Generic placeholder image

Recent Patents on Electrical Engineering

Editor-in-Chief

ISSN (Print): 1874-4761
ISSN (Online): 2213-1132

Relative Intensity Noise for Self-Assembled III-Nitrides Quantum-Dot Lasers

Author(s): Hussein B. AL-Husseini and Amin H. Al-Khursan

Volume 3, Issue 3, 2010

Page: [211 - 217] Pages: 7

DOI: 10.2174/1874476111003030211

Price: $65

Abstract

Rate-equation model with a four-level system is used to study relative intensity noise (RIN) in III-nitrides quantum-dot (QD) lasers. These levels are: the ground- and excited-states in the QD, the wetting layer (WL) and separate confinement heterostructure (SCH) layers. The most possible relaxation paths and carrier transport are considered in two types of QD structures: GaN/AlxGa1-xN/AlN and InxGa1-xN/ In0.04Ga0.96N /GaN. Effect of: QD and WL compositions, QD sizes, doped and undoped active regions is studied. The RIN is shown to be reduced with higher Al content in the WL, while an increased is shown for InGaN QD structures. RIN decreases with size reduction. Increased doping until 12 acceptors/QD reduced RIN also. The article presents some promising patents on Quantum-Dot Lasers.

Keywords: III-Nitrides, Relative Intensity Noise (RIN), Quantum-Dot (QD), semiconductor lasers.


Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy