Abstract

Background: Since the emergence of HSV resistant strains, new antiviral agents have emerged and still are urgently needed, especially those with alternative targets.

Objective: In this work, we evaluated new quinolone derivatives as anti-HSV.

Methods: For this study, cells were infected and treated with different components to evaluate the profile of HSV replication in vitro. In addition, studies were performed to determine the pharmacokinetic toxicity and profile of the compound.

Results: Indeed the EC50 values of these promising molecules ranged between 8 μM and 32 μM. We have also showed that all compounds inhibited the expression of ICP27 viral proteins, which gives new insights in the search for new target for antiherpetic therapy. Chlorine in positions C6 and phosphonate in position C1 have shown to be important for viral inhibition. The chloroquinolone carboxamide derivatives fulfilled “Lipinsky Rule of Five” for good oral bioavailability and showed higher intestinal absorption and blood brain barrier penetration, as well as lower toxicity profile.

Conclusion: Although the inhibition activities of chloroquinolone carboxamide derivatives were lower than acyclovir, they showed different modes of action in comparison to the drugs currently available. These findings encourage us to continue pre-clinical studies for the development of new anti-HSV-1 agents.

Keywords: HSV-1, Antiviral drugs, Acyclovir, Chloroquinolone carboxamide, Viral protein, Oral bioavailability.

Graphical Abstract
[1]
Majewska, A.; Mlynarczyk-Bonikowska, B. 40 years after the registration of acyclovir: Do we need new anti-herpetic drugs? Int. J. Mol. Sci., 2022, 23, 3431.
[2]
Jeffery-Smith, A.; Riddell, A. Herpesviruses. Medicine, 2021, 49(12), 780-784.
[http://dx.doi.org/10.1016/j.mpmed.2021.09.011]
[3]
Amin, I.; Vajeeha, A.; Younas, S.; Afzal, S.; Shahid, M.; Nawaz, R.; Khan, M.U.; Idrees, M. HSV-1 infection: Role of viral proteins and cellular receptors. Critical Reviews & trade; in Eukaryotic Gene Expression, 2019, 29, 461-469.
[4]
Van Cleemput, J.; Koyuncu, O.O.; Laval, K.; Engel, E.A.; Enquist, L.W. CRISPR/Cas9-constructed pseudorabies virus mutants reveal the importance of UL13 in alphaherpesvirus escape from genome silencing. J. Virol., 2021, 95(6), e02286-e20.
[http://dx.doi.org/10.1128/JVI.02286-20] [PMID: 33361431]
[5]
Harrison, K.S.; Zhu, L.; Thunuguntla, P.; Jones, C. Herpes simplex virus 1 regulates β-catenin expression in TG neurons during the latency-reactivation cycle. PLoS One, 2020, 15(3), e0230870.
[http://dx.doi.org/10.1371/journal.pone.0230870] [PMID: 32226020]
[6]
Vanni, E.A.H.; Foley, J.W.; Davison, A.J.; Sommer, M.; Liu, D.; Sung, P.; Moffat, J.; Zerboni, L.; Arvin, A.M. The latency-associated transcript locus of herpes simplex virus 1 is a virulence determinant in human skin. PLoS Pathog., 2020, 16(12), e1009166.
[http://dx.doi.org/10.1371/journal.ppat.1009166] [PMID: 33370402]
[7]
Wang, S.; Ljubimov, A.V.; Jin, L.; Pfeffer, K.; Kronenberg, M.; Ghiasi, H. Herpes simplex virus 1 latency and the kinetics of reactivation are regulated by a complex network of interactions between the herpesvirus entry mediator, its ligands (gD, BTLA, LIGHT, and CD160), and the latency-associated transcript. J. Virol., 2018, 92(24), e01451-e18.
[http://dx.doi.org/10.1128/JVI.01451-18] [PMID: 30282707]
[8]
López García, F.; Enríquez Ascarza, R.; Rodríguez Martínez, J.C.; Sirvent Pedreño, A.E. Med. Interna, 2002, 19, 600-601. Interferon Therapy for Herpes Simplex Virus Infection in a 70 Years Old Patient
[9]
Lucero, B.A.; Gomes, C.R.B.; Frugulhetti, I.C.P.P.; Faro, L.V.; Alvarenga, L.; de Souza, M.C.B.V.; de Souza, T.M.L.; Ferreira, V.F. Synthesis and anti-HSV-1 activity of quinolonic acyclovir analogues. Bioorg. Med. Chem. Lett., 2006, 16(4), 1010-1013.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.111] [PMID: 16321530]
[10]
Kelly, N.C.; Zimet, G.D.; Aalsma, M.C.; Bernstein, D.I.; Fortenberry, J.D.; Rosenthal, S.L. Intent to accept and acceptance of herpes testing in adolescents and young adults. Sex. Transm. Infect., 2009, 85(4), 296-299.
[http://dx.doi.org/10.1136/sti.2008.032847] [PMID: 19211592]
[11]
Kang, D.; Ruiz, F.X.; Feng, D.; Pilch, A.; Zhao, T.; Wei, F.; Wang, Z.; Sun, Y.; Fang, Z.; De Clercq, E.; Pannecouque, C.; Arnold, E.; Liu, X.; Zhan, P. Discovery and characterization of fluorine-substituted diarylpyrimidine derivatives as novel HIV-1 NNRTIs with highly improved resistance profiles and low activity for the hERG ion channel. J. Med. Chem., 2020, 63(3), 1298-1312.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01769] [PMID: 31935327]
[12]
Zhuang, C.; Pannecouque, C.; De Clercq, E.; Chen, F. Development of non-nucleoside reverse transcriptase inhibitors (NNRTIs): Our past twenty years. Acta Pharm. Sin. B, 2020, 10(6), 961-978.
[http://dx.doi.org/10.1016/j.apsb.2019.11.010] [PMID: 32642405]
[13]
Wang, Y.; Wang, Q.; Zhu, Q.; Zhou, R.; Liu, J.; Peng, T. Identification and characterization of acyclovir-resistant clinical HSV-1 isolates from children. J. Clin. Virol., 2011, 52(2), 107-112.
[http://dx.doi.org/10.1016/j.jcv.2011.06.009] [PMID: 21778105]
[14]
Cani, E.; Park, T.E.; Kavanagh, R. Antiviral drugs. Side Effects Drugs Ann., 2019, 41, 301-319.
[http://dx.doi.org/10.1016/bs.seda.2019.10.005]
[15]
Vardakas, K.Z.; Kalimeris, G.D.; Triarides, N.A.; Falagas, M.E. An update on adverse drug reactions related to β-lactam antibiotics. Expert Opin. Drug Saf., 2018, 17(5), 499-508.
[http://dx.doi.org/10.1080/14740338.2018.1462334] [PMID: 29633867]
[16]
Adikwu, E.; Kemelayefa, J. Acyclovir-induced nephrotoxicity: The protective benefit of curcumin. European Journal of Biology, 2021, 80(1), 22-28.
[http://dx.doi.org/10.26650/EurJBiol.2021.903407]
[17]
Shen, Z.; Yu, Q.; Li, Y.; Bao, Y.; Lu, H. Determination of acyclovir in renal microdialysis fluid and confirmation of renal function index. Drug Chem. Toxicol., 2020, 43(6), 574-580.
[http://dx.doi.org/10.1080/01480545.2018.1524474] [PMID: 30486699]
[18]
Yeoh, C.; Ly, S.; Kunnath, A.P.; Philip, A. Application of gene-directed enzyme prodrug therapy in cancer treatment. Int. J. Biomed. Res. Prac., 2021, 1, 1-8.
[19]
Poole, C.L.; James, S.H. Antiviral therapies for herpesviruses: Current agents and new directions. Clin. Ther., 2018, 40(8), 1282-1298.
[http://dx.doi.org/10.1016/j.clinthera.2018.07.006] [PMID: 30104016]
[20]
Alcock, R.D.; Shaw, G.C.; Burke, L.M. Bone broth unlikely to provide reliable concentrations of collagen precursors compared with supplemental sources of collagen used in collagen research. Int. J. Sport Nutr. Exerc. Metab., 2019, 29(3), 265-272.
[http://dx.doi.org/10.1123/ijsnem.2018-0139] [PMID: 29893587]
[21]
Liu, F.; Liu, Y.; Meng, Y.; Yang, M.; He, K. Structure of polysaccharide from Polygonatum cyrtonema Hua and the antiherpetic activity of its hydrolyzed fragments. Antiviral Res., 2004, 63(3), 183-189.
[http://dx.doi.org/10.1016/j.antiviral.2004.04.006] [PMID: 15451186]
[22]
González-Garay, A.; Velasco-Hidalgo, L.; Ochoa-Hein, E.; Rivera-Luna, R. Efficacy and safety of quinolones for the treatment of uncomplicated urinary tract infections in women: A network meta-analysis. Int. Urogynecol. J. Pelvic Floor Dysfunct., 2021, 32(1), 3-15.
[http://dx.doi.org/10.1007/s00192-020-04255-y] [PMID: 32095956]
[23]
Haggag, Y.A.E.G.; Saafan, A.E.; El-Gendy, A.O.; Hefzy, E.M.; AbdelGhani, S. Molecular characterization of quinolone resistant urinary isolates of Escherichia coli. J. Pure Appl. Microbiol., 2020, 14(2), 1269-1277.
[http://dx.doi.org/10.22207/JPAM.14.2.22]
[24]
Chokkar, N.; Kalra, S.; Chauhan, M.; Kumar, R. A review on quinoline derived scaffolds as anti-HIV agents. Mini Rev. Med. Chem., 2019, 19(6), 510-526.
[http://dx.doi.org/10.2174/1389557518666181018163448] [PMID: 30338737]
[25]
Wang, R.; Xu, K.; Shi, W. Quinolone derivatives: Potential anti‐HIV agent—development and application. Arch. Pharm., 2019, 352(9), 1900045.
[http://dx.doi.org/10.1002/ardp.201900045] [PMID: 31274223]
[26]
Batalha, P.N. da S M Forezi, L.; Tolentino, N.M.C.; Sagrillo, F.S.; de Oliveira, V.G.; de Souza, M.C.B.V.; Boechat, F.D.C.S. 4-oxoquinoline derivatives as antivirals: A ten years overview. Curr. Top. Med. Chem., 2020, 20(3), 244-255.
[http://dx.doi.org/10.2174/1568026620666200129100219] [PMID: 31995008]
[27]
da Matta, A.D.; Verô, C.; dos Santos, B.; Pereira, H.D.S.; Christina, I.; Frugulhetti, P.P.; Rita, M.; de Oliveira, P.; Cecília, M.; de Souza, B. Synthesis of novel nucleosides of 4-oxoquinoline-3-carboxylic acid analogues. Heteroatom Chem., 1999, 1999, 10.
[28]
Abreu, P.A.; da Silva, V.A.G.G.; Santos, F.C.; Castro, H.C.; Riscado, C.S.; de Souza, M.T.; Ribeiro, C.P.; Barbosa, J.E.; dos Santos, C.C.C.; Rodrigues, C.R.; Lione, V.; Correa, B.A.M.; Cunha, A.C.; Ferreira, V.F.; de Souza, M.C.B.v.; Paixão, I.C.N.P. Oxoquinoline derivatives: Identification and Structure-Activity Relationship (SAR) analysis of new anti-HSV-1 agents. Curr. Microbiol., 2011, 20, 1349-1354.
[29]
Souza, M.V.N.; Almeida, M.V. Drogas anti-VIH: Passado, presente e perspectivas futuras. Quim. Nova, 2003, 26(3), 366-372.
[http://dx.doi.org/10.1590/S0100-40422003000300014]
[30]
Souza, T.M.L.; De Souza, M.C.B.V.; Ferreira, V.F.; Canuto, C.V.B.S.; Marques, I.P.; Fontes, C.F.L.; Frugulhetti, I.C.P.P. The chloroxoquinolinic derivative 6-chloro-1,4-dihydro-4-oxo-1-(β-D-ribofuranosyl) quinoline-3-carboxylic acid inhibits HSV-1 adsorption by impairing its adsorption on HVEM. Arch. Virol., 2007, 152(7), 1417-1424.
[http://dx.doi.org/10.1007/s00705-007-0960-y] [PMID: 17458622]
[31]
Forezi, L.; Tolentino, N.; de Souza, A.; Castro, H.; Montenegro, R.; Dantas, R.; Oliveira, M.; Silva, F., Jr; Barreto, L.; Burbano, R.; Abrahim-Vieira, B.; de Oliveira, R.; Ferreira, V.; Cunha, A.; Boechat, F.; de Souza, M. Synthesis, cytotoxicity and mechanistic evaluation of 4-oxoquinoline-3-carboxamide derivatives: Finding new potential anticancer drugs. Molecules, 2014, 19(5), 6651-6670.
[http://dx.doi.org/10.3390/molecules19056651] [PMID: 24858098]
[32]
Santos, F.C.; Abreu, P.; Castro, H.C.; Paixão, I.C.P.P.; Cirne-Santos, C.C.; Giongo, V.; Barbosa, J.E.; Simonetti, B.R.; Garrido, V.; Bou-Habib, D.C.; Silva, D.O.; Batalha, P.N.; Temerozo, J.R.; Souza, T.M.; Nogueira, C.M.; Cunha, A.C.; Rodrigues, C.R.; Ferreira, V.F.; de Souza, M.C.B.V. Synthesis, antiviral activity and molecular modeling of oxoquinoline derivatives. Bioorg. Med. Chem., 2009, 17(15), 5476-5481.
[http://dx.doi.org/10.1016/j.bmc.2009.06.037] [PMID: 19581097]
[33]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[34]
Sander, T.; Freyss, J.; von Korff, M.; Reich, J.R.; Rufener, C. OSIRIS, an entirely in-house developed drug discovery informatics system. J. Chem. Inf. Model., 2009, 49(2), 232-246.
[http://dx.doi.org/10.1021/ci800305f] [PMID: 19434825]
[35]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[36]
Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2005, 2(4), 541-553.
[http://dx.doi.org/10.1602/neurorx.2.4.541] [PMID: 16489364]
[37]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a] [PMID: 23092397]
[38]
Shen, J.; Cheng, F.; Xu, Y.; Li, W.; Tang, Y. Estimation of ADME properties with substructure pattern recognition. J. Chem. Inf. Model., 2010, 50(6), 1034-1041.
[http://dx.doi.org/10.1021/ci100104j] [PMID: 20578727]
[39]
Hu, J.M.; Hsiung, G.D. Evaluation of new antiviral agents: I. in vitro perspectives. Antiviral Res., 1989, 11(5-6), 217-232.
[http://dx.doi.org/10.1016/0166-3542(89)90032-6] [PMID: 2679375]
[40]
Putnam, K.P.; Bombick, D.W.; Doolittle, D.J. Evaluation of eight in vitro assays for assessing the cytotoxicity of cigarette smoke condensate. Toxicol. In Vitro, 2002, 16(5), 599-607.
[http://dx.doi.org/10.1016/S0887-2333(02)00050-4] [PMID: 12206827]
[41]
Souza, T.M.L.; De Souza, M.C.B.V.; Ferreira, V.F.; Santos Canuto, C.V.B.; Marques, I.P.; Fontes, C.F.L.; Frugulhetti, I.C.P.P. Inhibition of HSV-1 replication and HSV DNA polymerase by the chloroxoquinolinic ribonucleoside 6-chloro-1,4-dihydro-4-oxo-1-(β-d-ribofuranosyl) quinoline-3-carboxylic acid and its aglycone. Antiviral Res., 2008, 77(1), 20-27.
[http://dx.doi.org/10.1016/j.antiviral.2007.08.011] [PMID: 17931712]
[42]
Bernardino, A.M.R.; Azevedo, A.R.; Pinheiro, L.C.S.; Borges, J.C.; Paixão, I.C.P.; Mesquita, M.; Souza, T.M.L.; dos Santos, M.S. Synthesis and anti-HSV-1 evaluation of new 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridines and 3H-pyrido[2,3-b]pyrazolo[3,4-h]-1,6-naphthyridines. Org. Med. Chem. Lett., 2012, 2(1), 3.
[http://dx.doi.org/10.1186/2191-2858-2-3] [PMID: 22373524]
[43]
Koller, A.N. Božilović, J.; Engels, J.W.; Gohlke, H. Aromatic N versus aromatic F: Bioisosterism discovered in RNA base pairing interactions leads to a novel class of universal base analogs. Nucleic Acids Res., 2010, 38(9), 3133-3146.
[http://dx.doi.org/10.1093/nar/gkp1237] [PMID: 20081201]
[44]
Magalhaes Moreira, D.R.; Lima, Leite A.; Santos, R.R.; Soares, M. Approaches for the development of new anti-Trypanosoma cruzi agents. Curr. Drug Targets, 2009, 10(3), 212-231.
[http://dx.doi.org/10.2174/138945009787581140] [PMID: 19275558]
[45]
Sheng, C.; Che, X.; Wang, W.; Wang, S.; Cao, Y.; Miao, Z.; Yao, J.; Zhang, W. Design and synthesis of novel triazole antifungal derivatives by structure-based bioisosterism. Eur. J. Med. Chem., 2011, 46(11), 5276-5282.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.019] [PMID: 21983332]
[46]
Hartline, C.B.; Harden, E.A.; Williams-Aziz, S.L.; Kushner, N.L.; Brideau, R.J.; Kern, E.R. Inhibition of herpesvirus replication by a series of 4-oxo-dihydroquinolines with viral polymerase activity. Antiviral Res., 2005, 65(2), 97-105.
[http://dx.doi.org/10.1016/j.antiviral.2004.10.003] [PMID: 15708636]
[47]
Thomsen, D.R.; Oien, N.L.; Hopkins, T.A.; Knechtel, M.L.; Brideau, R.J.; Wathen, M.W.; Homa, F.L. Amino acid changes within conserved region III of the herpes simplex virus and human cytomegalovirus DNA polymerases confer resistance to 4-oxo-dihydroquinolines, a novel class of herpesvirus antiviral agents. J. Virol., 2003, 77(3), 1868-1876.
[http://dx.doi.org/10.1128/JVI.77.3.1868-1876.2003] [PMID: 12525621]
[48]
Korolkovas, A. Essentials of medicinal chemistry. J. Chem. Educ., 1977, 54(12), A497.
[49]
De Clercq, E.; Field, H.J. Antiviral prodrugs - the development of successful prodrug strategies for antiviral chemotherapy. Br. J. Pharmacol., 2006, 147(1), 1-11.
[http://dx.doi.org/10.1038/sj.bjp.0706446] [PMID: 16284630]
[50]
O’Brien, J.J.; Campoli-Richards, D.M. Acyclovir. An updated review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs, 1989, 37, 233-309.
[51]
Albin, R.; Chase, R.; Risano, C.; Lieberman, M.; Ferrari, E.; Skelton, A.; Buontempo, P.; Cox, S.; DeMartino, J.; Wright-Minogue, J.; Jirau-Lucca, G.; Kelly, J.; Afonso, A.; Kwong, A.D.; Rozthon, E.J.; O’Connell, J.F. SCH 43478 and analogs: In vitro activity and in vivo efficacy of novel agents for herpesvirus type 2. Antiviral Res., 1997, 35(3), 139-146.
[http://dx.doi.org/10.1016/S0166-3542(97)00023-5] [PMID: 9298753]
[52]
van de Waterbeemd, H.; Gifford, E. ADMET in silico modelling: Towards prediction paradise? Nat. Rev. Drug Discov., 2003, 2, 192-204.
[53]
Mouritsen, O.G.; Jørgensen, K. A new look at lipid-membrane structure in relation to drug research. Pharm. Res., 1998, 15(10), 1507-1519.
[http://dx.doi.org/10.1023/A:1011986613392] [PMID: 9794491]
[54]
Boehmer, P.E.; Lehman, I.R. Herpes simplex virus DNA replication. Annu. Rev. Biochem., 1997, 66(1), 347-384.
[http://dx.doi.org/10.1146/annurev.biochem.66.1.347] [PMID: 9242911]
[55]
Olesky, M.; McNamee, E.E.; Zhou, C.; Taylor, T.J.; Knipe, D.M. Evidence for a direct interaction between HSV-1 ICP27 and ICP8 proteins. Virology, 2005, 331(1), 94-105.
[http://dx.doi.org/10.1016/j.virol.2004.10.003] [PMID: 15582656]
[56]
Uprichard, S.L.; Knipe, D.M. Herpes simplex ICP27 mutant viruses exhibit reduced expression of specific DNA replication genes. J. Virol., 1996, 70(3), 1969-1980.
[http://dx.doi.org/10.1128/jvi.70.3.1969-1980.1996] [PMID: 8627723]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy