Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Neuropeptide FF Inhibits LPS-Mediated Osteoclast Differentiation of RAW264.7 Cells

Author(s): Yu-long Sun, Zhi-hao Chen, Di-jie Li, Fan Zhao, Xiao-li Ma, Peng Shang, Tuanming Yang and Airong Qian

Volume 22 , Issue 3 , 2015

Page: [270 - 284] Pages: 15

DOI: 10.2174/0929866522666150115113428

Price: $65

Abstract

Neuropeptide FF (NPFF) has been implicated in many physiological processes. Previously, we have reported that NPFF modulates the viability and nitric oxide (NO) production of RAW264.7 macrophages. In this study, we investigated the influence of NPFF on lipopolysaccharide (LPS)-mediated osteoclast formation of RAW264.7 cells. Our results suggest that, NPFF dose-dependently (1 nM, 10 nM and 100 nM) inhibited osteoclast formation, TRAP enzyme activity and bone resorption in osteoclasts induced by LPS respectively. Moreover, LPS-provoked NO release was also inhibited by NPFF treatment, indicating a NO-dependent pathway is mainly involved. Furthermore, the alterations of osteoclast marker genes were also assessed including TRAP, Cathepsin K, MMP-9, NFATc1 and Runx2. NPFF downregulated LPS-caused gene augmentations of TRAP, Cathepsin K and MMP-9, whereas showed no influences on NFATc1 and Runx2. In addition, NPFF receptor 2 (NPFFR2) mRNA expression was also augmented in response to NPFF treatment, hinting the involvement of NPFFR2 pathway. It should be mentioned that RF9 (1 µ M), a reported pharmacological inhibitor for NPFF receptors, exerted NPFF-like agonist properties as to attenuate osteoclastogenesis. Collectively, our findings provide new evidence for the in vitro activity of NPFF on osteoclasts, which may be helpful to extend the scope of NPFF functions.

Keywords: Bone resorption, LPS, Neuropeptide FF, NPFFR2, Osteoclast, RF9.

Graphical Abstract

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy