Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Research Article

Sorafenib Loaded Resealed Erythrocytes for the Treatment of Hepatocellular Carcinoma

Author(s): Raj M. Desai, Neha Desai, Munira Momin and Lokesh Kumar Bhatt*

Volume 17, Issue 1, 2023

Published on: 09 March, 2023

Page: [61 - 70] Pages: 10

DOI: 10.2174/2667387817666230228145946

Price: $65

Abstract

Background: This study aims to formulate and characterize sorafenib-loaded resealed erythrocytes (SoRE) and investigate their anticancer activity in a rat model of hepatocellular carcinoma.

Methods: SoRE were prepared by hypotonic dialysis of red blood cells obtained from Wistar rats using a range of drug-containing dialysis mediums (2-10 mg/ml) and osmosis time (30-240 mins). Optimized SoRE (8 mg/mL and 240 mins) were characterized for size, morphology, stability, entrapment efficiency, in vitro release profiles, and in vivo efficacy evaluations. For efficacy studies, optimized SoRE were intravenously administered to Wistar rats having hepatocellular lesions induced by aflatoxin B and monitored for in vivo antineoplastic activity.

Results: The amount of sorafenib entrapped was directly proportional to the drug concentration in the dialysis medium and duration of osmosis; highest for 10 mg/mL and 240 minutes and lowest for 2 mg/mL and 30 minutes, respectively. Optimized SoRE were biconcave with a size of 112.7 nm and zeta potential of -11.95 ± 2.25 mV. Osmotic and turbulence fragility were comparable with native erythrocytes.

Conclusion: Drug release follows the first-order pattern. In vivo investigations reveal better anticancer activity of SoRE formulation compared to sorafenib standard preparation. Resealed erythrocytes loaded with sorafenib displayed first-order in vitro release and promising anticancer activity in a rat model of hepatocellular carcinoma.

Keywords: Resealed erythrocytes, hypotonic dialysis, sorafenib, hepatocellular carcinoma, anticancer activity, aflatoxin B, HPLC.

Graphical Abstract
[1]
Chen F, Fang Y, Zhao R, et al. Evolution in medicinal chemistry of sorafenib derivatives for hepatocellular carcinoma. Eur J Med Chem 2019; 179: 916-35.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.070]
[2]
Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primerers 2021; 7(1): 1-28.
[3]
Zheng R, Zeng H, Zhang S, Chen W. Estimates of cancer incidence and mortality in China, 2013. Chin J Cancer 2017; 36(1): 66.
[http://dx.doi.org/10.1186/s40880-017-0234-3] [PMID: 28818111]
[4]
Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64(19): 7099-109.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1443] [PMID: 15466206]
[5]
Chang YS, Adnane J, Trail PA, et al. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol 2007; 59(5): 561-74.
[http://dx.doi.org/10.1007/s00280-006-0393-4] [PMID: 17160391]
[6]
Marisi G, Cucchetti A, Ulivi P, et al. Ten years of sorafenib in hepatocellular carcinoma: Are there any predictive and/or prognostic markers? World J Gastroenterol 2018; 24(36): 4152-63.
[http://dx.doi.org/10.3748/wjg.v24.i36.4152] [PMID: 30271080]
[7]
Wang X, Fan J, Liu Y, Zhao B, Jia Z, Zhang Q. Bioavailability and pharmacokinetics of sorafenib suspension, nanoparticles and nanomatrix for oral administration to rat. Int J Pharm 2011; 419(1-2): 339-46.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.003] [PMID: 21843612]
[8]
Blanchet B, Billemont B, Cramard J, et al. Validation of an HPLC-UV method for sorafenib determination in human plasma and application to cancer patients in routine clinical practice. J Pharm Biomed Anal 2009; 49(4): 1109-14.
[http://dx.doi.org/10.1016/j.jpba.2009.02.008] [PMID: 19278805]
[9]
Hamidi M, Zarrin A, Foroozesh M, Mohammadi-Samani S. Applications of carrier erythrocytes in delivery of biopharmaceuticals. J Control Release 2007; 118(2): 145-60.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.032] [PMID: 17270305]
[10]
Protasov ES, Borsakova DV, Alexandrovich YG, et al. Erythrocytes as bioreactors to decrease excess ammonium concentration in blood. Sci Rep 2019; 9(1): 1455.
[http://dx.doi.org/10.1038/s41598-018-37828-5] [PMID: 30728433]
[11]
Talwar N, Jaind NK. Erythrocyte based delivery system of primaquine: In vitro characterization. J Microencapsul 1992; 9(3): 357-64.
[http://dx.doi.org/10.3109/02652049209021250] [PMID: 1403486]
[12]
Lizano C, Pérez MT, Pinilla M. Mouse erythrocytes as carriers for coencapsulated alcohol and aldehyde dehydrogenase obtained by electroporation. Life Sci 2001; 68(17): 2001-16.
[http://dx.doi.org/10.1016/S0024-3205(01)00991-2] [PMID: 11388702]
[13]
Silva DCN, Jovino CN, Silva CAL, et al. Optical tweezers as a new biomedical tool to measure zeta potential of stored red blood cells. PLoS One 2012; 7(2): e31778.
[http://dx.doi.org/10.1371/journal.pone.0031778] [PMID: 22363729]
[14]
Tokumasu F, Ostera GR, Amaratunga C, Fairhurst RM. Modifications in erythrocyte membrane zeta potential by Plasmodium falciparum infection. Exp Parasitol 2012; 131(2): 245-51.
[http://dx.doi.org/10.1016/j.exppara.2012.03.005] [PMID: 22459624]
[15]
Petrikovics I, Cannon EP, McGuinn WD, et al. Cyanide antagonism with carrier erythrocytes and organic thiosulfonates. Fundam Appl Toxicol 1995; 24(1): 86-93.
[http://dx.doi.org/10.1006/faat.1995.1010] [PMID: 7713346]
[16]
Bodemann H, Passow H. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis. J Membr Biol 1972; 8(1): 1-26.
[http://dx.doi.org/10.1007/BF01868092] [PMID: 4628383]
[17]
Bustos NL, Batlle AM. Enzyme replacement therapy in porphyrias--V. in vivo correction of delta-aminolaevulinate dehydratase defective in erythrocytes in lead intoxicated animals by enzyme-loaded red blood cell ghosts. Drug Des Deliv 1989; 5(2): 125-31.
[PMID: 2577982]
[18]
Leung P, Cannon EP, Petrikovics I, Hawkins A, Way JL. In vivo studies on rhodanese encapsulation in mouse carrier erythrocytes. Toxicol Appl Pharmacol 1991; 110(2): 268-74.
[http://dx.doi.org/10.1016/S0041-008X(05)80009-2] [PMID: 1891774]
[19]
Gautam S, Barna B, Chiang T, Pettay J, Deodhar S. Use of resealed erythrocytes as delivery system for C-reactive protein (CRP) to generate macrophage-mediated tumoricidal activity. J Biol Response Mod 1987; 6(3): 346-54.
[PMID: 3598603]
[20]
Hamidi M, Zarei N, Zarrin AH, Mohammadi-Samani S. Preparation and in vitro characterization of carrier erythrocytes for vaccine delivery. Int J Pharm 2007; 338(1-2): 70-8.
[http://dx.doi.org/10.1016/j.ijpharm.2007.01.025] [PMID: 17317049]
[21]
Briones E, Colino CI, Lanao JM. Study of the factors influencing the encapsulation of zidovudine in rat erythrocytes. Int J Pharm 2010; 401(1-2): 41-6.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.006] [PMID: 20854886]
[22]
Hamidi M, Tajerzadeh H, Dehpour AR, Rouini MR, Ejtemaee-Mehr S. In vitro characterization of human intact erythrocytes loaded by enalaprilat. Drug Deliv 2001; 8(4): 223-30.
[http://dx.doi.org/10.1080/107175401317245903] [PMID: 11757780]
[23]
Fernandes HP, Cesar CL, Barjas-Castro ML. Electrical properties of the red blood cell membrane and immunohematological investigation. Rev Bras Hematol Hemoter 2011; 33(4): 297-301.
[http://dx.doi.org/10.5581/1516-8484.20110080] [PMID: 23049321]
[24]
Garín MI, López RM, Sanz S, Pinilla M, Luque J. Erythrocytes as carriers for recombinant human erythropoietin. Pharm Res 1996; 13(6): 869-74.
[http://dx.doi.org/10.1023/A:1016049027661] [PMID: 8792424]
[25]
Kinosita K Jr, Tsong TY. Survival of sucrose-loaded erythrocytes in the circulation. Nature 1978; 272(5650): 258-60.
[http://dx.doi.org/10.1038/272258a0] [PMID: 628451]
[26]
Attar A, Bakir C, Yuce-Dursun B, et al. Preparation, characterization, and in vitro evaluation of isoniazid and rifampicin-loaded archaeosomes. Chem Biol Drug Des 2018; 91(1): 153-61.
[http://dx.doi.org/10.1111/cbdd.13066] [PMID: 28667670]
[27]
Kravtzoff R, Ropars C, Laguerre M, Muh JP, Chassaigne M. Erythrocytes as carriers for L-asparaginase. Methodological and mouse in-vivo studies. J Pharm Pharmacol 2011; 42(7): 473-6.
[http://dx.doi.org/10.1111/j.2042-7158.1990.tb06598.x] [PMID: 1980286]
[28]
Hamidi M, Tajerzadeh H. Carrier erythrocytes: An overview. Drug Deliv 2003; 10(1): 9-20.
[http://dx.doi.org/10.1080/713840329] [PMID: 12554359]
[29]
Eichler HG, Gasic S, Bauer K, Korn A, Bacher S. in vivo clearance of antibody-sensitized human drug carrier erythrocytes. Clin Pharmacol Ther 1986; 40(3): 300-3.
[http://dx.doi.org/10.1038/clpt.1986.180] [PMID: 3091309]
[30]
Updike SJ, Wakamiya RT. Infusion of red blood cell-loaded asparaginase in monkey. Immunologic, metabolic, and toxicologic consequences. J Lab Clin Med 1983; 101(5): 679-91.
[PMID: 6187874]
[31]
Wu Z, Li T, Gao W, et al. Cell-membrane-coated synthetic nanomotors for effective biodetoxification. Adv Funct Mater 2015; 25(25): 3881-7.
[http://dx.doi.org/10.1002/adfm.201501050]
[32]
Li W, Gai M, Rutkowski S, et al. An automated device for layer-by-layer coating of dispersed superparamagnetic nanoparticle templates. Colloid J 2018; 80(6): 648-59.
[http://dx.doi.org/10.1134/S1061933X18060078]
[33]
Rutkowski S, Si T, Gai M, Sun M, Frueh J, He Q. Magnetically-guided hydrogel capsule motors produced via ultrasound assisted hydrodynamic electrospray ionization jetting. J Colloid Interface Sci 2019; 541: 407-17.
[http://dx.doi.org/10.1016/j.jcis.2019.01.103] [PMID: 30710823]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy