Review Article

用于治疗被忽视疾病的潜在三唑类分子

卷 26, 期 23, 2019

页: [4403 - 4434] 页: 32

弟呕挨: 10.2174/0929867324666170727103901

价格: $65

摘要

被忽视的疾病(NDs)影响着数百万人,尤其是世界上最贫穷的人口。 目前,为有效治疗的几种努力已被证明是不够的。 在这种情况下,由于多种生物活性,三唑衍生物在药物化学中显示出极大的相关性。 这篇综述旨在描述针对1,2,3-和1,2,4-三唑基分子的最相关和最新研究,这些分子针对四种表达性ND:恰加斯病,疟疾,结核病和利什曼病。

关键词: 被忽视的疾病,三唑类,南美锥虫病,疟疾,利什曼病,结核病。

[1]
Canuto, G.A.B.; da Cruz, P.L.R.; Faccio, A.T.; Klassen, A.; Tavares, M.F.M. Neglected diseases prioritized in Brazil under the perspective of metabolomics: A review. Electrophoresis, 2015, 36(18), 2336-2347.
[http://dx.doi.org/10.1002/elps.201500102] [PMID: 26095472]
[2]
Houweling, T.A.J.; Karim-Kos, H.E.; Kulik, M.C.; Stolk, W.A.; Haagsma, J.A.; Lenk, E.J.; Richardus, J.H.; de Vlas, S.J. Socioeconomic inequalities in neglected tropical diseases: a systematic review. PLoS Negl. Trop. Dis., 2016, 10(5)e0004546
[http://dx.doi.org/10.1371/journal.pntd.0004546] [PMID: 27171166]
[3]
Pedrique, B.; Strub-Wourgaft, N.; Some, C.; Olliaro, P.; Trouiller, P.; Ford, N.; Pécoul, B.; Bradol, J.H. The drug and vaccine landscape for neglected diseases (2000-11): a systematic assessment. Lancet Glob. Health, 2013, 1(6), e371-e379.
[http://dx.doi.org/10.1016/S2214-109X(13)70078-0] [PMID: 25104602]
[4]
Burrows, J.N.; Elliott, R.L.; Kaneko, T.; Mowbray, C.E.; Waterson, D. The role of modern drug discovery in the fight against neglected and tropical diseases. MedChemComm, 2014, 5, 688-700.
[http://dx.doi.org/10.1039/c4md00011k]
[5]
WHO site: World Health Organization, Neglected Tropical Diseases http://www.who.int/neglected_diseases/diseases/en/(Accessed 28 September, 2016).,
[6]
CDCP site: Centers for Disease Control and Prevention, Neglected Tropical Diseases http://www.cdc.gov/globalhealth/ntd// (Accessed 2 October 2016).
[7]
Turner, H.C.; Walker, M.; French, M.D.; Blake, I.M.; Churcher, T.S.; Basáñez, M.G. Neglected tools for neglected diseases: mathematical models in economic evaluations. Trends Parasitol., 2014, 30(12), 562-570.
[http://dx.doi.org/10.1016/j.pt.2014.10.001] [PMID: 25455565]
[8]
Johnston, K.L.; Ford, L.; Taylor, M.J. Overcoming the challenges of drug discovery for neglected tropical diseases: the A·WOL experience. J. Biomol. Screen., 2014, 19(3), 335-343.
[http://dx.doi.org/10.1177/1087057113511270] [PMID: 24241712]
[9]
Sahu, J.K.; Ganguly, S.; Kaushik, A. Triazoles: a valuable insight into recent developments and biological activities. Chin. J. Nat. Med., 2013, 11(5), 456-465.
[http://dx.doi.org/10.1016/S1875-5364(13)60084-9] [PMID: 24359767]
[10]
Asif, M. A mini review on antimalarial activities of biologically active substituted triazoles derivatives. Int. J. Adv. Res. Chem. Sci., 2014, 1(6), 22-28.
[11]
Parthasaradhi, Y.; Suresh, S.; Kumar, B.R.; Jyostna, T.S. Design and synthesis of some new quinoline based 1,2,3-triazoles as antimicrobial and antimalarial agents. Orbital: Electron. J. Chem., 2015, 7(3), 264-269.
[12]
Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem. Rev., 2016, 116(5), 3086-3240.
[http://dx.doi.org/10.1021/acs.chemrev.5b00408] [PMID: 26796328]
[13]
Tron, G.C.; Pirali, T.; Billington, R.A.; Canonico, P.L.; Sorba, G.; Genazzani, A.A. Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med. Res. Rev., 2008, 28(2), 278-308.
[http://dx.doi.org/10.1002/med.20107] [PMID: 17763363]
[14]
Lauria, A.; Delisi, R.; Mingoia, F.; Terenzi, A.; Martorana, A.; Barone, G.; Almerico, A.M. 1,2,3-Triazole in heterocyclic compounds, endowed with biological activity, through 1,3-dipolar cycloadditions. Eur. J. Org. Chem., 2014, 3289-3306.
[http://dx.doi.org/10.1002/ejoc.201301695]
[15]
Haider, S.; Alam, M.S.; Hamid, H. 1,2,3-Triazoles: scaffold with medicinal significance. Inflamm. Cell Signal., 2014, 1e95 .
[16]
Manneganti, V.; Bethala, L.A.P.D.; Rachapudi, B.N.P.; Singh, A.; Ummanni, R. Design, synthesis and anticancer activities of novel unsaturated fatty acid-based β-hydroxy 1,2,3-triazoles. IJPSR, 2015, 6(4), 1635-1649.
[17]
Wheless, J.W.; Vazquez, B. Rufinamide: a novel broad-spectrum antiepileptic drug. Epilepsy Curr., 2010, 10(1), 1-6.
[http://dx.doi.org/10.1111/j.1535-7511.2009.01336.x] [PMID: 20126329]
[18]
Ayati, A.; Emami, S.; Foroumadi, A. The importance of triazole scaffold in the development of anticonvulsant agents. Eur. J. Med. Chem., 2016, 109, 380-392.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.009] [PMID: 26826582]
[19]
Shneine, J.K.; Alaraji, Y.H. Chemistry of 1, 2, 4-Triazole: A Review Article. Int. J. Sci. Res. (Ahmedabad), 2016, 5(3), 1411-1423.
[20]
Maddila, S.; Pagadala, R.; Jonnalagadda, S.B. 1,2,4-Triazoles: A review of synthetic approaches and the biological activity. Lett. Org. Chem., 2013, 10, 693-714.
[http://dx.doi.org/10.2174/157017861010131126115448]
[21]
Huisgen, R. 1,3-Dipolar cycloadditions – Introduction, survey, mechanism. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984, pp. 1-176.
[22]
Tornoe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase:1,2,3-Triazoles by regiospecific copper(I)-catalyzed 1,3- dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67, 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[23]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[24]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[25]
Hein, J.E.; Fokin, V.V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev., 2010, 39(4), 1302-1315.
[http://dx.doi.org/10.1039/b904091a] [PMID: 20309487]
[26]
Wang, C.; Ikhlef, D.; Kahlal, S.; Saillard, J.; Astruc, D. Metal-catalyzed azide-alkyne “click” reactions: Mechanistic overview and recent trends. Coord. Chem. Rev., 2016, 316, 1-20.
[http://dx.doi.org/10.1016/j.ccr.2016.02.010]
[27]
Hassan, S.; Müller, T.J.J. Multicomponent syntheses based upon copper-catalyzed alkyne-azide cycloaddition. Adv. Synth. Catal., 2015, 357, 617-666.
[http://dx.doi.org/10.1002/adsc.201400904]
[28]
Haldón, E.; Nicasio, M.C.; Pérez, P.J. Copper-catalysed azide-alkyne cycloadditions (CuAAC): an update. Org. Biomol. Chem., 2015, 13(37), 9528-9550.
[http://dx.doi.org/10.1039/C5OB01457C] [PMID: 26284434]
[29]
Kádár, Z.; Frank, E.; Schneider, G.; Molnár, J.; Zupkó, I.; Kóti, J.; Schönecker, B.; Wölflinga, J. Efficient synthesis of novel A-ring-substituted 1,2,3-triazolylcholestane derivatives via catalytic azide-alkyne cycloaddition. ARKIVOC, 2012, 3, 279-296.
[30]
Garudachari, B.; Isloor, A.M.; Satyanarayana, M.N.; Fun, H.K.; Hegde, G. Click chemistry approach: regioselective one-pot synthesis of some new 8-trifluoromethylquinoline based 1,2,3-triazoles as potent antimicrobial agents. Eur. J. Med. Chem., 2014, 74, 324-332.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.008] [PMID: 24486415]
[31]
Chandrasekhar, S.; Seenaiah, M.; Kumar, A.; Reddy, C.R.; Mamidyala, S.K.; Kumar, C.G.; Balasubramanian, S. Intramolecular copper(I)-catalyzed 1,3-dipolar cycloaddition of azido-alkynes: synthesis of triazolo-benzoxazepine derivatives and their biological evaluation. Tetrahedron Lett., 2011, 52, 806-808.
[http://dx.doi.org/10.1016/j.tetlet.2010.12.040]
[32]
Johansson, J.R.; Hermansson, E.; Nordén, B.; Kann, N.; Beke-Somfai, T. δ-Peptides from RuAAC-derived 1,5-disubstituted triazole units. Eur. J. Org. Chem., 2014, 2703-2713.
[http://dx.doi.org/10.1002/ejoc.201400018]
[33]
Wu, L.; Chen, X.; Tang, M.; Song, X.; Chen, G.; Song, X.; Lin, Q. Potassium tert-butoxide promoted cycloaddition reaction for the synthesis of 1,5-disubstituted 1,2,3-triazoles from aromatic azides and trimethylsilyl-protected alkynes. Synlett, 2012, 23, 1529-1533.
[http://dx.doi.org/10.1055/s-0031-1291042]
[34]
Iminov, R.; Mashkov, A.V.; Chalyk, B.A.; Mykhailiuk, P.K.; Tverdokhlebov, A.V.; Tolmachev, A.A.; Volovenko, Y.M.; Shishkin, O.V.; Shishkina, S.V. A Convenient route to 1-alkyl-5-trifluoromethyl-1,2,3-triazole-4-carboxylic acids employing a diazo transfer reaction. Eur. J. Org. Chem., 2013, 2891-2897.
[http://dx.doi.org/10.1002/ejoc.201300030]
[35]
Cai, Z-J.; Lu, X-M.; Zi, Y.; Yang, C.; Shen, L-J.; Li, J.; Wang, S-Y.; Ji, S-J. I2/TBPB mediated oxidative reaction of N-tosylhydrazones with anilines: practical construction of 1,4-disubstituted 1,2,3-triazoles under metal-free and azide-free conditions. Org. Lett., 2014, 16(19), 5108-5111.
[http://dx.doi.org/10.1021/ol502431b] [PMID: 25250817]
[36]
Quan, X-J.; Ren, Z-H.; Wang, Y-Y.; Guan, Z-H. p-Toluenesulfonic acid mediated 1,3-dipolar cycloaddition of nitroolefins with NaN3 for synthesis of 4-aryl-NH-1,2,3-triazoles. Org. Lett., 2014, 16(21), 5728-5731.
[http://dx.doi.org/10.1021/ol5027975] [PMID: 25343314]
[37]
Bonacorso, H.G.; Moraes, M.C.; Luz, F.M.; Quintana, P.S.; Zanatta, N.; Martins, M.A.P. New solventless and metal-free synthesis of the antiepileptic drug 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxamide (Rufinamide) and analogues. Tetrahedron Lett., 2015, 56, 441-444.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.125]
[38]
Hitotsuyanagi, Y.; Motegi, S.; Fukaya, H.; Takeya, K. A cis amide bond surrogate incorporating 1,2,4-triazole. J. Org. Chem., 2002, 67(10), 3266-3271.
[http://dx.doi.org/10.1021/jo010904i] [PMID: 12003534]
[39]
Moulin, A.; Bibian, M.; Blayo, A.L.; El Habnouni, S.; Martinez, J.; Fehrentz, J.A. Synthesis of 3,4,5-trisubstituted-1,2,4-triazoles. Chem. Rev., 2010, 110(4), 1809-1827.
[http://dx.doi.org/10.1021/cr900107r] [PMID: 20151658]
[40]
Potts, K.T. The chemistry of 1,2,4-triazoles. Chem. Rev., 1961, 61, 87.
[http://dx.doi.org/10.1021/cr60210a001]
[41]
Temple, C., Jr The Chemistry of Heterocyclic Compounds: Triazoles 1,2,4; Wiley: New York, 1981, Vol. 37, .
[http://dx.doi.org/10.1002/9780470187104]
[42]
Curtis, A.; Jennings, N. ComprehensiVe Heterocyclic Chemistry III; Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V; Taylor, R.J.K., Ed.; Elsevier Ltd.: New York, 2008, Vol. 5, .
[43]
World Health Organization (WHO) . http://www.who.int/neglected_diseases/9789241564861/en/ (Accessed Oct 2, 2016)
[44]
Andrade, L.O.; Andrews, N.W. The Trypanosoma cruzi-host-cell interplay: location, invasion, retention. Nat. Rev. Microbiol., 2005, 3(10), 819-823.
[http://dx.doi.org/10.1038/nrmicro1249] [PMID: 16175174]
[45]
Rassi, A., Jr; Rassi, A.; Marcondes de Rezende, J. American trypanosomiasis (Chagas disease). Infect. Dis. Clin. North Am., 2012, 26(2), 275-291.
[http://dx.doi.org/10.1016/j.idc.2012.03.002] [PMID: 22632639]
[46]
Rassi, A., Jr; Rassi, A.; Marin-Neto, J.A. Chagas disease. Lancet, 2010, 375(9723), 1388-1402.
[http://dx.doi.org/10.1016/S0140-6736(10)60061-X] [PMID: 20399979]
[47]
Zhang, L.; Tarleton, R.L. Parasite persistence correlates with disease severity and localization in chronic Chagas’ disease. J. Infect. Dis., 1999, 180(2), 480-486.
[http://dx.doi.org/10.1086/314889] [PMID: 10395865]
[48]
Urbina, J.A. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop., 2010, 115(1-2), 55-68.
[http://dx.doi.org/10.1016/j.actatropica.2009.10.023] [PMID: 19900395]
[49]
Diogo, E.B.T.; Dias, G.G.; Rodrigues, B.L.; Guimarães, T.T.; Valença, W.O.; Camara, C.A.; de Oliveira, R.N.; da Silva, M.G.; Ferreira, V.F.; de Paiva, Y.G.; Goulart, M.O.F.; Menna-Barreto, R.F.S.; de Castro, S.L.; da Silva Júnior, E.N. Synthesis and anti-Trypanosoma cruzi activity of naphthoquinone-containing triazoles: electrochemical studies on the effects of the quinoidal moiety. Bioorg. Med. Chem., 2013, 21(21), 6337-6348.
[http://dx.doi.org/10.1016/j.bmc.2013.08.055] [PMID: 24074878]
[50]
da Silva, E.N., Jr; Menna-Barreto, R.F.S. Pinto, Mdo.C.; Silva, R.S.F.; Teixeira, D.V.; de Souza, M.C.; De Simone, C.A.; De Castro, S.L.; Ferreira, V.F.; Pinto, A.V. Naphthoquinoidal [1,2,3]-triazole, a new structural moiety active against Trypanosoma cruzi. Eur. J. Med. Chem., 2008, 43(8), 1774-1780.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.015] [PMID: 18045742]
[51]
Brak, K.; Kerr, I.D.; Barrett, K.T.; Fuchi, N.; Debnath, M.; Ang, K.; Engel, J.C.; McKerrow, J.H.; Doyle, P.S.; Brinen, L.S.; Ellman, J.A. Nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors as promising new leads for Chagas disease chemotherapy. J. Med. Chem., 2010, 53(4), 1763-1773.
[http://dx.doi.org/10.1021/jm901633v] [PMID: 20088534]
[52]
Brak, K.; Doyle, P.S.; McKerrow, J.H.; Ellman, J.A. Identification of a new class of nonpeptidic inhibitors of cruzain. J. Am. Chem. Soc., 2008, 130(20), 6404-6410.
[http://dx.doi.org/10.1021/ja710254m] [PMID: 18435536]
[53]
Carvalho, I.; Andrade, P.; Campo, V.L.; Guedes, P.M.M.; Sesti-Costa, R.; Silva, J.S.; Schenkman, S.; Dedola, S.; Hill, L.; Rejzek, M.; Nepogodiev, S.A.; Field, R.A. ‘Click chemistry’ synthesis of a library of 1,2,3-triazole-substituted galactose derivatives and their evaluation against Trypanosoma cruzi and its cell surface trans-sialidase. Bioorg. Med. Chem., 2010, 18(7), 2412-2427.
[http://dx.doi.org/10.1016/j.bmc.2010.02.053] [PMID: 20335038]
[54]
Campo, V.L.; Sesti-Costa, R.; Carneiro, Z.A.; Silva, J.S.; Schenkman, S.; Carvalho, I. Design, synthesis and the effect of 1,2,3-triazole sialylmimetic neoglycoconjugates on Trypanosoma cruzi and its cell surface trans-sialidase. Bioorg. Med. Chem., 2012, 20(1), 145-156.
[http://dx.doi.org/10.1016/j.bmc.2011.11.022] [PMID: 22154559]
[55]
de Andrade, P.; Galo, O.A.; Carvalho, M.R.; Lopes, C.D.; Carneiro, Z.A.; Sesti-Costa, R.; de Melo, E.B.; Silva, J.S.; Carvalho, I. 1,2,3-Triazole-based analogue of benznidazole displays remarkable activity against Trypanosoma cruzi. Bioorg. Med. Chem., 2015, 23(21), 6815-6826.
[http://dx.doi.org/10.1016/j.bmc.2015.10.008] [PMID: 26476667]
[56]
Papadopoulou, M.V.; Trunz, B.B.; Bloomer, W.D.; McKenzie, C.; Wilkinson, S.R.; Prasittichai, C.; Brun, R.; Kaiser, M.; Torreele, E. Novel 3-nitro-1H-1,2,4-triazole-based aliphatic and aromatic amines as anti-chagasic agents. J. Med. Chem., 2011, 54(23), 8214-8223.
[http://dx.doi.org/10.1021/jm201215n] [PMID: 22023653]
[57]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Chatelain, E.; Kaiser, M.; Wilkinson, S.R.; McKenzie, C.; Ioset, J.R. Novel 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides as potential antitrypanosomal agents. J. Med. Chem., 2012, 55(11), 5554-5565.
[http://dx.doi.org/10.1021/jm300508n] [PMID: 22550999]
[58]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Kaiser, M.; Chatelain, E.; Ioset, J.R. Novel 3-nitro-1H-1,2,4-triazole-based piperazines and 2-amino-1,3-benzothiazoles as antichagasic agents. Bioorg. Med. Chem., 2013, 21(21), 6600-6607.
[http://dx.doi.org/10.1016/j.bmc.2013.08.022] [PMID: 24012457]
[59]
Papadopoulou, M.V.; Bloomer, W.D.; Lepesheva, G.I.; Rosenzweig, H.S.; Kaiser, M.; Aguilera-Venegas, B.; Wilkinson, S.R.; Chatelain, E.; Ioset, J.R. Novel 3-nitrotriazole-based amides and carbinols as bifunctional antichagasic agents. J. Med. Chem., 2015, 58(3), 1307-1319.
[http://dx.doi.org/10.1021/jm5015742] [PMID: 25580906]
[60]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Wilkinson, S.R.; Szular, J.; Kaiser, M. Nitrotriazole-based acetamides and propanamides with broad spectrum antitrypanosomal activity. Eur. J. Med. Chem., 2016, 123, 895-904.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.002] [PMID: 27543881]
[61]
Silva, F.T.; Franco, C.H.; Favaro, D.C.; Freitas-Junior, L.H.; Moraes, C.B.; Ferreira, E.I. Design, synthesis and antitrypanosomal activity of some nitrofurazone 1,2,4-triazolic bioisosteric analogues. Eur. J. Med. Chem., 2016, 121, 553-560.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.065] [PMID: 27318979]
[62]
Assíria Fontes Martins, T.; de Figueiredo Diniz, L.; Mazzeti, A.L.; da Silva do Nascimento, Á.F.; Caldas, S.; Caldas, I.S.; de Andrade, I.M.; Ribeiro, I.; Bahia, M.T. Benznidazole/itraconazole combination treatment enhances Anti-Trypanosoma cruzi activity in experimental chagas disease. PLoS One, 2015, 10(6)e0128707
[http://dx.doi.org/10.1371/journal.pone.0128707] [PMID: 26076455]
[63]
Urbina, J.A. Ergosterol biosynthesis and drug development for Chagas disease. Mem. Inst. Oswaldo Cruz, 2009, 104(Suppl. 1), 311-318.
[http://dx.doi.org/10.1590/S0074-02762009000900041] [PMID: 19753490]
[64]
Guedes, P.M.M.; Urbina, J.A.; de Lana, M.; Afonso, L.C.C.; Veloso, V.M.; Tafuri, W.L.; Machado-Coelho, G.L.L.; Chiari, E.; Bahia, M.T. Activity of the new triazole derivative albaconazole against Trypanosoma (Schizotrypanum) cruzi in dog hosts. Antimicrob. Agents Chemother., 2004, 48(11), 4286-4292.
[http://dx.doi.org/10.1128/AAC.48.11.4286-4292.2004] [PMID: 15504854]
[65]
Apt, W.; Arribada, A.; Zulantay, I.; Rodríguez, J.; Saavedra, M.; Muñoz, A. Treatment of Chagas’ disease with itraconazole: electrocardiographic and parasitological conditions after 20 years of follow-up. J. Antimicrob. Chemother., 2013, 68(9), 2164-2169.
[http://dx.doi.org/10.1093/jac/dkt135] [PMID: 23645584]
[66]
Lepesheva, G.I. Design or screening of drugs for the treatment of Chagas disease: what shows the most promise? Expert Opin. Drug Discov., 2013, 8(12), 1479-1489.
[http://dx.doi.org/10.1517/17460441.2013.845554] [PMID: 24079515]
[67]
Diniz, L. F.; Caldas, I.S.; Guedes, P.M.; Crepalde, G.; de Lana, M.; Carneiro, C.M.; Talvani, A.; Urbina, J.A.; Bahia, M.T. Effects of ravuconazole treatment on parasite load and immune response in dogs experimentally infected with Trypanosoma cruzi. Antimicrob. Agents Chemother., 2010, 54(7), 2979-2986.
[http://dx.doi.org/10.1128/AAC.01742-09] [PMID: 20404124]
[68]
Gulin, J.E.N.; Eagleson, M.A.; Postan, M.; Cutrullis, R.A.; Freilij, H.; Bournissen, F.G.; Petray, P.B.; Altcheh, J. Efficacy of voriconazole in a murine model of acute Trypanosoma cruzi infection. J. Antimicrob. Chemother., 2013, 68(4), 888-894.
[http://dx.doi.org/10.1093/jac/dks478] [PMID: 23212113]
[69]
Benaim, G.; Sanders, J.M.; Garcia-Marchán, Y.; Colina, C.; Lira, R.; Caldera, A.R.; Payares, G.; Sanoja, C.; Burgos, J.M.; Leon-Rossell, A.; Concepcion, J.L.; Schijman, A.G.; Levin, M.; Oldfield, E.; Urbina, J.A. Amiodarone has intrinsic anti-Trypanosoma cruzi activity and acts synergistically with posaconazole. J. Med. Chem., 2006, 49(3), 892-899.
[http://dx.doi.org/10.1021/jm050691f] [PMID: 16451055]
[70]
World Health Organization (WHO) http://www.who.int/mediacentre/factsheets/fs094/en/ (September 19, 2016).
[71]
Hamann, A.R.; de Kock, C.; Smith, P.J.; van Otterlo, W.A.; Blackie, M.A. Synthesis of novel triazole-linked mefloquine derivatives: biological evaluation against Plasmodium falciparum. Bioorg. Med. Chem. Lett., 2014, 24(23), 5466-5469.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.015] [PMID: 25455485]
[72]
Guantai, E.M.; Ncokazi, K.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Smith, P.J.; Chibale, K. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg. Med. Chem., 2010, 18(23), 8243-8256.
[http://dx.doi.org/10.1016/j.bmc.2010.10.009] [PMID: 21044845]
[73]
Manohar, S.; Khan, S.I.; Rawat, D.S. Synthesis of 4-aminoquinoline-1,2,3-triazole and 4-aminoquinoline-1,2,3-triazole-1,3,5-triazine hybrids as potential antimalarial agents. Chem. Biol. Drug Des., 2011, 78(1), 124-136.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01115.x] [PMID: 21457474]
[74]
Raj, R.; Singh, P.; Singh, P.; Gut, J.; Rosenthal, P.J.; Kumar, V. Azide-alkyne cycloaddition en route to 1H-1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2013, 62, 590-596.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.032] [PMID: 23434528]
[75]
Taleli, L.; de Kock, C.; Smith, P.J.; Pelly, S.C.; Blackie, M.A.; van Otterlo, W.A. In vitro antiplasmodial activity of triazole-linked chloroquinoline derivatives synthesized from 7-chloro-N-(prop-2-yn-1-yl)quinolin-4-amine. Bioorg. Med. Chem., 2015, 23(15), 4163-4171.
[http://dx.doi.org/10.1016/j.bmc.2015.06.044] [PMID: 26174655]
[76]
Boechat, N. Ferreira, Mde.L.; Pinheiro, L.C.S.; Jesus, A.M.L.; Leite, M.M.M.; Júnior, C.C.S.; Aguiar, A.C.C.; de Andrade, I.M.; Krettli, A.U. New compounds hybrids 1h-1,2,3-triazole-quinoline against Plasmodium falciparum. Chem. Biol. Drug Des., 2014, 84(3), 325-332.
[http://dx.doi.org/10.1111/cbdd.12321] [PMID: 24803084]
[77]
Faidallah, H.M.; Panda, S.S.; Serrano, J.C.; Girgis, A.S.; Khan, K.A.; Alamry, K.A.; Therathanakorn, T.; Meyers, M.J.; Sverdrup, F.M.; Eickhoff, C.S.; Getchell, S.G.; Katritzky, A.R. Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates. Bioorg. Med. Chem., 2016, 24(16), 3527-3539.
[http://dx.doi.org/10.1016/j.bmc.2016.05.060] [PMID: 27298002]
[78]
Santos, J.O.; Pereira, G.R.; Brandão, G.C.; Borgati, T.F.; Arantes, L.M.; de Paula, R.C.; Soares, L.F.; do Nascimento, M.F.A.; Ferreira, M.R.C.; Taranto, A.G.; Varotti, F.P.; de Oliveira, A.B. Synthesis, in vitro antimalarial activity and in silico studies of hybrid kauranoid 1,2,3-triazoles derived from naturally occurring diterpenes. J. Braz. Chem. Soc., 2016, 27(3), 551-565.
[79]
Devender, N.; Gunjan, S.; Chhabra, S.; Singh, K.; Pasam, V.R.; Shukla, S.K.; Sharma, A.; Jaiswal, S.; Singh, S.K.; Kumar, Y.; Lal, J.; Trivedi, A.K.; Tripathi, R.; Tripathi, R.P. Identification of β-Amino alcohol grafted 1,4,5 trisubstituted 1,2,3-triazoles as potent antimalarial agents. Eur. J. Med. Chem., 2016, 109, 187-198.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.038] [PMID: 26774925]
[80]
Kant, R.; Kumar, D.; Agarwal, D.; Gupta, R.D.; Tilak, R.; Awasthi, S.K.; Agarwal, A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem., 2016, 113(4), 34-49.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.041] [PMID: 26922227]
[81]
Havaldar, F.H.; Patil, A.R. Synthesis of 1,2,4 Triazole Derivatives and their Biological Activity. E-J. Chem., 2008, 5(2), 347-354.
[http://dx.doi.org/10.1155/2008/394737]
[82]
Bhattacharya, A.; Mishra, L.C.; Sharma, M.; Awasthi, S.K.; Bhasin, V.K. Antimalarial pharmacodynamics of chalcone derivatives in combination with artemisinin against Plasmodium falciparum in vitro. Eur. J. Med. Chem., 2009, 44(9), 3388-3393.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.008] [PMID: 19269069]
[83]
World Health Organization (WHO): Leishmaniasis Fact Sheet.. http://www.who.int/mediacentre/factsheets/fs375/en/ (Accessed October 25, 2016).
[84]
Seifert, K. Structures, targets and recent approaches in anti-leishmanial drug discovery and development. Open Med. Chem. J., 2011, 5, 31-39.
[http://dx.doi.org/10.2174/1874104501105010031] [PMID: 21629509]
[85]
Sangshetti, J.N.; Khan, F.A.K.; Kulkarni, A.A.; Aroteb, R.; Patilc, R.H. Antileishmanial drug discovery: comprehensive review of the last 10 years. RSC Advances, 2015, 5, 32376-32415.
[http://dx.doi.org/10.1039/C5RA02669E]
[86]
Nagle, A.S.; Khare, S.; Kumar, A.B.; Supek, F.; Buchynskyy, A.; Mathison, C.J.N.; Chennamaneni, N.K.; Pendem, N.; Buckner, F.S.; Gelb, M.H.; Molteni, V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem. Rev., 2014, 114(22), 11305-11347.
[http://dx.doi.org/10.1021/cr500365f] [PMID: 25365529]
[87]
Bakunov, S.A.; Bakunova, S.M.; Wenzler, T.; Ghebru, M.; Werbovetz, K.A.; Brun, R.; Tidwell, R.R. Synthesis and antiprotozoal activity of cationic 1,4-diphenyl-1H-1,2,3-triazoles. J. Med. Chem., 2010, 53(1), 254-272.
[http://dx.doi.org/10.1021/jm901178d] [PMID: 19928900]
[88]
Costa, E.C.; Cassamale, T.B.; Carvalho, D.B.; Bosquiroli, L.S.S.; Ojeda, M.; Ximenes, T.V.; Matos, M.F.C.; Kadri, M.C.T.; Baroni, A.C.M.; Arruda, C.C.P. Antileishmanial Activity and Structure-Activity Relationship of Triazolic Compounds Derived from the Neolignans Grandisin, Veraguensin, and Machilin G. Molecules, 2016, 21(6), 802-812.
[http://dx.doi.org/10.3390/molecules21060802] [PMID: 27331807]
[89]
Guimarães, T.T. Pinto, Mdo.C.; Lanza, J.S.; Melo, M.N.; do Monte-Neto, R.L.; de Melo, I.M.M.; Diogo, E.B.T.; Ferreira, V.F.; Camara, C.A.; Valença, W.O.; de Oliveira, R.N.; Frézard, F.; da Silva, E.N., Jr Potent naphthoquinones against antimony-sensitive and -resistant Leishmania parasites: synthesis of novel α- and nor-α-lapachone-based 1,2,3-triazoles by copper-catalyzed azide-alkyne cycloaddition. Eur. J. Med. Chem., 2013, 63, 523-530.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.038] [PMID: 23535320]
[90]
Rodríguez-Hernández, D.; Barbosa, L.C.A.; Demuner, A.J.; de Almeida, R.M.; Fujiwara, R.T.; Ferreira, S.R. Highly potent anti-leishmanial derivatives of hederagenin, a triperpenoid from Sapindus saponaria L. Eur. J. Med. Chem., 2016, 124, 153-159.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.030] [PMID: 27569196]
[91]
van der Peet, P.; Ralton, J.E.; McConville, M.J.; Williams, S.J. Discovery of inhibitors of Leishmania β-1,2-mannosyltransferases using a click-chemistry-derived guanosine monophosphate library. PLoS One, 2012, 7(2)e32642
[http://dx.doi.org/10.1371/journal.pone.0032642] [PMID: 22393429]
[92]
Giannini, G.; Battistuzzi, G. Exploring in vitro and in vivo Hsp90 inhibitors activity against human protozoan parasites. Bioorg. Med. Chem. Lett., 2015, 25(3), 462-465.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.048] [PMID: 25547934]
[93]
Yousuf, M.; Mukherjee, D.; Dey, S.; Pal, C.; Adhikari, S. Antileishmanial ferrocenylquinoline derivatives: Synthesis and biological evaluation against Leishmania donovani. Eur. J. Med. Chem., 2016, 124, 468-479.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.049] [PMID: 27598235]
[94]
Stroppa, P.H.F.; Antinarelli, L.M.R.; Carmo, A.M.L.; Gameiro, J.; Coimbra, E.S.; da Silva, A.D. Effect of 1,2,3-triazole salts, non-classical bioisosteres of miltefosine, on Leishmania amazonensis. Bioorg. Med. Chem., 2017, 25(12), 3034-3045.
[http://dx.doi.org/10.1016/j.bmc.2017.03.051] [PMID: 28433512]
[95]
da Silva, E.R.; Boechat, N.; Pinheiro, L.C.S.; Bastos, M.M.; Costa, C.C.P.; Bartholomeu, J.C.; da Costa, T.H. Novel selective inhibitor of Leishmania (Leishmania) amazonensis arginase. Chem. Biol. Drug Des., 2015, 86(5), 969-978.
[http://dx.doi.org/10.1111/cbdd.12566] [PMID: 25845502]
[96]
Khan, I.; Zaib, S.; Ibrar, A.; Rama, N.H.; Simpson, J.; Iqbal, J. Synthesis, crystal structure and biological evaluation of some novel 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines. Eur. J. Med. Chem., 2014, 78, 167-177.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.046] [PMID: 24681981]
[97]
Suryawanshi, S.N.; Tiwari, A.; Kumar, S.; Shivahare, R.; Mittal, M.; Kant, P.; Gupta, S. Chemotherapy of leishmaniasis. Part XII: design, synthesis and bioevaluation of novel triazole integrated phenyl heteroterpenoids as antileishmanial agents. Bioorg. Med. Chem. Lett., 2013, 23(10), 2925-2928.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.055] [PMID: 23582274]
[98]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; O’Shea, I.P.; Wilkinson, S.R.; Kaiser, M.; Chatelain, E.; Ioset, J-R. Discovery of potent nitrotriazole-based antitrypanosomal agents: In vitro and in vivo evaluation. Bioorg. Med. Chem., 2015, 23(19), 6467-6476.
[http://dx.doi.org/10.1016/j.bmc.2015.08.014] [PMID: 26344593]
[99]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; O’Shea, I.P.; Wilkinson, S.R.; Kaiser, M. 3-Nitrotriazole-based piperazides as potent antitrypanosomal agents. Eur. J. Med. Chem., 2015, 103, 325-334.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.042] [PMID: 26363868]
[100]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Wilkinson, S.R.; Szular, J.; Kaiser, M. Nitrotriazole-based acetamides and propanamides with broad spectrum antitrypanosomal activity. Eur. J. Med. Chem., 2016, 123, 895-904.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.002] [PMID: 27543881]
[101]
Boechat, N.; Ferreira, V.F.; Ferreira, S.B.; Ferreira, M.L.G.; da Silva, F.C.; Bastos, M.M.; Costa, M.S.; Lourenço, M.S.C.; Pinto, A.C.; Krettli, A.U.; Aguiar, A.C.; Teixeira, B.M.; da Silva, N.V.; Martins, P.R.C.; Bezerra, F.A.F.M. Camilo, A.L.S.; da Silva, G.P.; Costa, C.C.P. Novel 1,2,3-Triazole Derivatives for Use against Mycobacterium tuberculosis H37Rv (ATCC 27294). Strain. J. Med. Chem., 2011, 54, 5988-5999.
[http://dx.doi.org/10.1021/jm2003624] [PMID: 21776985]
[102]
Gonzaga, D.T.G.; da Rocha, D.R. da Silva, Fde.C.; Ferreira, V.F. Recent advances in the synthesis of new antimycobacterial agents based on the 1H-1,2,3-triazoles. Curr. Top. Med. Chem., 2013, 13(22), 2850-2865.
[http://dx.doi.org/10.2174/15680266113136660202] [PMID: 24111906]
[103]
World Health Organization (WHO): Leishmaniasis Fact Sheet.. http://www.who.int/mediacentre/factsheets/fs104/en/ (Accessed October 15, 2016).
[104]
Rožman, K.; Sosič, I.; Fernandez, R.; Young, R.J.; Mendoza, A.; Gobec, S.; Encinas, L. A new ‘golden age’ for the antitubercular target InhA. Drug Discov. Today, 2017, 22(3), 492-502.
[http://dx.doi.org/10.1016/j.drudis.2016.09.009] [PMID: 27663094]
[105]
Shiradkar, M.; Suresh Kumar, G.V.; Dasari, V.; Tatikonda, S.; Akula, K.C.A.; Shah, R. Clubbed triazoles: a novel approach to antitubercular drugs. Eur. J. Med. Chem., 2007, 42(6), 807-816.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.001] [PMID: 17239490]
[106]
Yempala, T.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D.; Kantevari, S. Rational design and synthesis of novel dibenzo[b,d]furan-1,2,3-triazole conjugates as potent inhibitors of Mycobacterium tuberculosis. Eur. J. Med. Chem., 2014, 71, 160-167.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.082] [PMID: 24292337]
[107]
Keri, R.S.; Patil, S.A.; Budagumpi, S.; Nagaraja, B.M. Triazole: A Promising Antitubercular Agent. Chem. Biol. Drug Des., 2015, 86(4), 410-423.
[http://dx.doi.org/10.1111/cbdd.12527] [PMID: 25643871]
[108]
Sarkar, S.; Suresh, M.R. An overview of tuberculosis chemotherapy - a literature review. J. Pharm. Pharm. Sci., 2011, 14(2), 148-161.
[http://dx.doi.org/10.18433/J33591] [PMID: 21733406]
[109]
Bankowska, E.; Wróblewski, A.E. Derivatives of 1,2,3-triazole. Potential drugs? Wiadomości Chemiczne, 2012, 66, 11-12.
[110]
Kumar, D. Beena; Khare, G.; Kidwai, S.; Tyagi, A.K.; Singh, R.; Rawat, D.S. Synthesis of novel 1,2,3-triazole derivatives of isoniazid and their in vitro and in vivo antimycobacterial activity evaluation. Eur. J. Med. Chem., 2014, 81, 301-313.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.005] [PMID: 24852277]
[111]
Kim, S.; Cho, S-N.; Oh, T.; Kim, P. Design and synthesis of 1H-1,2,3-triazoles derived from econazole as antitubercular agents. Bioorg. Med. Chem. Lett., 2012, 22(22), 6844-6847.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.041] [PMID: 23058885]
[112]
Menendez, C.; Gau, S.; Lherbet, C.; Rodriguez, F.; Inard, C.; Pasca, M.R.; Baltas, M. Synthesis and biological activities of triazole derivatives as inhibitors of InhA and antituberculosis agents. Eur. J. Med. Chem., 2011, 46(11), 5524-5531.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.013] [PMID: 21944473]
[113]
Menendez, C.; Chollet, A.; Rodriguez, F.; Inard, C.; Pasca, M.R.; Lherbet, C.; Baltas, M. Chemical synthesis and biological evaluation of triazole derivatives as inhibitors of InhA and antituberculosis agents. Eur. J. Med. Chem., 2012, 52, 275-283.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.029] [PMID: 22483635]
[114]
Wilkinson, B.L.; Long, H.; Sim, E.; Fairbanks, A.J. Synthesis of Arabino glycosyl triazoles as potential inhibitors of mycobacterial cell wall biosynthesis. Bioorg. Med. Chem. Lett., 2008, 18(23), 6265-6267.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.082] [PMID: 18926698]
[115]
Singh, B.K.; Yadav, A.K.; Kumar, B.; Gaikwad, A.; Sinha, S.K.; Chaturvedi, V.; Tripathi, R.P. Preparation and reactions of sugar azides with alkynes: synthesis of sugar triazoles as antitubercular agents. Carbohydr. Res., 2008, 343(7), 1153-1162.
[http://dx.doi.org/10.1016/j.carres.2008.02.013] [PMID: 18346719]
[116]
Gill, C.; Jadhav, G.; Shaikh, M.; Kale, R.; Ghawalkar, A.; Nagargoje, D.; Shiradkar, M. Clubbed [1,2,3] triazoles by fluorine benzimidazole: a novel approach to H37Rv inhibitors as a potential treatment for tuberculosis. Bioorg. Med. Chem. Lett., 2008, 18(23), 6244-6247.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.096] [PMID: 18930654]
[117]
Castagnolo, D.; Radi, M.; Dessì, F.; Manetti, F.; Saddi, M.; Meleddu, R.; De Logu, A.; Botta, M. Synthesis and biological evaluation of new enantiomerically pure azole derivatives as inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2009, 19(8), 2203-2205.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.101] [PMID: 19299129]
[118]
Tripathi, R.P.; Yadav, A.K.; Ajay, A.; Bisht, S.S.; Chaturvedi, V.; Sinha, S.K. Application of Huisgen (3+2) cycloaddition reaction: synthesis of 1-(2,3-dihydrobenzofuran-2-yl-methyl [1,2,3]-triazoles and their antitubercular evaluations. Eur. J. Med. Chem., 2010, 45(1), 142-148.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.036] [PMID: 19846238]
[119]
Patpi, S.R.; Pulipati, L.; Yogeeswari, P.; Sriram, D.; Jain, N.; Sridhar, B.; Murthy, R.; Anjana Devi, T.; Kalivendi, S.V.; Kantevari, S. Design, synthesis, and structure-activity correlations of novel dibenzo[b,d]furan, dibenzo[b,d]thiophene, and N-methylcarbazole clubbed 1,2,3-triazoles as potent inhibitors of Mycobacterium tuberculosis. J. Med. Chem., 2012, 55(8), 3911-3922.
[http://dx.doi.org/10.1021/jm300125e] [PMID: 22449006]
[120]
Zhou, B.; He, Y.; Zhang, X.; Xu, J.; Luo, Y.; Wang, Y.; Franzblau, S.G.; Yang, Z.; Chan, R.J.; Liu, Y.; Zheng, J.; Zhang, Z-Y. Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc. Natl. Acad. Sci. USA, 2010, 107(10), 4573-4578.
[http://dx.doi.org/10.1073/pnas.0909133107] [PMID: 20167798]
[121]
Shiradkar, M.R.; Murahari, K.K.; Gangadasu, H.R.; Suresh, T.; Kalyan, C.A.; Panchal, D.; Kaur, R.; Burange, P.; Ghogare, J.; Mokale, V.; Raut, M. Synthesis of new S-derivatives of clubbed triazolyl thiazole as anti-Mycobacterium tuberculosis agents. Bioorg. Med. Chem., 2007, 15(12), 3997-4008.
[http://dx.doi.org/10.1016/j.bmc.2007.04.003] [PMID: 17442576]
[122]
Mundhe, D.; Chandewar, A.V.; Shiradkar, M.R. Design and synthesis of substituted clubbed triazolyl thiazole as XDR & MDR antituberculosis agents Part-II. Der Pharma Chem., 2011, 3(6), 89-102.
[123]
Suresh Kumar, G.V.; Rajendraprasad, Y.; Mallikarjuna, B.P.; Chandrashekar, S.M.; Kistayya, C. Synthesis of some novel 2-substituted-5-[isopropylthiazole] clubbed 1,2,4-triazole and 1,3,4-oxadiazoles as potential antimicrobial and antitubercular agents. Eur. J. Med. Chem., 2010, 45(5), 2063-2074.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.045] [PMID: 20149496]
[124]
Kakwani, M.D.; Palsule Desai, N.H.; Lele, A.C.; Ray, M.; Rajan, M.G.R.; Degani, M.S. Synthesis and preliminary biological evaluation of novel N-(3-aryl-1,2,4-triazol-5-yl) cinnamamide derivatives as potential antimycobacterial agents: an operational Topliss Tree approach. Bioorg. Med. Chem. Lett., 2011, 21(21), 6523-6526.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.076] [PMID: 21917452]
[125]
Westwood, I.M.; Bhakta, S.; Russell, A.J.; Fullam, E.; Anderton, M.C.; Kawamura, A.; Mulvaney, A.W.; Vickers, R.J.; Bhowruth, V.; Besra, G.S.; Lalvani, A.; Davies, S.G.; Sim, E. Identification of arylamine N-acetyltransferase inhibitors as an approach towards novel anti-tuberculars. Protein Cell, 2010, 1(1), 82-95.
[http://dx.doi.org/10.1007/s13238-010-0006-1] [PMID: 21204000]
[126]
Mohan Krishna, K.; Inturi, B.; Pujar, G.V.; Purohit, M.N.; Vijaykumar, G.S. Design, synthesis and 3D-QSAR studies of new diphenylamine containing 1,2,4-triazoles as potential antitubercular agents. Eur. J. Med. Chem., 2014, 84, 516-529.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.051] [PMID: 25055342]
[127]
Hunashal, R.D.; Satyanarayana, D. One pot synthesis of 3-(substituted phenoxymethyl)-6- phenyl/substituted phenoxymethyl-1,2,4-triazolo[3,4-b][1,3,4] thiadiazole derivatives as antimicrobial agents. Int. J. Pharma Bio Sci., 2012, 3(4), 183-192.
[128]
Desai, N.H.P.; Bairwa, R.; Kakwani, M.; Tawari, N.; Ray, M.K.; Rajan, M.G.; Degani, M. Novel 4H-1,2,4-triazol-3-yl cycloalkanols as potent antitubercular agents. Med. Chem. Res., 2013, 22, 401-408.
[http://dx.doi.org/10.1007/s00044-012-0043-9]
[129]
Patel, N.B.; Khan, I.H.; Rajani, S.D. Antimycobacterial and antimicrobial study of new 1,2,4-triazoles with benzothiazoles. Arch. Pharm. (Weinheim), 2010, 343(11-12), 692-699.
[http://dx.doi.org/10.1002/ardp.201000061] [PMID: 21110343]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy