Abstract
Eukaryotic cells respond to various types of stresses caused by changes in the extracellular environment. Intracellular factors, such as the accumulation of misfolded proteins in the endoplasmic reticulum (ER), also cause stress and activate the unfolded protein response (UPR), which induces the expression of chaperones and proteins involved in the recovery process. However, if the stress is excessive or sustained, and ER function cannot be restored, the UPR triggers apoptosis, thereby removing the affected cell. It is now apparent that ER stress is also a potent trigger for autophagy, a self-degradative process that has an adaptive function. This review surveys the intersection of ER stress and autophagy and highlights the potential therapeutic implications thereof.
Keywords: Autophagy, chaperones, endoplasmic reticulum stress, apoptosis, unfolded protein responses.
Current Molecular Medicine
Title:ER Stress and Autophagy
Volume: 15 Issue: 8
Author(s): W. -S. Lee, W. -H. Yoo and H. -J. Chae
Affiliation:
Keywords: Autophagy, chaperones, endoplasmic reticulum stress, apoptosis, unfolded protein responses.
Abstract: Eukaryotic cells respond to various types of stresses caused by changes in the extracellular environment. Intracellular factors, such as the accumulation of misfolded proteins in the endoplasmic reticulum (ER), also cause stress and activate the unfolded protein response (UPR), which induces the expression of chaperones and proteins involved in the recovery process. However, if the stress is excessive or sustained, and ER function cannot be restored, the UPR triggers apoptosis, thereby removing the affected cell. It is now apparent that ER stress is also a potent trigger for autophagy, a self-degradative process that has an adaptive function. This review surveys the intersection of ER stress and autophagy and highlights the potential therapeutic implications thereof.
Export Options
About this article
Cite this article as:
Lee -S. W., Yoo -H. W. and Chae -J. H., ER Stress and Autophagy, Current Molecular Medicine 2015; 15(8) . https://dx.doi.org/10.2174/1566524015666150921105453
DOI https://dx.doi.org/10.2174/1566524015666150921105453 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |

- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
- Forthcoming Thematic Issues
Related Articles
-
Metabolism and the Paradoxical Effects of Arsenic: Carcinogenesis and Anticancer
Current Medicinal Chemistry Brain Tumor Detection and Classification by Hybrid CNN-DWA Model Using MR Images
Current Medical Imaging Advances in Cancer Stem Cell Therapy: Targets and Treatments
Recent Patents on Regenerative Medicine Role of Tyrosine Phosphatase Inhibitors in Cancer Treatment with Emphasis on SH2 Domain-Containing Tyrosine Phosphatases (SHPs)
Anti-Cancer Agents in Medicinal Chemistry Opportunities and Challenges of Fluorescent Carbon Dots in Translational Optical Imaging
Current Pharmaceutical Design Lipid based Nanocapsules: A Multitude of Biomedical Applications
Current Pharmaceutical Biotechnology Passive and Active Tumour Targeting with Nanocarriers
Current Drug Discovery Technologies Cancer Stem Cells and Colorectal Cancer: An Overview
Current Topics in Medicinal Chemistry Gefitinib Targets EGFR Dimerization and ERK1/2 Phosphorylation to Inhibit Pleural Mesothelioma Cell Proliferation
Current Cancer Drug Targets Current Status on Natural Products with Antitumor Activity from Brazilian Marine Sponges
Current Pharmaceutical Biotechnology In Silico Prediction Models for Blood-Brain Barrier Permeation
Current Medicinal Chemistry ATP Citrate Lyase (ACLY): A Promising Target for Cancer Prevention and Treatment
Current Drug Targets T2/FLAIR Hyperintensity in Mesial Temporal Lobe: Challenging Differential Diagnosis
Current Medical Imaging Nanotechnology Based Theranostic Approaches in Alzheimer's Disease Management: Current Status and Future Perspective
Current Alzheimer Research Electroporation Advances in Large Animals
Current Gene Therapy Nanotechnology in Therapeutics – Current Technologies and Applications
Current Nanoscience Hijacking the Hedgehog Pathway in Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry Age and Dose-Dependent Effects of Alpha-Lipoic Acid on Human Microtubule- Associated Protein Tau-Induced Endoplasmic Reticulum Unfolded Protein Response: Implications for Alzheimer’s Disease
CNS & Neurological Disorders - Drug Targets Strategies for Targeting Lentiviral Vectors
Current Gene Therapy mTOR Inhibitors: Facing New Challenges Ahead
Current Medicinal Chemistry