Abstract
Mitochondrial dysfunction plausibly underlies the aging-associated brain degeneration. Mitochondria play a pivotal role in cellular bioenergetics and cell-survival. Oxidative stress consequent to chronic hypoperfusion induces mitochondrial damage, which is implicated as the primary cause of cerebrovascular accidents (CVA) mediated Alzheimer's disease (AD). The mitochondrial function deteriorates with aging, and the mitochondrial damage correlates with increased intracellular production of oxidants and pro-oxidants. The prolonged oxidative stress and the resultant hypoperfusion in the brain tissues stimulate the expression of nitric oxide synthase (NOS) enzymes, which further drives the formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The ROS and RNS collectively contributes to the dysfunction of the blood-brain barrier (BBB) and damage to the brain parenchymal cells. Delineating the molecular mechanisms of these processes may provide clues for the novel therapeutic targets for CVA and AD patients.
Keywords: Alzheimer disease, antioxidants, cerebrovascular pathology, mitochondria, neurodegeneration, oxidative stress.
Current Medicinal Chemistry
Title:Oxidative Stress Mediated Mitochondrial and Vascular Lesions as Markers in the Pathogenesis of Alzheimer Disease
Volume: 21 Issue: 19
Author(s): G. Aliev, M. Priyadarshini, V. P. Reddy, N.H. Grieg, Y. Kaminsky, R. Cacabelos, G. Md Ashraf, N.R. Jabir, M.A. Kamal, V.N. Nikolenko, A.A. Zamyatnin Jr., V. V. Benberin and S.O. Bachurin
Affiliation:
Keywords: Alzheimer disease, antioxidants, cerebrovascular pathology, mitochondria, neurodegeneration, oxidative stress.
Abstract: Mitochondrial dysfunction plausibly underlies the aging-associated brain degeneration. Mitochondria play a pivotal role in cellular bioenergetics and cell-survival. Oxidative stress consequent to chronic hypoperfusion induces mitochondrial damage, which is implicated as the primary cause of cerebrovascular accidents (CVA) mediated Alzheimer's disease (AD). The mitochondrial function deteriorates with aging, and the mitochondrial damage correlates with increased intracellular production of oxidants and pro-oxidants. The prolonged oxidative stress and the resultant hypoperfusion in the brain tissues stimulate the expression of nitric oxide synthase (NOS) enzymes, which further drives the formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The ROS and RNS collectively contributes to the dysfunction of the blood-brain barrier (BBB) and damage to the brain parenchymal cells. Delineating the molecular mechanisms of these processes may provide clues for the novel therapeutic targets for CVA and AD patients.
Export Options
About this article
Cite this article as:
Aliev G., Priyadarshini M., Reddy P. V., Grieg N.H., Kaminsky Y., Cacabelos R., Ashraf Md G., Jabir N.R., Kamal M.A., Nikolenko V.N., Jr. Zamyatnin A.A., Benberin V. V. and Bachurin S.O., Oxidative Stress Mediated Mitochondrial and Vascular Lesions as Markers in the Pathogenesis of Alzheimer Disease, Current Medicinal Chemistry 2014; 21(19) . https://dx.doi.org/10.2174/0929867321666131227161303
DOI https://dx.doi.org/10.2174/0929867321666131227161303 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |

- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
- Forthcoming Thematic Issues
Related Articles
-
Structure and Function of the Epstein-Barr Virus Transcription Factor, EBNA 3C
Current Protein & Peptide Science Transdermal Nutraceuticals Delivery System for CNS Disease
CNS & Neurological Disorders - Drug Targets Understanding the Multifaceted Role of Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) and its Altered Behaviour in Human Diseases
Current Molecular Medicine ABC Transporter Inhibitors in Reversing Multidrug Resistance to Chemotherapy
Current Drug Targets A Novel µ-Opioid Receptor Ligand with High In Vitro and In Vivo Agonist Efficacy
Current Medicinal Chemistry The Role of Tau Phosphorylation in the Pathogenesis of Alzheimers Disease
Current Alzheimer Research Natural Products as Promising Drug Candidates for the Treatment of Alzheimer’s Disease: Molecular Mechanism Aspect
Current Neuropharmacology PROTACs: Promising Approaches for Epigenetic Strategies to Overcome Drug Resistance
Current Cancer Drug Targets Synthesis of the Alzheimer Drug Posiphen into its Primary Metabolic Products (+)-N1-norPosiphen, (+)-N8-norPosiphen and (+)-N1, N8-bisnorPosiphen, their Inhibition of Amyloid Precursor Protein, α -Synuclein Synthesis, Interleukin-1β Release, and Cholinergic Action.
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry Tryptamine Induces Axonopathy and Mitochondriopathy Mimicking Neurodegenerative Diseases via Tryptophanyl-tRNA Deficiency
Current Alzheimer Research Procarbazine – A Traditional Drug in the Treatment of Malignant Gliomas
Current Medicinal Chemistry Hemoglobin Neurotoxicity is Attenuated by Inhibitors of the Protein Kinase CK2 Independent of Heme Oxygenase Activity
Current Neurovascular Research Anticancer Potential of Aguerin B, a Sesquiterpene Lactone Isolated from <i>Centaurea behen</i> in Metastatic Breast Cancer Cells
Recent Patents on Anti-Cancer Drug Discovery Paraneoplastic Neurological Syndromes - Diagnosis and Management
Current Pharmaceutical Design Redox Processes in Neurodegenerative Disease Involving Reactive Oxygen Species
Current Neuropharmacology Apoptosis-Inducing Activity of the S100A8/A9 Heterodimer
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry Cholinergic Targets in Lung Cancer
Current Pharmaceutical Design Mitochondrial Dysfunctions in Bipolar Disorder: Effect of the Disease and Pharmacotherapy
CNS & Neurological Disorders - Drug Targets Dental Stem Cell in Tooth Development and Advances of Adult Dental Stem Cell in Regenerative Therapies
Current Stem Cell Research & Therapy The Role of the Osteoimmune Axis in the Inflammation of the Inner Auditory Ear and with Regard to the Putative Anticarcinogenetic Principle: Part 2
Inflammation & Allergy - Drug Targets (Discontinued)