils and phenolic compounds. Planta Med., 1986, 3(3), 184-187.
Yokoyama, T. Anti-inflammatory effect of phenolic compounds on leukocyte chemotaxis. Shika Kiso Igakkai Zasshi, 1985, 27(4), 1153-1168.
Hirafuji, M. Inhibition of prostaglandin I2 biosynthesis in rat dental pulp by phenolic dental medicaments. Jpn. J. Pharmacol., 1984, 36(4), 544-546.
Javed, I.; Iqbal, Z.; Rahman, Z.U.; Khan, F.H.; Muhammad, F.; Aslam, B.; Ali, L. Comparative antihyperlipidaemic efficacy of trachyspermum ammi extracts in albino rabbits. Pak. Vet. J., 2006, 26(1), 23-29.
García, D.A.; Bujons, J.; Vale, C.; Suñol, C. Allosteric positive interaction of thymol with the GABAA receptor in primary cultures of mouse cortical neurons. Neuropharmacology, 2006, 50(1), 25-35.
Sánchez, M.E.; Turina, A.V.; García, D.A.; Nolan, M.V.; Perillo, M.A. Surface activity of thymol: implications for an eventual pharmacological activity. Colloids Surf. B Biointerfaces, 2004, 34(2), 77-86.
Hussein, G.; Miyashiro, H.; Nakamura, N.; Hattori, M.; Kakiuchi, N.; Shimotohno, K. Inhibitory effects of sudanese medicinal plant extracts on hepatitis C virus (HCV) protease. Phytother. Res., 2000, 14(7), 510-516.
Undeğer, U.; Başaran, A.; Degen, G.H.; Başaran, N. Antioxidant activities of major thyme ingredients and lack of (oxidative) DNA damage in V79 Chinese hamster lung fibroblast cells at low levels of carvacrol and thymol. Food Chem. Toxicol., 2009, 47(8), 2037-2043.
Dashti-Rahmatabadi, M.H.; Hejazian, S.H.; Morshedi, A.; Rafati, A. The analgesic effect of Carum copticum extract and morphine on phasic pain in mice. J. Ethnopharmacol., 2007, 109(2), 226-228.
Srivastava, K.C. Extract of a spice--omum (Trachyspermum ammi)-shows antiaggregatory effects and alters arachidonic acid metabolism in human platelets. Prostaglandins Leukot. Essent. Fatty Acids, 1988, 33(1), 1-6.
Dorman, H.J.; Deans, S.G. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol., 2000, 88(2), 308-316.
Evans, J.D.; Martin, S.A. Effects of thymol on ruminal microorganisms. Curr. Microbiol., 2000, 41(5), 336-340.
Palaniappan, K.; Holley, R.A. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int. J. Food Microbiol., 2010, 140(2-3), 164-168.
Ahmad, A.; Khan, A.; Yousuf, S.; Khan, L.A.; Manzoor, N. Proton translocating ATPase mediated fungicidal activity of eugenol and thymol. Fitoterapia, 2010, 81(8), 1157-1162.
Numpaque, M.A.; Oviedo, L.A.; Gil, J.H.; García, C.M.; Durango, D.L. Thymol and carvacrol: biotransformation and antifungal activity against the plant pathogenic fungi Colletotrichum acutatum and Botryodiplodia theobromae. Trop. Plant Pathol., 2011, 36(1), 3-13.
Segvić Klarić, M.; Kosalec, I.; Mastelić, J.; Piecková, E.; Pepeljnak, S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol., 2007, 44(1), 36-42.
Pandey, S.K.; Upadhyay, S.; Tripathi, A.K. Insecticidal and repellent activities of thymol from the essential oil of Trachyspermum ammi (Linn) Sprague seeds against Anopheles stephensi. Parasitol. Res., 2009, 105(2), 507-512.
Fisher, A.A. Allergic contact dermatitis due to thymol in Listerine for treatment of paronychia. Cutis, 1989, 43(6), 531-532.
Colledge, N.R.; Walker, B.R.; Ralston, S.H. Davidsons. Medicine, 21st ed; Churchill Livingstone: London, 2010.
Dahiya, R.; Pathak, D.; Bhatt, S. Synthesis and biological evaluation of a novel series of 2-(2′-isopropyl-5′-methylphenoxy) acetyl amino acids and dipeptides. Bull. Chem. Soc. Ethiop., 2006, 20(2), 235-245.
Zade, C.M.; Pete, U.D.; Kadam, M.S.; Bendre, R.S. Development of Novel Insect Growth Regulators: Effect of 1- (Substitutedbenzoyl)-3-[(2-Isopropyl-5-Methylphenoxy) Acetamino] Thiourea and Urea Derivatives on Total Haemo-cyte Count of Dysdercus koenigii Chemistry for Sustainable Development, 2012. 69-79.
Jack, I.; Okorosaye-Orubite, K.; Bobmanuel, R. Assessment of the Larvicidal potentials of Thymol derivatives on Anopheles mosquitoes. J. Appl. Sci. Environ. Manag., 2006, 10(1), 63-65.
Cao, S.; Qian, X.; Song, G.; Huang, Q. Syntheses and insecticidal activity of new 2-(5-(trifluoromethyl) pyridyloxymethyl)-1, 3, 4-oxadiazoles. J. Fluor. Chem., 2002, 117(1), 63-66.
Belkadi, M.; Othman, A.A. A common route to the synthesis of 1, 3, 4-oxadiazole-2-thione and 1, 2, 4-triazole-3-thiols derivatives of trioses and pentoses as models for acyclic C-nucleosides. ARKIVOC, 2006, 11, 183-195.
Hemchandra, K.C.; Afsar, A.S.; Yogesh, D.M. Design and synthesis of novel oxadiazole and diphenyl ether hydrazone derivatives of coumarin as potential antibacterial agents. Curr. Bioact. Compd., 2017, 13(4), 318-325.
Yu, P.; Hu, J.; Zhou, T-Y.; Wang, P.; Xu, Y-H. Synthesis, insecticidal evaluation of novel 1, 3, 4-thiadiazole chrysanthemamide derivatives formed by an EDCI/HOBt condensation. J. Chem. Res., 2011, 35(12), 703-706.
Omprakash, G.; Anjaneyulu, Y.; Subramanian, N.S.; Ramadevi, M.; Gupta, V.; Vijayalakshmi, G. Synthesis, characterization and anti-microbial screening of novel heterocyclic system containing bridgehead nitrogen atom. RJPBCS, 2011, 2(1), 410-418.
Paola, P.; Gabriella, B. Bioactive Compounds Containing Thiadiazole. Curr. Bioact. Compd., 2010, 6(4), 243-265.
Chai, B.; Qian, X.; Cao, S.; Liu, H.; Song, G. Synthesis and insecticidal activity of 1, 2, 4-triazole derivatives. ARKIVOC, 2003, 2, 141-145.
Ollis, W.; Ramsden, C. Synthesis of meso-ionic anhydro-2-arylamino-1, 3, 4-thiadiazolium hydroxides and the rearrangement of meso-ionic 1, 3, 4-thiadiazoles to meso-ionic 1, 3, 4-triazoles. J. Chem. Soc. D, 1971, (19), 1222-1223.
Pibiri, I.; Buscemi, S. A Recent Portrait of Bioactive Triazoles. Curr. Bioact. Compd., 2010, 6(4), 208-242.
Amin, K.M.; El-masry, A.H.; Mohamed, N.A.; Awad, G.E.A.; Habib, B.S. Synthesis, characterization and antimicrobial activity of some novel isoindole- 1,3-dione derivatives. Der Pharma Chem., 2013, 5(5), 97-108.
Abdel-Wahab, B.F.; Abdel-Aziz, H.A.; Ahmed, E.M. Convenient synthesis and antimicrobial activity of new 3-substituted 5-(benzofuran-2-yl)-pyrazole derivatives. Arch. Pharm. (Weinheim), 2008, 341(11), 734-739.
Bremner, J.B.; Ambrus, J.I.; Samosorn, S. Dual action-based approaches to antibacterial agents. Curr. Med. Chem., 2007, 14(13), 1459-1477.
Hubschwerlen, C.; Specklin, J-L.; Sigwalt, C.; Schroeder, S.; Locher, H.H. Design, synthesis and biological evaluation of oxazolidinone-quinolone hybrids. Bioorg. Med. Chem., 2003, 11(10), 2313-2319.
Spurg, A.; Waldvogel, S.R. High‐Yielding Cleavage of (Aryloxy) acetates. Eur. J. Org. Chem., 2008, 2, 337-342.
Torres, S.P. Synthesis of carbocyclic and heterocyclic compounds.. Ph.D. Thesis, chemistry, department of chemistry, Goa University, 2009.
Mansour, A.K.; Eid, M.M.; Khalil, N.S. Synthesis and reactions of some new heterocyclic carbohydrazides and related compounds as potential anticancer agents. Molecules, 2003, 8(10), 744-755.
Vashi, B.S.; Mehta, D.S.; Shah, V.H. Synthesis of 2,5-disubstituted-1,3,4-oxadiazole, 1,5-disubstituted-2- mercapto-1,3,4-triazole and 2,5-disubstituted-1,3,4-thiadiazole derivatives as potential antimicrobial agents. Indian J. Chem., 1996, 35B, 111.
Kalluraya, B.; Chimbalkar, R.; Gunaga, P. Synthesis, and biological activities of some 1, 2, 4-triazole and 1, 3, 4-oxadiazoles. Indian J. Heterocycl. Chem., 1996, 6(2), 103-106.
Asiri, A.M. 2-[(2-Isopropyl-5-methylphenoxy) acetyl]-N-phenylhydrazine Carbothioamide. Molbank, 2003, 2002(1), M279.
Asiri, A.M. 5-[(2-Isopropyl-5-methylphenoxy) methyl]-4-phenyl-4H-1, 2, 4-triazole-3-thiol. Molbank, 2003, 2002(1), M280.
Perez, C.; Pauli, M.; Bazerque, P. An antibiotic assay by the agar well diffusion method. Acta. Biol. Med. Exp, 1990, 15, 113-115.
Waliullah, T.M.; Yeasmin, A.M.; Wahedul, I.M.; Parvez, H. Insecticidal and Repellent Activity of Clerodendrum viscosum Vent. (Verbenaceae) Against Tribolium castaneum (Herbst) (Coleoptera: tenebrionoidea). Acad. J. Entomol., 2014, 7(2), 63-69.
Busvine, J.R. A critical review of the techniques for testing insecticides, 2nd ed; Commonwealth Institute of Entomology: London, 1971.
WHO, World Health Organization. Guidelines for laboratory and field testing of mosquito larvicides., 2005.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy