Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Review Article

The Anemic Newborn at Birth: From Diagnosis to Treatment

Author(s): Chiara Petrolini, Lembo Chiara, Brugnoli Chiara, Staccioni Mario, Giuseppe Buonocore and Serafina Perrone*

Volume 19, Issue 4, 2023

Published on: 22 December, 2022

Page: [331 - 341] Pages: 11

DOI: 10.2174/1573396319666221220110156

Price: $65

Abstract

Neonatal anaemia is a very frequent clinical condition that may be due to apparent or not evident blood loss, decreased red blood cells (RBCs) production, or increased destruction of RBCs. RBCs transfusion criteria are clearly defined by several national and locally agreed guidelines. However, it is not possible to define a unique cut-off to guide clinicians' transfusion practice, which needs a multiparametric analysis of demographic variables (gestational age, postnatal age, birth weight), clinical evaluation, conventional and new generation monitoring (such as echocardiography and near-infrared spectroscopy). Unfortunately, few tools are available in the delivery room to help neonatologists in the management of newborn with acute anaemia. Early volume replacement with cristalloids and RBCs transfusion could be life-saving in the delivery room when a hypovolaemic shock is suspected, but the use of un-crossmatched whole is not risk-free nor easily available in clinical practice. Placental transfusion could be an extremely effective and inexpensive method to increase haemoglobin (Hb), to improve oxygen delivery, and to increase cardiac output with a reduced need for RBCs transfusions, a reduced risk of intraventricular haemorrhages, and an improved survival of the newborn.

Keywords: Newborn, anemia, red blood cell transfusions, delayed cord clamping, umbilical cord milking, placental transfusion.

Graphical Abstract
[1]
Colombatti R, Sainati L, Trevisanuto D. Anemia and transfusion in the neonate. Semin Fetal Neonatal Med 2016; 21(1): 2-9.
[http://dx.doi.org/10.1016/j.siny.2015.12.001] [PMID: 26732078]
[2]
Banerjee J, Aladangady N. Biomarkers to decide red blood cell transfusion in newborn infants. Transfusion 2014; 54(10): 2574-82.
[http://dx.doi.org/10.1111/trf.12670] [PMID: 24797124]
[3]
Aher S, Malwatkar K, Kadam S. Neonatal anemia. Semin Fetal Neonatal Med 2008; 13(4): 239-47.
[http://dx.doi.org/10.1016/j.siny.2008.02.009] [PMID: 18411074]
[4]
Perrone S, Tataranno ML, Stazzoni G, Del Vecchio A, Buonocore G. Oxidative injury in neonatal erythrocytes. J Matern Fetal Neonatal Med 2012; 25 (Suppl. 5): 104-8.
[http://dx.doi.org/10.3109/14767058.2012.715471] [PMID: 23025782]
[5]
Buonocore G, Perrone S, Bracci R. Mechanisms involved in the increased hemolysis in the fetus and newborn. Curr Pediatr Rev 2017; 13(3): 188-92.
[http://dx.doi.org/10.2174/1573396313666170718151248] [PMID: 28721813]
[6]
Red blood cell transfusions in newborn infants: Revised guidelines. Paediatr Child Health 2002; 7(8): 553-8.
[http://dx.doi.org/10.1093/pch/7.8.553] [PMID: 20046468]
[7]
Roseff SD, Luban NLC, Manno CS. Guidelines for assessing appropriateness of pediatric transfusion. Transfusion 2002; 42(11): 1398-413.
[http://dx.doi.org/10.1046/j.1537-2995.2002.00208.x] [PMID: 12421212]
[8]
Gibson BE, Todd A, Roberts I, et al. Transfusion guidelines for neonates and older children. Br J Haematol 2004; 124(4): 433-53.
[http://dx.doi.org/10.1111/j.1365-2141.2004.04815.x] [PMID: 14984493]
[9]
Amendments and corrections to the ‘Transfusion Guidelines for neonates and older children’; and to the ‘Guidelines for the use of fresh frozen plasma, cryoprecipitate and cryosupernatant’ (BCSH, 2004b). Br J Haematol 2007; 136(3): 514-6.
[http://dx.doi.org/10.1111/j.1365-2141.2006.06451.x] [PMID: 17233851]
[10]
O’Riordan JM, Fitzgerald J, Smith OP, et al. Transfusion of blood components to infants under four months: Review and guidelines. Ir Med J 2007; 100(6): 1-24.
[11]
Whyte RK, Jefferies AL. Red blood cell transfusion in newborn infants. Paediatr Child Health 2014; 19(4): 213-7.
[http://dx.doi.org/10.1093/pch/19.4.213] [PMID: 24855419]
[12]
Girelli G, Antoncecchi S, Casadei AM, et al. Recommendations for transfusion therapy in neonatology. Blood Transfus 2015; 13(3): 484-97.
[http://dx.doi.org/10.2450/2015.0113-15] [PMID: 26445308]
[13]
Christensen RD, Ilstrup S. Recent advances toward defining the benefits and risks of erythrocyte transfusions in neonates. Arch Dis Child Fetal Neonatal Ed 2013; 98(4): F365-72.
[http://dx.doi.org/10.1136/archdischild-2011-301265] [PMID: 22751184]
[14]
Kaufman DP, Khattar J, Lappin SL. Physiology, Fetal Hemoglobin. StatPearls Publishing 2021.
[15]
Malte H, Lykkeboe G. The Bohr/Haldane effect: A model-based uncovering of the full extent of its impact on O2 delivery to and CO2 re-moval from tissues. J Appl Physiol 2018; 125(3): 916-22.
[http://dx.doi.org/10.1152/japplphysiol.00140.2018]
[16]
Collard KJ. Iron homeostasis in the neonate. Pediatrics 2009; 123(4): 1208-16.
[http://dx.doi.org/10.1542/peds.2008-1047] [PMID: 19336381]
[17]
Strauss RG. Anaemia of prematurity: Pathophysiology and treatment. Blood Rev 2010; 24(6): 221-5.
[http://dx.doi.org/10.1016/j.blre.2010.08.001] [PMID: 20817366]
[18]
Henry E, Christensen RD. Reference intervals in neonatal hematology. Clin Perinatol 2015; 42(3): 483-97.
[http://dx.doi.org/10.1016/j.clp.2015.04.005] [PMID: 26250912]
[19]
Abbasi N, Johnson JA, Ryan G. Fetal anemia. Ultrasound Obstet Gynecol 2017; 50(2): 145-53.
[http://dx.doi.org/10.1002/uog.17555] [PMID: 28782230]
[20]
Leung KY, Cheong KB, Lee CP, Chan V, Lam YH, Tang M. Ultrasonographic prediction of homozygous α0 -thalassemia using placental thickness, fetal cardiothoracic ratio and middle cerebral artery Doppler: Alone or in combination? Ultrasound Obstet Gynecol 2010; 35(2): 149-54.
[http://dx.doi.org/10.1002/uog.7443] [PMID: 20047196]
[21]
Bellussi F, Perolo A, Ghi T, Youssef A, Pilu G, Simonazzi G. Diagnosis of severe fetomaternal hemorrhage with fetal cerebral doppler: Case series and systematic review. Fetal Diagn Ther 2017; 41(1): 1-7.
[http://dx.doi.org/10.1159/000446109] [PMID: 27174184]
[22]
Mari G, Norton ME, Stone J, et al. Society for Maternal-Fetal Medicine (SMFM) Clinical Guideline #8: The fetus at risk for anemia-diagnosis and management. Am J Obstet Gynecol 2015; 212(6): 697-710.
[http://dx.doi.org/10.1016/j.ajog.2015.01.059] [PMID: 25824811]
[23]
Bahr TM, DuPont TL, Christensen TR, et al. Evaluating emergency‐release blood transfusion of newborn infants at the Intermountain Healthcare hospitals. Transfusion 2019; 59(10): 3113-9.
[http://dx.doi.org/10.1111/trf.15495] [PMID: 31479169]
[24]
Schwarz CE, Dempsey EM. Management of neonatal hypotension and shock. Semin Fetal Neonatal Med 2020; 25(5), 101121.
[http://dx.doi.org/10.1016/j.siny.2020.101121] [PMID: 32473881]
[25]
van Hoften JCR, Verhagen EA, Keating P, ter Horst HJ, Bos AF. Cerebral tissue oxygen saturation and extraction in preterm infants before and after blood transfusion. Arch Dis Child Fetal Neonatal Ed 2010; 95(5): F352-8.
[http://dx.doi.org/10.1136/adc.2009.163592] [PMID: 20466739]
[26]
Dani C, Pratesi S, Fontanelli G, Barp J, Bertini G. Blood transfusions increase cerebral, splanchnic, and renal oxygenation in anemic pre-term infants. Transfusion 2010; 50(6): 1220-6.
[http://dx.doi.org/10.1111/j.1537-2995.2009.02575.x] [PMID: 20113454]
[27]
Bailey S, Hendricks-Muñoz K, Wells J, Mally P. Packed red blood cell transfusion increases regional cerebral and splanchnic tissue oxy-gen saturation in anemic symptomatic preterm infants. Am J Perinatol 2010; 27(6): 445-53.
[http://dx.doi.org/10.1055/s-0030-1247598] [PMID: 20099219]
[28]
Bailey SM, Hendricks-Muñoz KD, Mally P. Splanchnic-cerebral oxygenation ratio as a marker of preterm infant blood transfusion needs. Transfusion 2012; 52(2): 252-60.
[http://dx.doi.org/10.1111/j.1537-2995.2011.03263.x] [PMID: 21790634]
[29]
Bell EF, Strauss RG, Widness JA, et al. Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants. Pediatrics 2005; 115(6): 1685-91.
[http://dx.doi.org/10.1542/peds.2004-1884] [PMID: 15930233]
[30]
Kirpalani H, Whyte RK, Andersen C, et al. The premature infants in need of transfusion (pint) study: A randomized, controlled trial of a restrictive (LOW) versus liberal (HIGH) transfusion threshold for extremely low birth weight infants. J Pediatr 2006; 149(3): 301-307.e3.
[http://dx.doi.org/10.1016/j.jpeds.2006.05.011] [PMID: 16939737]
[31]
Chen HL, Tseng HI, Lu CC, Yang SN, Fan HC, Yang RC. Effect of blood transfusions on the outcome of very low body weight preterm infants under two different transfusion criteria. Pediatr Neonatol 2009; 50(3): 110-6.
[http://dx.doi.org/10.1016/S1875-9572(09)60045-0] [PMID: 19579757]
[32]
Whyte R, Kirpalani H. Low versus high haemoglobin concentration threshold for blood transfusion for preventing morbidity and mortality in very low birth weight infants. Cochrane Libr 2011; (11): , CD000512.
[http://dx.doi.org/10.1002/14651858.CD000512.pub2] [PMID: 22071798]
[33]
Keir A, Pal S, Trivella M, et al. Adverse effects of red blood cell transfusions in neonates: A systematic review and meta-analysis. Transfusion 2016; 56(11): 2773-80.
[http://dx.doi.org/10.1111/trf.13785] [PMID: 27600435]
[34]
Mohamed A, Shah PS. Transfusion associated necrotizing enterocolitis: A meta-analysis of observational data. Pediatrics 2012; 129(3): 529-40.
[http://dx.doi.org/10.1542/peds.2011-2872] [PMID: 22351894]
[35]
Agwu JC, Narchi H. In a preterm infant, does blood transfusion increase the risk of necrotizing enterocolitis? Arch Dis Child 2005; 90(1): 102-3.
[http://dx.doi.org/10.1136/adc.2004.051532] [PMID: 15613530]
[36]
Wallenstein MB, Arain YH, Birnie KL, et al. Red blood cell transfusion is not associated with necrotizing enterocolitis: A review of con-secutive transfusions in a tertiary neonatal intensive care unit. J Pediatr 2014; 165(4): 678-82.
[http://dx.doi.org/10.1016/j.jpeds.2014.06.012] [PMID: 25039042]
[37]
Garg P, Pinotti R, Lal CV, Salas AA. Transfusion-associated necrotizing enterocolitis in preterm infants: An updated meta-analysis of observational data. J Perinat Med 2018; 46(6): 677-85.
[http://dx.doi.org/10.1515/jpm-2017-0162] [PMID: 29176013]
[38]
Kirpalani H, Bell EF, Hintz SR, et al. Higher or lower hemoglobin transfusion thresholds for preterm infants. N Engl J Med 2020; 383(27): 2639-51.
[http://dx.doi.org/10.1056/NEJMoa2020248] [PMID: 33382931]
[39]
Franz AR, Engel C, Bassler D, et al. Effects of liberal vs restrictive transfusion thresholds on survival and neurocognitive outcomes in extremely low-birth-weight infants. JAMA 2020; 324(6): 560-70.
[http://dx.doi.org/10.1001/jama.2020.10690] [PMID: 32780138]
[40]
Wyckoff MH, Wyllie J, Aziz K, et al. Neonatal life support: 2020 international consensus on cardiopulmonary resuscitation and emergen-cy cardiovascular care science with treatment recommendations. Circulation 2020; 142(16) (Suppl. 1): S185-221.
[http://dx.doi.org/10.1161/CIR.0000000000000895] [PMID: 33084392]
[41]
Finn D, Roehr CC, Ryan CA, Dempsey EM. Optimising intravenous volume resuscitation of the newborn in the delivery room: Practical considerations and gaps in knowledge. Neonatology 2017; 112(2): 163-71.
[http://dx.doi.org/10.1159/000475456] [PMID: 28571020]
[42]
Aziz K, Lee CHC, Escobedo MB, et al. Part 5: Neonatal Resuscitation 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Pediatrics 2021; 147 (Suppl. 1)., e2020038505E.
[http://dx.doi.org/10.1542/peds.2020-038505E] [PMID: 33087555]
[43]
MacDonald NE, O’Brien SF, Delage G. Transfusion and risk of infection in Canada: Update 2012. Paediatr Child Health 2012; 17(10): e102-6.
[http://dx.doi.org/10.1093/pch/17.10.e102] [PMID: 24294070]
[44]
Osborn DA, Evans N. Early volume expansion for prevention of morbidity and mortality in very preterm infants. Cochrane Database Syst Rev 2001; 2001(4), CD002055.
[http://dx.doi.org/10.1002/14651858.CD002055] [PMID: 11687136]
[45]
Greenough A, Emery E, Hird MF, Gamsu HR. Randomised controlled trial of albumin infusion in ill preterm infants. Eur J Pediatr 1993; 152(2): 157-9.
[http://dx.doi.org/10.1007/BF02072495] [PMID: 8444226]
[46]
So KW, Fok TF, Ng PC, Wong WW, Cheung KL. Randomised controlled trial of colloid or crystalloid in hypotensive preterm infants. Arch Dis Child Fetal Neonatal Ed 1997; 76(1): F43-6.
[http://dx.doi.org/10.1136/fn.76.1.F43] [PMID: 9059186]
[47]
Lamke LO, Liljedahl SO. Plasma volume changes after infusion of various plasma expanders. Resuscitation 1976; 5(2): 93-101.
[http://dx.doi.org/10.1016/0300-9572(76)90029-0] [PMID: 69313]
[48]
Brutocao D, Bratton SL, Robert Thomas J, Schrader PF, Coles PG, Lynn AM. Comparison of hetastarch with albumin for postoperative volume expansion in children after cardiopulmonary bypass. J Cardiothorac Vasc Anesth 1996; 10(3): 348-51.
[http://dx.doi.org/10.1016/S1053-0770(96)80095-4] [PMID: 8725415]
[49]
Mendler MR, Schwarz S, Hechenrieder L, et al. Successful resuscitation in a model of asphyxia and hemorrhage to test different volume resuscitation strategies. a study in newborn piglets after transition. Front Pediatr 2018; 6: 192.
[http://dx.doi.org/10.3389/fped.2018.00192] [PMID: 30042934]
[50]
Goodell PP, Uhl L, Mohammed M, Powers AA. Risk of hemolytic transfusion reactions following emergency-release RBC transfusion. Am J Clin Pathol 2010; 134(2): 202-6.
[http://dx.doi.org/10.1309/AJCP9OFJN7FLTXDB] [PMID: 20660321]
[51]
Finn D, Dorrian A, Sheehy J, Dempsey EM, Ryan CA. Emergency uncross‐matched blood transfusions in a tertiary neonatal unit. Acta Paediatr 2017; 106(2): 218-22.
[http://dx.doi.org/10.1111/apa.13646] [PMID: 27783412]
[52]
Mulay SB, Jaben EA, Johnson P, Badjie K, Stubbs JR. Risks and adverse outcomes associated with emergency-release red blood cell transfusion. Transfusion 2013; 53(7): 1416-20.
[http://dx.doi.org/10.1111/j.1537-2995.2012.03922.x] [PMID: 23067326]
[53]
Katheria AC, Lakshminrusimha S, Rabe H, McAdams R, Mercer JS. Placental transfusion: A review. J Perinatol 2017; 37(2): 105-11.
[http://dx.doi.org/10.1038/jp.2016.151] [PMID: 27654493]
[54]
Yao A, Moinian M, Lind J. Distribution of blood between infant and placenta after birth. Lancet 1969; 294(7626): 871-3.
[http://dx.doi.org/10.1016/S0140-6736(69)92328-9] [PMID: 4186454]
[55]
Aladangady N, McHugh S, Aitchison TC, Wardrop CAJ, Holland BM. Infants’ blood volume in a controlled trial of placental transfusion at preterm delivery. Pediatrics 2006; 117(1): 93-8.
[http://dx.doi.org/10.1542/peds.2004-1773]
[56]
McDonald SJ, Middleton P, Dowswell T, Morris PS. Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. Cochrane Libr 2013; 2015(12), CD004074.
[http://dx.doi.org/10.1002/14651858.CD004074.pub3] [PMID: 23843134]
[57]
Hutton EK, Hassan ES. Late vs early clamping of the umbilical cord in full-term neonates: Systematic review and meta-analysis of con-trolled trials. JAMA 2007; 297(11): 1241-52.
[http://dx.doi.org/10.1001/jama.297.11.1241] [PMID: 17374818]
[58]
Bhatt S, Alison BJ, Wallace EM, et al. Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs. J Physiol 2013; 591(8): 2113-26.
[http://dx.doi.org/10.1113/jphysiol.2012.250084] [PMID: 23401615]
[59]
Nevill E, Meyer MP. Effect of delayed cord clamping (DCC) on breathing and transition at birth in very preterm infants. Early Hum Dev 2015; 91(7): 407-11.
[http://dx.doi.org/10.1016/j.earlhumdev.2015.04.013] [PMID: 25984654]
[60]
Ersdal HL, Linde J, Mduma E, Auestad B, Perlman J. Neonatal outcome following cord clamping after onset of spontaneous respiration. Pediatrics 2014; 134(2): 265-72.
[http://dx.doi.org/10.1542/peds.2014-0467] [PMID: 25022738]
[61]
Ghavam S, Batra D, Mercer J, et al. Effects of placental transfusion in extremely low birthweight infants: meta-analysis of long- and short-term outcomes. Transfusion 2014; 54(4): 1192-8.
[http://dx.doi.org/10.1111/trf.12469] [PMID: 24843886]
[62]
Backes CH, Rivera BK, Haque U, et al. Placental transfusion strategies in very preterm neonates: A systematic review and meta-analysis. Obstet Gynecol 2014; 124(1): 47-56.
[http://dx.doi.org/10.1097/AOG.0000000000000324] [PMID: 24901269]
[63]
Mercer JS, Vohr BR, McGrath MM, Padbury JF, Wallach M, Oh W. Delayed cord clamping in very preterm infants reduces the incidence of intraventricular hemorrhage and late-onset sepsis: A randomized, controlled trial. Pediatrics 2006; 117(4): 1235-42.
[http://dx.doi.org/10.1542/peds.2005-1706] [PMID: 16585320]
[64]
Oh W, Fanaroff AA, Carlo WA, Donovan EF, McDonald SA, Poole WK. Effects of delayed cord clamping in very-low-birth-weight in-fants. J Perinatol 2011; 31(S1): S68-71.
[http://dx.doi.org/10.1038/jp.2010.186] [PMID: 21448208]
[65]
Hosono S, Mugishima H, Fujita H, et al. Umbilical cord milking reduces the need for red cell transfusions and improves neonatal adapta-tion in infants born at less than 29 weeks’ gestation: A randomised controlled trial. Arch Dis Child Fetal Neonatal Ed 2008; 93(1): F14-9.
[http://dx.doi.org/10.1136/adc.2006.108902] [PMID: 17234653]
[66]
Sommers R, Stonestreet BS, Oh W, et al. Hemodynamic effects of delayed cord clamping in premature infants. Pediatrics 2012; 129(3): e667-72.
[http://dx.doi.org/10.1542/peds.2011-2550] [PMID: 22331336]
[67]
Patel S, Clark EAS, Rodriguez CE, Metz TD, Abbaszadeh M, Yoder BA. Effect of umbilical cord milking on morbidity and survival in extremely low gestational age neonates. Am J Obstet Gynecol 2014; 211(5): 519.e1-7.
[http://dx.doi.org/10.1016/j.ajog.2014.05.037] [PMID: 24881823]
[68]
Ghirardello S, Di Tommaso M, Fiocchi S, et al. Italian recommendations for placental transfusion strategies. Front Pediatr 2018; 6372.
[http://dx.doi.org/10.3389/fped.2018.00372]
[69]
Dammann O, Naples M, Bednarek F, et al. SNAP-II and SNAPPE-II and the risk of structural and functional brain disorders in extremely low gestational age newborns: The ELGAN study. Neonatology 2010; 97(2): 71-82.
[http://dx.doi.org/10.1159/000232588] [PMID: 19672122]
[70]
Rabe H, Jewison A, Fernandez Alvarez R, et al. Milking compared with delayed cord clamping to increase placental transfusion in preterm neonates: A randomized controlled trial. Obstet Gynecol 2011; 117(2): 205-11.
[http://dx.doi.org/10.1097/AOG.0b013e3181fe46ff] [PMID: 21252731]
[71]
Erickson-Owens DA, Mercer JS, Oh W. Umbilical cord milking in term infants delivered by cesarean section: A randomized controlled trial. J Perinatol 2012; 32(8): 580-4.
[http://dx.doi.org/10.1038/jp.2011.159] [PMID: 22094494]
[72]
Katheria A, Blank D, Rich W, Finer N. Umbilical cord milking improves transition in premature infants at birth. PLoS One 2014; 9(4), e94085.
[http://dx.doi.org/10.1371/journal.pone.0094085] [PMID: 24709780]
[73]
Rabe H, Sawyer A, Amess P, Ayers S. Neurodevelopmental outcomes at 2 and 3.5 years for very preterm babies enrolled in a randomized trial of milking the umbilical cord versus delayed cord clamping. Neonatology 2016; 109(2): 113-9.
[http://dx.doi.org/10.1159/000441891] [PMID: 26650133]
[74]
Al-Wassia H, Shah PS. Efficacy and safety of umbilical cord milking at birth: A systematic review and meta-analysis. JAMA Pediatr 2015; 169(1): 18-25.
[http://dx.doi.org/10.1001/jamapediatrics.2014.1906] [PMID: 25365246]
[75]
Fogarty M, Osborn DA, Askie L, et al. Delayed vs. early umbilical cord clamping for preterm infants: A systematic review and meta-analysis. Am J Obstet Gynecol 2018; 218(1): 1-18.
[http://dx.doi.org/10.1016/j.ajog.2017.10.231]
[76]
Katheria A, Reister F, Essers J, et al. Association of umbilical cord milking vs delayed umbilical cord clamping with death or severe intra-ventricular hemorrhage among preterm infants. JAMA 2019; 322(19): 1877-86.
[http://dx.doi.org/10.1001/jama.2019.16004] [PMID: 31742630]
[77]
Pratesi S, Dani C. Commentary: Association of umbilical cord milking vs. delayed umbilical cord clamping with death or severe intra-ventricular hemorrhage among preterm infants. Front Pediatr 2020; 8: 178.
[http://dx.doi.org/10.3389/fped.2020.00178] [PMID: 32363173]
[78]
Balasubramanian H, Ananthan A, Jain V, Rao SC, Kabra N. Umbilical cord milking in preterm infants: A systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 2020; 105(6): 572-80.
[http://dx.doi.org/10.1136/archdischild-2019-318627] [PMID: 32152192]
[79]
Jasani B, Torgalkar R, Ye XY, Syed S, Shah PS. Association of umbilical cord management strategies with outcomes of preterm infants. JAMA Pediatr 2021; 175(4), e210102.
[http://dx.doi.org/10.1001/jamapediatrics.2021.0102] [PMID: 33683307]
[80]
Seidler AL, Gyte GML, Rabe H, et al. International Liaison Committee ON Resuscitation Neonatal Life Support Task Force. Umbilical cord management for newborns <34 weeks’ gestation: A meta-analysis. Pediatrics 2021; 147(3), e20200576.
[81]
Dani C, Sandri F, Pratesi S. Considering an update on umbilical cord milking for the new guidelines for neonatal resuscitation. JAMA Pediatr 2021; 175(9): 894-5.
[http://dx.doi.org/10.1001/jamapediatrics.2021.1287] [PMID: 34125140]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy