Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

Cyclopeptide-based Anti-liver Cancer Agents: A Mini-review

Author(s): Tingting Li, Tong Li, Zhiqiang Wang* and Yingxue Jin*

Volume 30, Issue 3, 2023

Published on: 01 March, 2023

Page: [201 - 213] Pages: 13

DOI: 10.2174/0929866530666230217160717

Price: $65

Abstract

Chemotherapy is one of the most important treatment modalities for liver cancer, especially for those who are judged as being unsuitable for surgical resection, local ablative therapy, or transarterial chemoembolization. However, the efficacy of chemotherapy is still unsatisfactory due to the long duration, side effects and the tendency to develop drug resistance. The development of novel anti-liver cancer drugs remains imperative. Cyclopeptides have been recognized as new chemical modalities in drug design due to their unique constrained structures, extensive biological activities, higher metabolic stability, cell permeability and bioavailability than linear peptides. A lot of cyclic peptides have been found with potential anti-proliferative activity against malignant cells, and many of them showed excellent anti-liver cancer activity. In this review, we will discuss in detail the structures and the anti-liver cancer activity of small and medium-sized cyclopeptides, aiming to offer some elicitation to chemotherapeutic drug design based on cyclopeptides.

Keywords: Cyclopeptide, liver cancer, structure, linear peptides, anti-tumor activity, chemotherapy.

Graphical Abstract
[1]
Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. , 2022, 135(5), 584-590.
[http://dx.doi.org/10.1097/CM9.0000000000002108] [PMID: 35143424]
[2]
Bruix, J.; Han, K.H.; Gores, G.; Llovet, J.M.; Mazzaferro, V. Liver cancer: Approaching a personalized care. J. Hepatol., 2015, 62(S1), S144-S156.
[http://dx.doi.org/10.1016/j.jhep.2015.02.007] [PMID: 25920083]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Wang, S.; Zhou, D.; Xu, Z.; Song, J.; Qian, X.; Lv, X.; Luan, J. Anti-tumor drug targets analysis: Current insight and future prospect. Curr. Drug Targets, 2019, 20(11), 1180-1202.
[http://dx.doi.org/10.2174/1389450120666190402145325] [PMID: 30947670]
[5]
Delire, B.; De Martin, E.; Meunier, L.; Larrey, D.; Horsmans, Y. Immunotherapy and gene therapy: New challenges in the diagnosis and management of drug-induced liver injury. Front. Pharmacol., 2022, 12, 786174.
[http://dx.doi.org/10.3389/fphar.2021.786174] [PMID: 35126126]
[6]
Bruzzoni-Giovanelli, H.; Alezra, V.; Wolff, N.; Dong, C.Z.; Tuffery, P.; Rebollo, A. Interfering peptides targeting protein-protein interactions: the next generation of drugs? Drug Discov. Today, 2018, 23(2), 272-285.
[http://dx.doi.org/10.1016/j.drudis.2017.10.016] [PMID: 29097277]
[7]
Pandey, S.; Malviya, G.; Chottova, D.M. Role of peptides in diagnostics. Int. J. Mol. Sci., 2021, 22(16), 8828.
[http://dx.doi.org/10.3390/ijms22168828] [PMID: 34445532]
[8]
Zorzi, A.; Deyle, K.; Heinis, C. Cyclic peptide therapeutics: Past, present and future. Curr. Opin. Chem. Biol., 2017, 38, 24-29.
[http://dx.doi.org/10.1016/j.cbpa.2017.02.006] [PMID: 28249193]
[9]
Zhang, J.; Yuan, J.; Li, Z.; Fu, C.; Xu, M.; Yang, J.; Jiang, X.; Zhou, B.; Ye, X.; Xu, C. Exploring and exploiting plant cyclic peptides for drug discovery and development. Med. Res. Rev., 2021, 41(6), 3096-3117.
[http://dx.doi.org/10.1002/med.21792] [PMID: 33599316]
[10]
Bechtler, C.; Lamers, C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med. Chem., 2021, 12(8), 1325-1351.
[http://dx.doi.org/10.1039/D1MD00083G] [PMID: 34447937]
[11]
Yang, Y.; Mao, H.; Chen, L.; Li, L. Targeting signal pathways triggered by cyclic peptides in cancer: Current trends and future challenges. Arch. Biochem. Biophys., 2021, 701, 108776.
[http://dx.doi.org/10.1016/j.abb.2021.108776] [PMID: 33515532]
[12]
Jin, K. Developing cyclic peptide-based drug candidates: An overview. Future Med. Chem., 2020, 12(19), 1687-1690.
[http://dx.doi.org/10.4155/fmc-2020-0171] [PMID: 32972246]
[13]
Yang, J.D.; Roberts, L.R. Hepatocellular carcinoma: A global view. Nat. Rev. Gastroenterol. Hepatol., 2010, 7(8), 448-458.
[http://dx.doi.org/10.1038/nrgastro.2010.100] [PMID: 20628345]
[14]
Anwanwan, D.; Singh, S.K.; Singh, S.; Saikam, V.; Singh, R. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(1), 188314.
[http://dx.doi.org/10.1016/j.bbcan.2019.188314] [PMID: 31682895]
[15]
Xu, R.; Zhang, Y.; Li, A.; Ma, Y.; Cai, W.; Song, L.; Xie, Y.; Zhou, S.; Cao, W.; Tang, X. LY-294002 enhances the chemosensitivity of liver cancer to oxaliplatin by blocking the PI3K/AKT/HIF-1α pathway. Mol. Med. Rep., 2021, 24(1), 508.
[http://dx.doi.org/10.3892/mmr.2021.12147] [PMID: 33982772]
[16]
Vogl, T.J.; Lee, C. Doxorubicin-eluting beads in the treatment of liver carcinoma. Expert Opin. Pharmacother., 2014, 15(1), 115-120.
[http://dx.doi.org/10.1517/14656566.2014.855719] [PMID: 24215628]
[17]
Luo, L.J.; Zhang, L.P.; Duan, C.Y.; Wang, B.; He, N.N.; Abulimiti, P.; Lin, Y. The inhibition role of miR-22 in hepatocellular carcinoma cell migration and invasion via targeting CD147. Cancer Cell Int., 2017, 17(1), 17.
[http://dx.doi.org/10.1186/s12935-016-0380-8] [PMID: 28184176]
[18]
Nouso, K.; Miyahara, K.; Uchida, D.; Kuwaki, K.; Izumi, N.; Omata, M.; Ichida, T.; Kudo, M.; Ku, Y.; Kokudo, N.; Sakamoto, M.; Nakashima, O.; Takayama, T.; Matsui, O.; Matsuyama, Y.; Yamamoto, K. Effect of hepatic arterial infusion chemotherapy of 5-fluorouracil and cisplatin for advanced hepatocellular carcinoma in the nationwide survey of primary liver cancer in Japan. Br. J. Cancer, 2013, 109(7), 1904-1907.
[http://dx.doi.org/10.1038/bjc.2013.542] [PMID: 24008659]
[19]
Keating, G.M. Sorafenib: A review in hepatocellular carcinoma. Target. Oncol., 2017, 12(2), 243-253.
[http://dx.doi.org/10.1007/s11523-017-0484-7] [PMID: 28299600]
[20]
Hsu, F.T.; Liu, Y.C.; Chiang, T.; Liu, R.S.; Wang, H.E.; Lin, W.J.; Hwang, J.J. Sorafenib increases efficacy of vorinostat against human hepatocellular carcinoma through transduction inhibition of vorinostat-induced ERK/NF-κB signaling. Int. J. Oncol., 2014, 45(1), 177-188.
[http://dx.doi.org/10.3892/ijo.2014.2423] [PMID: 24807012]
[21]
Abou-Alfa, G.K.; Johnson, P.; Knox, J.J.; Capanu, M.; Davidenko, I.; Lacava, J.; Leung, T.; Gansukh, B.; Saltz, L.B. Doxorubicin plus sorafenib vs. doxorubicin alone in patients with advanced hepatocellular carcinoma: A randomized trial. JAMA, 2010, 304(19), 2154-2160.
[http://dx.doi.org/10.1001/jama.2010.1672] [PMID: 21081728]
[22]
Sho, T.; Nakanishi, M.; Morikawa, K.; Ohara, M.; Kawagishi, N.; Izumi, T.; Umemura, M.; Ito, J.; Nakai, M.; Suda, G.; Ogawa, K.; Chuma, M.; Meguro, T.; Nakamura, M.; Nagasaka, A.; Horimoto, H.; Yamamoto, Y.; Sakamoto, N. A phase I study of combination therapy with sorafenib and 5-fluorouracil in patients with advanced hepatocellular carcinoma. Drugs R D., 2017, 17(3), 381-388.
[http://dx.doi.org/10.1007/s40268-017-0187-7] [PMID: 28573606]
[23]
Kong, F.H.; Ye, Q.F.; Miao, X.Y.; Liu, X.; Huang, S.Q.; Xiong, L.; Wen, Y.; Zhang, Z.J. Current status of sorafenib nanoparticle delivery systems in the treatment of hepatocellular carcinoma. Theranostics, 2021, 11(11), 5464-5490.
[http://dx.doi.org/10.7150/thno.54822] [PMID: 33859758]
[24]
Catalano, M.; Casadei-Gardini, A.; Vannini, G.; Campani, C.; Marra, F.; Mini, E.; Roviello, G. Lenvatinib: Established and promising drug for the treatment of advanced hepatocellular carcinoma. Expert Rev. Clin. Pharmacol., 2021, 14(11), 1353-1365.
[http://dx.doi.org/10.1080/17512433.2021.1958674] [PMID: 34289756]
[25]
Bruix, J.; Tak, W.Y.; Gasbarrini, A.; Santoro, A.; Colombo, M.; Lim, H.Y.; Mazzaferro, V.; Wiest, R.; Reig, M.; Wagner, A.; Bolondi, L. Regorafenib as second-line therapy for intermediate or advanced hepatocellular carcinoma: Multicentre, open-label, phase II safety study. Eur. J. Cancer, 2013, 49(16), 3412-3419.
[http://dx.doi.org/10.1016/j.ejca.2013.05.028] [PMID: 23809766]
[26]
Chakraborty, E.; Sarkar, D. Emerging therapies for hepatocellular carcinoma (HCC). Cancers , 2022, 14(11), 2798.
[http://dx.doi.org/10.3390/cancers14112798] [PMID: 35681776]
[27]
Goel, G. Evolution of regorafenib from bench to bedside in colorectal cancer: Is it an attractive option or merely a “me too” drug? Cancer Manag. Res., 2018, 10, 425-437.
[http://dx.doi.org/10.2147/CMAR.S88825] [PMID: 29563833]
[28]
Rinaldi, L.; Vetrano, E.; Rinaldi, B.; Galiero, R.; Caturano, A.; Salvatore, T.; Sasso, F.C. HCC and molecular targeting therapies: Back to the future. Biomedicines, 2021, 9(10), 1345.
[http://dx.doi.org/10.3390/biomedicines9101345] [PMID: 34680462]
[29]
Qin, S.; Bi, F.; Gu, S.; Bai, Y.; Chen, Z.; Wang, Z.; Ying, J.; Lu, Y.; Meng, Z.; Pan, H.; Yang, P.; Zhang, H.; Chen, X.; Xu, A.; Cui, C.; Zhu, B.; Wu, J.; Xin, X.; Wang, J.; Shan, J.; Chen, J.; Zheng, Z.; Xu, L.; Wen, X.; You, Z.; Ren, Z.; Liu, X.; Qiu, M.; Wu, L.; Chen, F. Donafenib versus sorafenib in first-line treatment of unresectable or metastatic hepatocellular carcinoma: A randomized, open-Label, parallel-controlled phase II-III trial. J. Clin. Oncol., 2021, 39(27), 3002-3011.
[http://dx.doi.org/10.1200/JCO.21.00163] [PMID: 34185551]
[30]
El-Khoueiry, A.B.; Hanna, D.L.; Llovet, J.; Kelley, R.K. Cabozantinib: An evolving therapy for hepatocellular carcinoma. Cancer Treat. Rev., 2021, 98, 102221.
[http://dx.doi.org/10.1016/j.ctrv.2021.102221] [PMID: 34029957]
[31]
Ikeda, M.; Morizane, C.; Ueno, M.; Okusaka, T.; Ishii, H.; Furuse, J. Chemotherapy for hepatocellular carcinoma: Current status and future perspectives. Jpn. J. Clin. Oncol., 2018, 48(2), 103-114.
[http://dx.doi.org/10.1093/jjco/hyx180] [PMID: 29253194]
[32]
Juaid, N.; Amin, A.; Abdalla, A.; Reese, K.; Alamri, Z.; Moulay, M.; Abdu, S.; Miled, N. Anti-hepatocellular carcinoma biomolecules: Molecular targets insights. Int. J. Mol. Sci., 2021, 22(19), 10774.
[http://dx.doi.org/10.3390/ijms221910774] [PMID: 34639131]
[33]
Zhou, H.; Liu, Y.; Li, Z.; Yun, D.; Shun, Q.; Guo, K. Analysing protein-protein interaction networks of human liver cancer cell lines with diverse metastasis potential. J. Cancer Res. Clin. Oncol., 2007, 133(9), 663-672.
[http://dx.doi.org/10.1007/s00432-007-0218-9] [PMID: 17458561]
[34]
Buyanova, M.; Pei, D. Targeting intracellular protein-protein interactions with macrocyclic peptides. Trends Pharmacol. Sci., 2022, 43(3), 234-248.
[http://dx.doi.org/10.1016/j.tips.2021.11.008] [PMID: 34911657]
[35]
Wu, D.; Li, M.; Gao, Y.; Tian, W.; Li, J.; Zhang, Q.; Liu, Z.; Zheng, M.; Wang, H.; Wang, J.; Teng, T.; Zhang, L.; Ji, X.; Xie, Z.; Ji, A.; Li, Y. Peptide V3 inhibits the growth of human hepatocellular carcinoma by inhibiting the ras/raf/mek/erk signaling pathway. J. Cancer, 2019, 10(7), 1693-1706.
[http://dx.doi.org/10.7150/jca.29211] [PMID: 31205525]
[36]
Yang, J.; Zhong, J.; Zhou, M.; Zhou, Y.; Xiu, P.; Liu, F.; Wang, F.; Li, Z.; Tang, Y.; Chen, Y.; Yao, S.; Huang, T.; Liu, T.; Dong, X. Targeting of the COX-2/PGE2 axis enhances the antitumor activity of T7 peptide in vitro and in vivo. Drug Deliv., 2021, 28(1), 844-855.
[http://dx.doi.org/10.1080/10717544.2021.1914776] [PMID: 33928829]
[37]
Jin, X.; Mei, H.; Li, X.; Ma, Y.; Zeng, A.; Wang, Y.; Lu, X.; Chu, F.; Wu, Q.; Zhu, J. Apoptosis-inducing activity of the antimicrobial peptide cecropin of Musca domestica in human hepatocellular carcinoma cell line BEL-7402 and the possible mechanism. Acta Biochim. Biophys. Sin. , 2010, 42(4), 259-265.
[http://dx.doi.org/10.1093/abbs/gmq021] [PMID: 20383464]
[38]
Shteinfer-Kuzmine, A.; Amsalem, Z.; Arif, T.; Zooravlov, A.; Shoshan-Barmatz, V. Selective induction of cancer cell death by VDAC 1-based peptides and their potential use in cancer therapy. Mol. Oncol., 2018, 12(7), 1077-1103.
[http://dx.doi.org/10.1002/1878-0261.12313] [PMID: 29698587]
[39]
Yu, P.; Wu, R.; Zhou, Z.; Zhang, X.; Wang, R.; Wang, X.; Lin, S.; Wang, J.; Lv, L. rAj-Tspin, a novel recombinant peptide from Apostichopus japonicus, suppresses the proliferation, migration, and invasion of BEL-7402 cells via a mechanism associated with the ITGB1-FAK-AKT pathway. Invest. New Drugs, 2021, 39(2), 377-385.
[http://dx.doi.org/10.1007/s10637-020-01008-y] [PMID: 32989643]
[40]
Vinogradov, A.A.; Yin, Y.; Suga, H. Macrocyclic peptides as drug candidates: Recent progress and remaining challenges. J. Am. Chem. Soc., 2019, 141(10), 4167-4181.
[http://dx.doi.org/10.1021/jacs.8b13178] [PMID: 30768253]
[41]
Bojarska, J.; Mieczkowski, A.; Ziora, Z.M.; Skwarczynski, M.; Toth, I.; Shalash, A.O.; Parang, K.; El-Mowafi, S.A.; Mohammed, E.H.M.; Elnagdy, S.; AlKhazindar, M.; Wolf, W.M. Cyclic dipeptides: The biological and structural landscape with special focus on the anti-cancer proline-based scaffold. Biomolecules, 2021, 11(10), 1515.
[http://dx.doi.org/10.3390/biom11101515] [PMID: 34680148]
[42]
Liu, H.B.; Gao, H.; Wang, N.; Lin, H.P.; Hong, K.; Yao, X.S. Cyclic dipeptide constituents from the mangrove fungus Penicillium oxalicum (No.092007). J. Chin. Pharm. Sci., 2007, 24(8), 474-478.
[http://dx.doi.org/10.1631/jzus.2007.B0900] [PMID: 18257125]
[43]
Shaala, L.; Youssef, D.; Badr, J.; Harakeh, S. Bioactive 2(1H)-pyrazinones and diketopiperazine alkaloids from a tunicate-derived Actinomycete streptomyces sp. Molecules, 2016, 21(9), 1116.
[http://dx.doi.org/10.3390/molecules21091116] [PMID: 27563872]
[44]
Youssef, D.; Alahdal, A. Cytotoxic and antimicrobial compounds from the marine-derived fungus, Penicillium Species. Molecules, 2018, 23(2), 394.
[http://dx.doi.org/10.3390/molecules23020394] [PMID: 29439550]
[45]
Du, L.; Li, D.; Zhu, T.; Cai, S.; Wang, F.; Xiao, X.; Gu, Q. New alkaloids and diterpenes from a deep ocean sediment derived fungus Penicillium sp. Tetrahedron, 2009, 65(5), 1033-1039.
[http://dx.doi.org/10.1016/j.tet.2008.11.078]
[46]
Fan, Z.; Sun, Z.H.; Liu, Z.; Chen, Y.C.; Liu, H.X.; Li, H.H.; Zhang, W.M. Dichotocejpins A-C: New diketopiperazines from a deep-sea-derived fungus Dichotomomyces cejpii FS110. Mar. Drugs, 2016, 14(9), 164.
[http://dx.doi.org/10.3390/md14090164] [PMID: 27618072]
[47]
Park, H.B.; Kwon, H.C.; Lee, C.H.; Yang, H.O. Glionitrin A, an antibiotic-antitumor metabolite derived from competitive interaction between abandoned mine microbes. J. Nat. Prod., 2009, 72(2), 248-252.
[http://dx.doi.org/10.1021/np800606e] [PMID: 19159274]
[48]
Wang, F.Z.; Huang, Z.; Shi, X.F.; Chen, Y.C.; Zhang, W.M.; Tian, X.P.; Li, J.; Zhang, S. Cytotoxic indole diketopiperazines from the deep sea-derived fungus Acrostalagmus luteoalbus SCSIO F457. Bioorg. Med. Chem. Lett., 2012, 22(23), 7265-7267.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.115] [PMID: 23079524]
[49]
Lin, C.Y.; Chakraborty, S.; Wong, C.W.; Tai, D.F. Controversy of peptide cyclization from tripeptide. Molecules, 2021, 26(2), 389.
[http://dx.doi.org/10.3390/molecules26020389] [PMID: 33451079]
[50]
Jiang, W.; Ye, P.; Chen, C.T.; Wang, K.; Liu, P.; He, S.; Wu, X.; Gan, L.; Ye, Y.; Wu, B. Two novel hepatocellular carcinoma cycle inhibitory cyclodepsipeptides from a hydrothermal vent crab-associated fungus Aspergillus clavatus C2WU. Mar. Drugs, 2013, 11(12), 4761-4772.
[http://dx.doi.org/10.3390/md11124761] [PMID: 24317468]
[51]
Gao, C.H.; Chen, Y.N.; Pan, L.X.; Lei, F.; Long, B.; Hu, L.Q.; Zhang, R.C.; Ke, K.; Huang, R.M. Two new cyclic tetrapeptides from deep-sea bacterium Bacillus amyloliquefaciens GAS 00152. J. Antibiot. , 2014, 67(7), 541-543.
[http://dx.doi.org/10.1038/ja.2014.27] [PMID: 24690914]
[52]
Zhao, L.; Zhang, H.; Cui, J.; Zhao, M.; Wang, Z.; Yue, Q.; Jin, Y. Photo-induced synthesis and in vitro antitumor activity of Fenestin A analogs. New J. Chem., 2017, 41(23), 14044-14048.
[http://dx.doi.org/10.1039/C7NJ03363J]
[53]
Zhang, H.; Wu, J.; Wang, J.; Xiao, S.; Zhao, L.; Yan, R.; Wu, X.; Wang, Z.; Fan, L.; Jin, Y. Novel isoindolinone-based analogs of the natural cyclic peptide fenestin a: Synthesis and antitumor activity. ACS Med. Chem. Lett., 2022, 13(7), 1118-1124.
[http://dx.doi.org/10.1021/acsmedchemlett.2c00149] [PMID: 35859879]
[54]
Abdalla, M.A. Medicinal significance of naturally occurring cyclotetrapeptides. J. Nat. Med., 2016, 70(4), 708-720.
[http://dx.doi.org/10.1007/s11418-016-1001-5] [PMID: 27300506]
[55]
Schloß, S.; Hackl, T.; Herz, C.; Lamy, E.; Koch, M.; Rohn, S.; Maul, R. Detection of a toxic methylated derivative of phomopsin a produced by the legume-infesting fungus Diaporthe toxica. J. Nat. Prod., 2017, 80(6), 1930-1934.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00662] [PMID: 28613872]
[56]
Bai, D.; Yu, S.; Zhong, S.; Zhao, B.; Qiu, S.; Chen, J.; Lunagariya, J.; Liao, X.; Xu, S.; Xu, S.H. D-Amino acid position influences the anticancer activity of galaxamide analogs: An apoptotic mechanism Study. Int. J. Mol. Sci., 2017, 18(3), 544.
[http://dx.doi.org/10.3390/ijms18030544] [PMID: 28287429]
[57]
Lunagariya, J.; Zhong, S.; Chen, J.; Bai, D.; Bhadja, P.; Long, W.; Liao, X.; Tang, X.; Xu, S. Design and synthesis of analogues of marine natural product galaxamide, an n-methylated cyclic pentapeptide, as potential anti-tumor agent in vitro. Mar. Drugs, 2016, 14(9), 161.
[http://dx.doi.org/10.3390/md14090161] [PMID: 27598177]
[58]
Xiao, S.; Wang, Z.; Zhang, H.; Zhao, L.; Chang, Q.; Zhang, X.; Yan, R.; Wu, X.; Jin, Y. Photoinduced synthesis of methylated marine cyclopeptide galaxamide analogs with isoindolinone as anticancer agents. Mar. Drugs, 2022, 20(6), 379.
[http://dx.doi.org/10.3390/md20060379] [PMID: 35736182]
[59]
Hsieh, P.W.; Chang, F.R.; Wu, C.C.; Li, C.M.; Wu, K.Y.; Chen, S.L.; Yen, H.F.; Wu, Y.C. Longicalycinin A, a new cytotoxic cyclic peptide from Dianthus superbus var. longicalycinus (MAXIM.) WILL. Chem. Pharm. Bull. , 2005, 53(3), 336-338.
[http://dx.doi.org/10.1248/cpb.53.336] [PMID: 15744111]
[60]
Gholibeikian, M.; Bamoniri, A. HoushdarTehrani, M.H.; Fatemeh Mirjalili, B.B.; Bijanzadeh, H.R. Structure-activity relationship studies of longicalcynin A analogues, as anticancer cyclopeptides. Chem. Biol. Interact., 2020, 315, 108902.
[http://dx.doi.org/10.1016/j.cbi.2019.108902] [PMID: 31747558]
[61]
Zhao, L.; Wu, J.; Bao, Y.; Jiang, S.; Wang, Z.; Jin, Y.; Qu, F. The conventional turns rather than irregular γ -/β-turn secondary structures accounting for the antitumor activities of cyclic peptide phakellistatin 6 analogs. Tetrahedron, 2020, 76(5), 130881.
[http://dx.doi.org/10.1016/j.tet.2019.130881]
[62]
Hu, Y.Y.; Feng, L.; Wang, J.; Zhang, X.J.; Wang, Z.; Tan, N.H. Rubipodanin B, a new cytotoxic cyclopeptide from rubia podantha. Chem. Biodivers., 2018, 16(1) cbdv.201800438.
[http://dx.doi.org/10.1002/cbdv.201800438] [PMID: 30334345]
[63]
Hsieh, P.W.; Chang, F.R.; Wu, C.C.; Wu, K.Y.; Li, C.M.; Chen, S.L.; Wu, Y.C. New cytotoxic cyclic peptides and dianthramide from Dianthus superbus. J. Nat. Prod., 2004, 67(9), 1522-1527.
[http://dx.doi.org/10.1021/np040036v] [PMID: 15387653]
[64]
Sun, J.; Cheng, W.; de Voogd, N.J.; Proksch, P.; Lin, W. Stylissatins B.-D, cycloheptapeptides from the marine sponge Stylissa massa. Tetrahedron Lett., 2016, 57(38), 4288-4292.
[http://dx.doi.org/10.1016/j.tetlet.2016.08.024]
[65]
Zhang, J.N.; Xia, Y.X.; Zhang, H.J. Natural cyclopeptides as anticancer agents in the last 20 years. Int. J. Mol. Sci., 2021, 22(8), 3973.
[http://dx.doi.org/10.3390/ijms22083973] [PMID: 33921480]
[66]
Wu, Y.; Liu, L.; Chen, H.F.; Jiao, W.H.; Sun, F.; Liu, L.Y.; Zhu, H.R.; Wang, S.P.; Lin, H.W. Fuscasins A.-D, cycloheptapeptides from the marine sponge Phakellia fusca. J. Nat. Prod., 2019, 82(4), 970-979.
[http://dx.doi.org/10.1021/acs.jnatprod.8b01033] [PMID: 30844272]
[67]
Bao, Y.; Zhao, L.; Wu, J.; Jiang, S.; Wang, Z.; Jin, Y. Photo-induced synthesis of axinastatin 3 analogs, the secondary structures and their in vitro antitumor activities. Bioorg. Med. Chem. Lett., 2019, 29(22), 126730.
[http://dx.doi.org/10.1016/j.bmcl.2019.126730] [PMID: 31607609]
[68]
Jiang, S.; Zhao, L.; Wu, J.; Bao, Y.; Wang, Z.; Jin, Y. Photo-induced synthesis, structure and in vitro bioactivity of a natural cyclic peptide Yunnanin A analog. RSC Advances, 2020, 10(1), 210-214.
[http://dx.doi.org/10.1039/C9RA09163G] [PMID: 35492554]
[69]
Kehraus, S.; Ko, G.M.; Wright, A.D.; Bonn, D.; Woerheide, G.; Reef, B.; Leucamide, A. A new cytotoxic heptapeptide from the Australian sponge Leucetta microraphis leucamide. J. Org. Chem., 2002, 67, 4989-4992.
[http://dx.doi.org/10.1021/jo020058r] [PMID: 12098321]
[70]
Wang, W.; Nan, F. First total synthesis of leucamide A. J. Org. Chem., 2003, 68(4), 1636-1639.
[http://dx.doi.org/10.1021/jo026799+] [PMID: 12585925]
[71]
Zhao, L.; Wu, J.; Bao, Y.; Jiang, S.; Wang, Z.; Guo, C.; Jin, Y.; Qu, F. Synthesis of novel isoindole-containing phakellistatin 2 analogs and the conformation features affecting their antitumor activities. New J. Chem., 2019, 43(32), 12609-12613.
[http://dx.doi.org/10.1039/C9NJ01832H]
[72]
Bao, Y.; Jiang, S.; Zhao, L.; Jin, Y.; Yan, R.; Wang, Z. Photoinduced synthesis and antitumor activity of a phakellistatin 18 analog with an isoindolinone fragment. New J. Chem., 2020, 44(44), 19174-19178.
[http://dx.doi.org/10.1039/D0NJ03005H]
[73]
Meli, A.; Tedesco, C.; Della Sala, G.; Schettini, R.; Albericio, F.; De Riccardis, F.; Izzo, I. Phakellistatins: An underwater unsolved puzzle. Mar. Drugs, 2017, 15(3), 78.
[http://dx.doi.org/10.3390/md15030078] [PMID: 28335479]
[74]
Chen, J.T.; Ma, R.; Sun, S.C.; Zhu, X.F.; Xu, X.L.; Mu, Q. Synthesis and biological evaluation of cyclopeptide GG-8-6 and its analogues as anti-hepatocellular carcinoma agents. Bioorg. Med. Chem., 2018, 26(3), 609-622.
[http://dx.doi.org/10.1016/j.bmc.2017.12.028] [PMID: 29310863]
[75]
Zheng, L.; Zhu, X.; Yang, K.; Zhu, M.; Farooqi, A.; Kang, D.; Sun, M.; Xu, Y.; Lin, X.; Feng, Y.; Liang, F.; Zhang, F.; Linhardt, R. PBN11-8, a cytotoxic polypeptide purified from marine bacillus, suppresses invasion and migration of human hepatocellular carcinoma cells by targeting focal adhesion kinase pathways. Polymers , 2018, 10(9), 1043.
[http://dx.doi.org/10.3390/polym10091043] [PMID: 30960968]
[76]
Ramadhani, D.; Maharani, R.; Gazzali, A.M.; Muchtaridi, M. Cyclic peptides for the treatment of cancers: A review. Molecules, 2022, 27(14), 4428.
[http://dx.doi.org/10.3390/molecules27144428] [PMID: 35889301]
[77]
Luan, X.; Wu, Y.; Shen, Y.W.; Zhang, H.; Zhou, Y.D.; Chen, H.Z.; Nagle, D.G.; Zhang, W.D. Cytotoxic and antitumor peptides as novel chemotherapeutics. Nat. Prod. Rep., 2021, 38(1), 7-17.
[http://dx.doi.org/10.1039/D0NP00019A] [PMID: 32776055]
[78]
Malde, A.K.; Hill, T.A.; Iyer, A.; Fairlie, D.P. Crystal structures of protein-bound cyclic peptides. Chem. Rev., 2019, 119(17), 9861-9914.
[http://dx.doi.org/10.1021/acs.chemrev.8b00807] [PMID: 31046237]
[79]
Chow, A.K.M.; Yau, S.W.L.; Ng, L. Novel molecular targets in hepatocellular carcinoma. World J. Clin. Oncol., 2020, 11(8), 589-605.
[http://dx.doi.org/10.5306/wjco.v11.i8.589] [PMID: 32879846]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy