Abstract
The basic Helix-Loop-Helix/PER-ARNT-SIM (bHLH-PAS) domain family of transcription factors mediates cellular responses to a variety of internal and external stimuli. As functional transcription factors, these proteins act as bHLH-PAS heterodimers and can be further sub-classified into sensory/activated subunits and regulatory or ARNT-like proteins. This class of proteins act as master regulators of the bHLHPAS superfamily of transcription factors that mediate circadian rhythm gene programs, innate and adaptive immune responses, oxygen-sensing mechanisms and compensate for deleterious environmental exposures. Some contribute to the etiology of human pathologies including cancer because of their effects on cell growth and metabolism. We will review the canonical roles of ARNT and ARNT-like proteins with an emphasis on coactivator selectivity and recruitment. We will also discuss recent advances in our understanding of noncanonical DNA-binding independent or off-target roles of ARNT that are uncoupled from its classic heterodimeric bHLH-PAS binding partners. Understanding the DNA binding-independent functions of ARNT may identify novel therapeutic options for the treatment of a large spectrum of disease states.
Keywords: ARNT, bHLH-PAS, circadian rhythm, cross-talk, environmental sensor, oxygen sensing, transcription factor.
Current Molecular Medicine
Title:The Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT) Family of Proteins: Transcriptional Modifiers with Multi-Functional Protein Interfaces
Volume: 13 Issue: 7
Author(s): M. P. Labrecque, G. G. Prefontaine and T. V. Beischlag
Affiliation:
Keywords: ARNT, bHLH-PAS, circadian rhythm, cross-talk, environmental sensor, oxygen sensing, transcription factor.
Abstract: The basic Helix-Loop-Helix/PER-ARNT-SIM (bHLH-PAS) domain family of transcription factors mediates cellular responses to a variety of internal and external stimuli. As functional transcription factors, these proteins act as bHLH-PAS heterodimers and can be further sub-classified into sensory/activated subunits and regulatory or ARNT-like proteins. This class of proteins act as master regulators of the bHLHPAS superfamily of transcription factors that mediate circadian rhythm gene programs, innate and adaptive immune responses, oxygen-sensing mechanisms and compensate for deleterious environmental exposures. Some contribute to the etiology of human pathologies including cancer because of their effects on cell growth and metabolism. We will review the canonical roles of ARNT and ARNT-like proteins with an emphasis on coactivator selectivity and recruitment. We will also discuss recent advances in our understanding of noncanonical DNA-binding independent or off-target roles of ARNT that are uncoupled from its classic heterodimeric bHLH-PAS binding partners. Understanding the DNA binding-independent functions of ARNT may identify novel therapeutic options for the treatment of a large spectrum of disease states.
Export Options
About this article
Cite this article as:
Labrecque P. M., Prefontaine G. G. and Beischlag V. T., The Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT) Family of Proteins: Transcriptional Modifiers with Multi-Functional Protein Interfaces, Current Molecular Medicine 2013; 13(7) . https://dx.doi.org/10.2174/15665240113139990042
DOI https://dx.doi.org/10.2174/15665240113139990042 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |

- Author Guidelines
- Editorial Policies
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Allegations from Whistleblowers
- Publishing Ethics and Rectitude
- Increase Visibility Of Your Article
- Archiving Policies
- Reviewer Guidelines
- Guest Editor Guidelines
- Board Recruitment Workflow
- Short Guide for New Editors
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Announcements
- Forthcoming Thematic Issues
Related Articles
-
HS-MMGKG: A Fast Multi-objective Harmony Search Algorithm for Two-locus Model Detection in GWAS
Current Bioinformatics Preparation and Characterization of Amine- and Carboxylic Acid-functionalized Superparamagnetic Iron Oxide Nanoparticles Through a One-step Facile Electrosynthesis Method
Current Nanoscience Applications of Lipid based Formulation Technologies in the Delivery of Biotechnology-based Therapeutics
Current Pharmaceutical Biotechnology Synthesis and Cytotoxicity of 4-(2-Adamantyl)phenylalkylamines
Letters in Organic Chemistry Human Apurinic/Apyrimidinic Endonuclease (APE1): An Emerging Anti-Cancer Biomarker
Recent Patents on Biomarkers ANTI-ADHESION Evolves To a Promising Therapeutic Concept in Oncology
Current Medicinal Chemistry Technological Advances in Preclinical Drug Evaluation: The Role of -Omics Methods
Current Medicinal Chemistry Targeting Aberrant TGF-β Signaling in Pre-Clinical Models of Cancer
Anti-Cancer Agents in Medicinal Chemistry A Ferrocene Derivative Reduces Cisplatin Resistance in Breast Cancer Cells through Suppression of MDR-1 Expression and Modulation of JAK2/STAT3 Signaling Pathway
Anti-Cancer Agents in Medicinal Chemistry The Post Hoc Use of Randomised Controlled Trials to Explore Drug Associated Cancer Outcomes: Methodological Challenges
Current Drug Safety Metabolomics: A Revolution for Novel Cancer Marker Identification
Combinatorial Chemistry & High Throughput Screening Pharmacological Activity of Natural Non-glycosylated Triterpenes
Mini-Reviews in Organic Chemistry MicroRNAs: The New Challenge for Traumatic Brain Injury Diagnosis
Current Neuropharmacology Cytokines, Inflammation and Colon Cancer
Current Cancer Drug Targets Reverse Screening Bioinformatics Approach to Identify Potential Anti Breast Cancer Targets Using Thymoquinone from Neutraceuticals Black Cumin Oil
Anti-Cancer Agents in Medicinal Chemistry Artesunate Enhances the Antiproliferative Effect of Temozolomide on U87MG and A172 Glioblastoma Cell Lines
Anti-Cancer Agents in Medicinal Chemistry Aflibercept (VEGF-TRAP): The Next Anti-VEGF Drug
Inflammation & Allergy - Drug Targets (Discontinued) Invasive Aspergillosis in Children and Adolescents
Current Pharmaceutical Design TRPV1 Antagonists as a Potential Treatment for Hyperalgesia
Recent Patents on CNS Drug Discovery (Discontinued) Therapeutic Potential of Targeting the Endocannabinoids: Implications for the Treatment of Obesity, Metabolic Syndrome, Drug Abuse and Smoking Cessation
Current Medicinal Chemistry