Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Nature Inspired Structured Surfaces for Biomedical Applications

Author(s): H. K. Webb, J. Hasan, V. K. Truong, R. J. Crawford and E. P. Ivanova

Volume 18 , Issue 22 , 2011

Page: [3367 - 3375] Pages: 9

DOI: 10.2174/092986711796504673

Price: $65

Abstract

Nature has created an array of superhydrophobic surfaces that possess water-repellent, self-cleaning and anti-icing properties. These surfaces have a number of potential applications in the biomedical industry, as they have the potential to control protein adsorption and cell adhesion. Natural superhydrophobic surfaces are typically composed of materials with a low intrinsic surface free-energy (e.g the cuticular waxes of lotus leaves and insect wings) with a hierarchical structural configuration. This hierarchical surface topography acts to decrease the contact area of water droplets in contact with the surface, thereby increasing the extent of the air/water interface, resulting in water contact angles greater than 150° . In order to employ these surfaces in biotechnological applications, fabrication techniques must be developed so that these multi-scale surface roughness characteristics can be reproduced. Additionally, these fabrication techniques must also be able to be applied to the material required for the intended application. An overview of some of the superhydrophobic surfaces that exist in nature is presented, together with an explanation of the theories of their wettability. Also included is a description of some of the biomedical applications of superhydrophobic surfaces and fabrication techniques that can be used to mimic superhydrophobic surfaces found in nature.

Keywords: Biomaterials, superhydrophobic surfaces, fabrication techniques, insect wings, lotus leaves, roughness, water-repellent, free-energy, biomedical applications


Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy