Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Review Article

Quercetin and Its Role in Reducing the Expression of Pro-inflammatory Cytokines in Osteoarthritis

Author(s): Elahe Aleebrahim-Dehkordi, Faezeh Soveyzi, Ali Sam Arian, Neda Faal Hamedanchi, Ayda Hasanpour-Dehkordi and Mahmoud Rafieian-Kopaei*

Volume 21, Issue 3, 2022

Published on: 13 January, 2023

Page: [153 - 165] Pages: 13

DOI: 10.2174/1871523022666221213155905

Price: $65

Abstract

Osteoarthritis is the most common human joint disease in the world. It is also one of the most common skeletal muscle defects, destructive joint changes, and the leading cause of disability and reduced quality of life. Destructive changes in inflammatory joints are associated with a range of biochemical events, including the overproduction of inflammatory cytokines. Cytokines are protein compounds that play an essential role in causing and regulating inflammation. A balance between pro-inflammatory and anti-inflammatory cytokines is crucial in maintaining a stable body. In some inflammatory diseases, including osteoarthritis, the balance between these compounds is disturbed, and the balance shifts to pre-inflammatory cytokines. For this reason, researchers today are trying to find an effective way to reduce inflammation and treat osteoarthritis by using certain compounds. Current treatments for osteoarthritis, including nonsteroidal antiinflammatory drugs, glucocorticoids, and hyaluronic acid, are mainly based on reducing pain and inflammation. However, they have limited effects in controlling symptoms and improving the patient's quality of life. Also, due to the high level of side effects, synthetic drugs have led to the identification of compounds of natural origin to give patients a chance to use painkillers and antiinflammatory drugs with fewer side effects. This review study aimed to present the role of quercetin as a natural compound in reducing the expression of pro-inflammatory cytokines in osteoarthritis. This study also discusses the relationship between inflammation and cartilage destruction and other inflammation-related factors caused by cytokines.

Keywords: Natural compounds, quercetin, inflammation, pro-inflammatory cytokines, cartilage destruction, osteoarthritis, inflammatory cytokines.

Next »
Graphical Abstract
[1]
Herrero-Beaumont, G.; Pérez-Baos, S.; Sánchez-Pernaute, O.; Roman-Blas, J.A.; Lamuedra, A.; Largo, R. Targeting chronic innate inflammatory pathways, the main road to prevention of osteoarthritis progression. Biochem. Pharmacol., 2019, 165, 24-32.
[http://dx.doi.org/10.1016/j.bcp.2019.02.030] [PMID: 30825432]
[2]
Kloppenburg, M.; Berenbaum, F. Osteoarthritis year in review 2019: epidemiology and therapy. Osteoarthritis Cartilage, 2020, 28(3), 242-248.
[http://dx.doi.org/10.1016/j.joca.2020.01.002] [PMID: 31945457]
[3]
Favazzo, L.J.; Hendesi, H.; Villani, D.A.; Soniwala, S.; Dar, Q.A.; Schott, E.M.; Gill, S.R.; Zuscik, M.J. The gut microbiome-joint connection: implications in osteoarthritis. Curr. Opin. Rheumatol., 2020, 32(1), 92-101.
[http://dx.doi.org/10.1097/BOR.0000000000000681] [PMID: 31724973]
[4]
Ansari, M.Y.; Ahmad, N.; Haqqi, T.M. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomed. Pharmacother., 2020, 129, 110452.
[http://dx.doi.org/10.1016/j.biopha.2020.110452] [PMID: 32768946]
[5]
Cordaro, M.; Siracusa, R.; D’ Impellizzeri, D.; Amico, R.; Peritore, AF.; Crupi, R.; Gugliandolo, E.; Fusco, R.; Di Paola, R.; Schievano, C.; Cuzzocrea, S. Safety and efficacy of a new micronized formulation of the ALIAmide palmitoyl glucosamine in preclinical models of inflammation and osteoarthritis pain. Arthritis Res. Ther., 2019, 21(1), 254.
[http://dx.doi.org/10.1186/s13075-019-2048-y] [PMID: 31779692]
[6]
Ghouri, A.; Conaghan, PG. Update on novel pharmacological therapies for osteoarthritis. Ther. Adv. Musculoskelet. Dis, 2019, 11, 1759720x19864492.
[http://dx.doi.org/10.1177/1759720X19864492]
[7]
Wei, B.; Zhang, Y.; Tang, L.; Ji, Y.; Yan, C.; Zhang, X. Protective effects of quercetin against inflammation and oxidative stress in a rabbit model of knee osteoarthritis. Drug Dev. Res., 2019, 80(3), 360-367.
[http://dx.doi.org/10.1002/ddr.21510] [PMID: 30609097]
[8]
Bahtiar, A.; Permatasari, D.A.; Karliana, D.; Iskandarsyah, I.; Arsianti, A. Quercetin prevent proteoglycan destruction by inhibits matrix metalloproteinase-9, matrix metalloproteinase-13, a disintegrin and metalloproteinase with thrombospondin motifs-5 expressions on osteoarthritis model rats. J. Adv. Pharm. Technol. Res., 2019, 10(1), 2-8.
[http://dx.doi.org/10.4103/japtr.JAPTR_331_18] [PMID: 30815381]
[9]
Escribano-Ferrer, E.; Queralt Regué, J.; Garcia-Sala, X.; Boix Montañés, A.; Lamuela-Raventos, R.M. In vivo anti-inflammatory and antiallergic activity of pure naringenin, naringenin chalcone, and quercetin in mice. J. Nat. Prod., 2019, 82(2), 177-182.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00366] [PMID: 30688453]
[10]
Kanzaki, N.; Saito, K.; Maeda, A.; Kitagawa, Y.; Kiso, Y.; Watanabe, K.; Tomonaga, A.; Nagaoka, I.; Yamaguchi, H. Effect of a dietary supplement containing glucosamine hydrochloride, chondroitin sulfate and quercetin glycosides on symptomatic knee osteoarthritis: a randomized, double-blind, placebo-controlled study. J. Sci. Food Agric., 2012, 92(4), 862-869.
[http://dx.doi.org/10.1002/jsfa.4660] [PMID: 21969261]
[11]
Benelli, R.; Lorusso, G.; Albini, A.; Noonan, D. Cytokines and chemokines as regulators of angiogenesis in health and disease. Curr. Pharm. Des., 2006, 12(24), 3101-3115.
[http://dx.doi.org/10.2174/138161206777947461] [PMID: 16918437]
[12]
Charo, I.F.; Ransohoff, R.M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med., 2006, 354(6), 610-621.
[http://dx.doi.org/10.1056/NEJMra052723] [PMID: 16467548]
[13]
Costa, C.; Incio, J.; Soares, R. Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis, 2007, 10(3), 149-166.
[http://dx.doi.org/10.1007/s10456-007-9074-0] [PMID: 17457680]
[14]
van den Bosch, M.H.J. Inflammation in osteoarthritis: is it time to dampen the alarm(in) in this debilitating disease? Clin. Exp. Immunol., 2019, 195(2), 153-166.
[http://dx.doi.org/10.1111/cei.13237] [PMID: 30421798]
[15]
Newton, K.; Dixit, V.M. Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol., 2012, 4(3), a006049.
[http://dx.doi.org/10.1101/cshperspect.a006049] [PMID: 22296764]
[16]
Lismont, C.; Nordgren, M.; Van Veldhoven, P.P.; Fransen, M. Redox interplay between mitochondria and peroxisomes. Front. Cell Dev. Biol., 2015, 3, 35.
[http://dx.doi.org/10.3389/fcell.2015.00035] [PMID: 26075204]
[17]
Altay, M.A.; Ertürk, C.; Bilge, A.; Yaptı, M.; Levent, A.; Aksoy, N. Evaluation of prolidase activity and oxidative status in patients with knee osteoarthritis: relationships with radiographic severity and clinical parameters. Rheumatol. Int., 2015, 35(10), 1725-1731.
[http://dx.doi.org/10.1007/s00296-015-3290-5] [PMID: 25994092]
[18]
Bolduc, J.A.; Collins, J.A.; Loeser, R.F. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic. Biol. Med., 2019, 132, 73-82.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.038] [PMID: 30176344]
[19]
Ahmad, N.; Ansari, M.Y.; Haqqi, T.M. Role of iNOS in osteoarthritis: Pathological and therapeutic aspects. J. Cell. Physiol., 2020, 235(10), 6366-6376.
[http://dx.doi.org/10.1002/jcp.29607] [PMID: 32017079]
[20]
Li, D.; Wang, W.; Xie, G. Reactive oxygen species: the 2-edged sword of osteoarthritis. Am. J. Med. Sci., 2012, 344(6), 486-490.
[http://dx.doi.org/10.1097/MAJ.0b013e3182579dc6] [PMID: 22885622]
[21]
Chabane, N.; Zayed, N.; Afif, H.; Mfuna-Endam, L.; Benderdour, M.; Boileau, C.; Martel-Pelletier, J.; Pelletier, J.P.; Duval, N.; Fahmi, H. Histone deacetylase inhibitors suppress interleukin-1β-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Osteoarthritis Cartilage, 2008, 16(10), 1267-1274.
[http://dx.doi.org/10.1016/j.joca.2008.03.009] [PMID: 18417374]
[22]
Jia, Y.; Pang, C.; Zhao, K.; Jiang, J.; Zhang, T.; Peng, J.; Sun, P.; Qian, Y. garcinol suppresses IL-1β-induced chondrocyte inflammation and osteoarthritis via inhibition of the NF-κB signaling pathway. Inflammation, 2019, 42(5), 1754-1766.
[http://dx.doi.org/10.1007/s10753-019-01037-7] [PMID: 31201586]
[23]
Primorac, D.; Molnar, V.; Rod, E.; Jeleč, Ž.; Čukelj, F.; Matišić, V.; Vrdoljak, T.; Hudetz, D.; Hajsok, H.; Borić, I. Knee Osteoarthritis: A review of pathogenesis and state-of-the-art non-operative therapeutic considerations. Genes (Basel), 2020, 11(8), 854.
[http://dx.doi.org/10.3390/genes11080854] [PMID: 32722615]
[24]
Wang, J.; Markova, D.; Anderson, D.G.; Zheng, Z.; Shapiro, I.M.; Risbud, M.V. TNF-α and IL-1β promote a disintegrin-like and metalloprotease with thrombospondin type I motif-5-mediated aggrecan degradation through syndecan-4 in intervertebral disc. J. Biol. Chem., 2011, 286(46), 39738-39749.
[http://dx.doi.org/10.1074/jbc.M111.264549] [PMID: 21949132]
[25]
Lohmander, L.S.; Neame, P.J.; Sandy, J.D. The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interlobular domain. Arthritis Rheumatol., 1993, 36(9), 1214-1222.
[http://dx.doi.org/10.1002/art.1780360906] [PMID: 8216415]
[26]
Pessler, F.; Chen, L.X.; Dai, L.; Gomez-Vaquero, C.; Diaz-Torne, C.; Paessler, M.E.; Scanzello, C.; Çakir, N.; Einhorn, E.; Schumacher, H.R. A histomorphometric analysis of synovial biopsies from individuals with Gulf War Veterans’ Illness and joint pain compared to normal and osteoarthritis synovium. Clin. Rheumatol., 2008, 27(9), 1127-1134.
[http://dx.doi.org/10.1007/s10067-008-0878-0] [PMID: 18414968]
[27]
Woodell-May, J.E.; Sommerfeld, S.D. Role of inflammation and the immune system in the progression of osteoarthritis. J. Orthop. Res., 2020, 38(2), 253-257.
[http://dx.doi.org/10.1002/jor.24457] [PMID: 31469192]
[28]
Kragstrup, T.W.; Sohn, D.H.; Lepus, C.M.; Onuma, K.; Wang, Q.; Robinson, W.H.; Sokolove, J. Fibroblast-like synovial cell production of extra domain A fibronectin associates with inflammation in osteoarthritis. BMC Rheumatol., 2019, 3(1), 46.
[http://dx.doi.org/10.1186/s41927-019-0093-4] [PMID: 31819923]
[29]
Bonnet, C.S.; Walsh, D.A. Osteoarthritis, angiogenesis and inflammation. Br. J. Rheumatol., 2005, 44(1), 7-16.
[http://dx.doi.org/10.1093/rheumatology/keh344] [PMID: 15292527]
[30]
Goldring, M.B.; Otero, M. Inflammation in osteoarthritis. Curr. Opin. Rheumatol., 2011, 23(5), 471-478.
[http://dx.doi.org/10.1097/BOR.0b013e328349c2b1] [PMID: 21788902]
[31]
An, S.; Hu, H.; Li, Y.; Hu, Y. pyroptosis plays a role in osteoarthritis. Aging Dis., 2020, 11(5), 1146-1157.
[http://dx.doi.org/10.14336/AD.2019.1127] [PMID: 33014529]
[32]
Zhen, G.; Wen, C.; Jia, X.; Li, Y.; Crane, J.L.; Mears, S.C.; Askin, F.B.; Frassica, F.J.; Chang, W.; Yao, J.; Carrino, J.A.; Cosgarea, A.; Artemov, D.; Chen, Q.; Zhao, Z.; Zhou, X.; Riley, L.; Sponseller, P.; Wan, M.; Lu, W.W.; Cao, X. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med., 2013, 19(6), 704-712.
[http://dx.doi.org/10.1038/nm.3143] [PMID: 23685840]
[33]
de Oliveira, C.M.B.; Sakata, R.K.; Issy, A.M.; Gerola, L.R.; Salomão, R. cytokines and pain. Rev. Bras. Anestesiol., 2011, 61(2), 255-265, 260-265, 137-142.
[http://dx.doi.org/10.1016/S0034-7094(11)70029-0] [PMID: 21474032]
[34]
Zuber Shaikh, P. Cytokines & their physiologic and pharmacologic functions in inflammation: A review. Int. J. Pharm. Life Sci., 2011, 11, 1247-126.
[35]
Alexander, Z.; Holubovska, O.; Shkurba, A.; Hrytsko, R.; Vorozhbyt, O.; Richniak, M.; Herasun, B. Original inhibition method of excessive synthesis of proinflammatory cytokine of tumor necrosis factor α. Cent. Eur. J. Immunol., 2015, 40(3), 345-348.
[http://dx.doi.org/10.5114/ceji.2015.54597] [PMID: 26648779]
[36]
Vangsness, C.T., Jr; Burke, W.S.; Narvy, S.J.; MacPhee, R.D.; Fedenko, A.N. Human knee synovial fluid cytokines correlated with grade of knee osteoarthritis-a pilot study. Bull. NYU Hosp. Jt. Dis., 2011, 69(2), 122-127.
[PMID: 22035391]
[37]
Hsu, Y.H.; Hsieh, M.S.; Liang, Y.C.; Li, C.Y.; Sheu, M.T.; Chou, D.T.; Chen, T.F.; Chen, C.H. Production of the chemokine eotaxin-1 in osteoarthritis and its role in cartilage degradation. J. Cell. Biochem., 2004, 93(5), 929-939.
[http://dx.doi.org/10.1002/jcb.20239] [PMID: 15389872]
[38]
Dinarello, C.A. Historical insights into cytokines. Eur. J. Immunol., 2007, 37(S1)(Suppl. 1), S34-S45.
[http://dx.doi.org/10.1002/eji.200737772] [PMID: 17972343]
[39]
Cho, H.; Walker, A.; Williams, J.; Hasty, K.A. Study of osteoarthritis treatment with anti-inflammatory drugs: cyclooxygenase-2 inhibitor and steroids. BioMed Res. Int., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/595273] [PMID: 26000299]
[40]
Montaseri, A.; Busch, F.; Mobasheri, A.; Buhrmann, C.; Aldinger, C.; Rad, J.S.; Shakibaei, M. IGF-1 and PDGF-bb suppress IL-1β-induced cartilage degradation through down-regulation of NF-κB signaling: involvement of Src/PI-3K/AKT pathway. PLoS One, 2011, 6(12), e28663.
[http://dx.doi.org/10.1371/journal.pone.0028663] [PMID: 22194879]
[41]
Sokolove, J.; Lepus, C.M. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther. Adv. Musculoskelet. Dis., 2013, 5(2), 77-94.
[http://dx.doi.org/10.1177/1759720X12467868] [PMID: 23641259]
[42]
Wojdasiewicz, P.; Poniatowski, Ł.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm., 2014, 2014, 561459.
[http://dx.doi.org/10.1155/2014/561459] [PMID: 24876674]
[43]
Nakata, K.; Hanai, T.; Take, Y.; Osada, T.; Tsuchiya, T.; Shima, D.; Fujimoto, Y. Disease-modifying effects of COX-2 selective inhibitors and non-selective NSAIDs in osteoarthritis: a systematic review. Osteoarthritis Cartilage, 2018, 26(10), 1263-1273.
[http://dx.doi.org/10.1016/j.joca.2018.05.021] [PMID: 29890262]
[44]
Hsu, C-C.; Lin, C-L.; Jou, I-M.; Wang, P-H.; Lee, J-S. The protective role of nitric oxide-dependent innate immunosuppression in the early stage of cartilage damage in rats. Bone Joint Res., 2017, 6(4), 253-258.
[http://dx.doi.org/10.1302/2046-3758.64.BJJ-2016-0161.R1] [PMID: 28450318]
[45]
Amin, A.R.; Dave, M.; Attur, M.; Abramson, S.B. COX-2, NO, and cartilage damage and repair. Curr. Rheumatol. Rep., 2000, 2(6), 447-453.
[http://dx.doi.org/10.1007/s11926-000-0019-5] [PMID: 11123096]
[46]
Dąbek, J.; Kułach, A.; Gąsior, Z. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB): a new potential therapeutic target in atherosclerosis? Pharmacol. Rep., 2010, 62(5), 778-783.
[http://dx.doi.org/10.1016/S1734-1140(10)70338-8] [PMID: 21098861]
[47]
Mastbergen, S.C.; Lafeber, F.P.; Bijlsma, J.W. Selective COX-2 inhibition prevents proinflammatory cytokine-induced cartilage damage. Br. J. Rheumatol., 2002, 41(7), 801-808.
[http://dx.doi.org/10.1093/rheumatology/41.7.801] [PMID: 12096231]
[48]
Arango Duque, G.; Descoteaux, A. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol., 2014, 5, 491.
[http://dx.doi.org/10.3389/fimmu.2014.00491] [PMID: 25339958]
[49]
Chiu, S.; Bharat, A. Role of monocytes and macrophages in regulating immune response following lung transplantation. Curr. Opin. Organ Transplant., 2016, 21(3), 239-245.
[http://dx.doi.org/10.1097/MOT.0000000000000313] [PMID: 26977996]
[50]
Hirayama, D.; Iida, T.; Nakase, H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci., 2017, 19(1), 92.
[http://dx.doi.org/10.3390/ijms19010092] [PMID: 29286292]
[51]
Schewe, T.; Steffen, Y.; Sies, H. How do dietary flavanols improve vascular function? A position paper. Arch. Biochem. Biophys., 2008, 476(2), 102-106.
[http://dx.doi.org/10.1016/j.abb.2008.03.004] [PMID: 18358827]
[52]
Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: chemistry, bioavailability and effects on health. Nat. Prod. Rep., 2009, 26(8), 1001-1043.
[http://dx.doi.org/10.1039/b802662a] [PMID: 19636448]
[53]
Goktepe, M.; Gunay, M. The effect of quercetin administration on exercise, free radical and antioxidant enzym levels. J. Nutr., 2012, 1, 2148-1148.
[54]
Punduk, Z.; Hismiogullari, A.A.; Yavuz, O.; Rahman, K. The dietary combination of quercetin and resveratrol supplementation may improve exercise tolerance in young untrained males by modulating il-6 and ngal response. Am. J. Sports Sci., 2015, 3(2), 29-35.
[http://dx.doi.org/10.11648/j.ajss.20150302.11]
[55]
Formica, J.V.; Regelson, W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol., 1995, 33(12), 1061-1080.
[http://dx.doi.org/10.1016/0278-6915(95)00077-1] [PMID: 8847003]
[56]
Williams, R.J.; Spencer, J.P.E.; Rice-Evans, C. Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med., 2004, 36(7), 838-849.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001] [PMID: 15019969]
[57]
Prior, R.L.; Wu, X. Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radic. Res., 2006, 40(10), 1014-1028.
[http://dx.doi.org/10.1080/10715760600758522] [PMID: 17015246]
[58]
Pekkarinen, SS.; Heinonen, IM.; Hopia, AI. Flavonoid’s quercetin, myricetin, kaempferol and (+)-catechin as antioxidants in methyl linoleate. J. Sci. Food Agricul., 1999, 79, 499-506.
[59]
Aleebrahim-Dehkordy, E.; Khodadadi, S.; Mousavipanah, Z.; Nasri, H. Herbal antioxidants and kidney. Ann. Res. Antioxid., 2016, 1(1), e08.
[60]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[61]
Azeem, M.; Hanif, M.; Mahmood, K.; Ameer, N.; Chughtai, F.R.S.; Abid, U. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: a review. Polym. Bull., 2022, 1-22.
[http://dx.doi.org/10.1007/s00289-022-04091-8] [PMID: 35125574]
[62]
Harwood, M.; Danielewska-Nikiel, B.; Borzelleca, J.F.; Flamm, G.W.; Williams, G.M.; Lines, T.C. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol., 2007, 45(11), 2179-2205.
[http://dx.doi.org/10.1016/j.fct.2007.05.015] [PMID: 17698276]
[63]
Batiha, G.E.S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods, 2020, 9(3), 374.
[http://dx.doi.org/10.3390/foods9030374] [PMID: 32210182]
[64]
Bischoff, S.C. Quercetin: potentials in the prevention and therapy of disease. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11(6), 733-740.
[http://dx.doi.org/10.1097/MCO.0b013e32831394b8] [PMID: 18827577]
[65]
Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem. Pharmacol., 2012, 83(1), 6-15.
[http://dx.doi.org/10.1016/j.bcp.2011.08.010] [PMID: 21856292]
[66]
Lee, J.; Mitchell, A.E. Pharmacokinetics of quercetin absorption from apples and onions in healthy humans. J. Agric. Food Chem., 2012, 60(15), 3874-3881.
[http://dx.doi.org/10.1021/jf3001857] [PMID: 22439822]
[67]
Edwards, R.L.; Lyon, T.; Litwin, S.E.; Rabovsky, A.; Symons, J.D.; Jalili, T. Quercetin reduces blood pressure in hypertensive subjects. J. Nutr., 2007, 137(11), 2405-2411.
[http://dx.doi.org/10.1093/jn/137.11.2405] [PMID: 17951477]
[68]
Kressler, J.; Millard-Stafford, M.; Warren, G.L. Quercetin and endurance exercise capacity: a systematic review and meta-analysis. Med. Sci. Sports Exerc., 2011, 43(12), 2396-2404.
[http://dx.doi.org/10.1249/MSS.0b013e31822495a7] [PMID: 21606866]
[69]
Jin, F.; Nieman, D.C.; Shanely, R.A.; Knab, A.M.; Austin, M.D.; Sha, W. The variable plasma quercetin response to 12-week quercetin supplementation in humans. Eur. J. Clin. Nutr., 2010, 64(7), 692-697.
[http://dx.doi.org/10.1038/ejcn.2010.91] [PMID: 20517329]
[70]
Moon, J.H.; Nakata, R.; Oshima, S.; Inakuma, T.; Terao, J. Accumulation of quercetin conjugates in blood plasma after the short-term ingestion of onion by women. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000, 279(2), R461-R467.
[http://dx.doi.org/10.1152/ajpregu.2000.279.2.R461] [PMID: 10938233]
[71]
Zhao, J.; Yang, J.; Xie, Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: an overview. Int. J. Pharm, 2019, 570, 118642.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118642]
[72]
Shinoki, A.; Lang, W.; Thawornkuno, C.; Kang, H.K.; Kumagai, Y.; Okuyama, M.; Mori, H.; Kimura, A.; Ishizuka, S.; Hara, H. A novel mechanism for the promotion of quercetin glycoside absorption by megalo α-1,6-glucosaccharide in the rat small intestine. Food Chem., 2013, 136(2), 293-296.
[http://dx.doi.org/10.1016/j.foodchem.2012.08.028] [PMID: 23122060]
[73]
Dabeek, W. M.; Marra, M. V. Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 2019, 11(10), 2288.
[http://dx.doi.org/10.3390/nu11102288]
[74]
Crespy, V.; Morand, C.; Manach, C.; Besson, C.; Demigne, C.; Remesy, C. Part of quercetin absorbed in the small intestine is conjugated and further secreted in the intestinal lumen. Am. J. Physiol. Gastrointest. Liver Physiol, 1999, 277, 120-126.
[http://dx.doi.org/10.1152/ajpgi.1999.277.1.G120]
[75]
Chabane, M.N.; Ahmad, A.A.; Peluso, J.; Muller, C.D.; Ubeaud-Séquier, G. Quercetin and naringenin transport across human intestinal Caco-2 cells. J. Pharm. Pharmacol., 2010, 61(11), 1473-1483.
[http://dx.doi.org/10.1211/jpp.61.11.0006] [PMID: 19903372]
[76]
Guo, Y.; Bruno, R.S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem., 2015, 26(3), 201-210.
[http://dx.doi.org/10.1016/j.jnutbio.2014.10.008] [PMID: 25468612]
[77]
Burak, C.; Brüll, V.; Langguth, P.; Zimmermann, B.F.; Stoffel-Wagner, B.; Sausen, U.; Stehle, P.; Wolffram, S.; Egert, S. Higher plasma quercetin levels following oral administration of an onion skin extract compared with pure quercetin dihydrate in humans. Eur. J. Nutr., 2017, 56(1), 343-353.
[http://dx.doi.org/10.1007/s00394-015-1084-x] [PMID: 26482244]
[78]
Conquer, J.A.; Maiani, G.; Azzini, E.; Raguzzini, A.; Holub, B.J. Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J. Nutr., 1998, 128(3), 593-597.
[http://dx.doi.org/10.1093/jn/128.3.593] [PMID: 9482769]
[79]
Németh, K.; Plumb, G.W.; Berrin, J.G.; Juge, N.; Jacob, R.; Naim, H.Y.; Williamson, G.; Swallow, D.M.; Kroon, P.A. Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr., 2003, 42(1), 29-42.
[http://dx.doi.org/10.1007/s00394-003-0397-3] [PMID: 12594539]
[80]
Jaganath, I.B.; Jaganath, I.B.; Mullen, W.; Edwards, C.A.; Crozier, A. The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free Radic. Res., 2006, 40(10), 1035-1046.
[http://dx.doi.org/10.1080/10715760600771400] [PMID: 17015248]
[81]
Kawabata, K.; Yoshioka, Y.; Terao, J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules, 2019, 24(2), 370.
[http://dx.doi.org/10.3390/molecules24020370] [PMID: 30669635]
[82]
Lv, L.; Liu, C.; Li, Z.; Song, F.; Li, G.; Huang, X. Pharmacokinetics of quercetin-loaded methoxy poly (ethylene glycol)-b-poly (l-lactic acid) micelle after oral administration in rats. BioMed Res. Int., 2017, 2017, 1750895.
[http://dx.doi.org/10.1155/2017/1750895] [PMID: 29234675]
[83]
Lu, Z.; Bu, C.; Hu, W.; Zhang, H.; Liu, M.; Lu, M.; Zhai, G. Preparation and in vitro and in vivo evaluation of quercetin-loaded mixed micelles for oral delivery. Biosci. Biotechnol. Biochem., 2018, 82(2), 238-246.
[http://dx.doi.org/10.1080/09168451.2017.1419852] [PMID: 29327653]
[84]
Lesser, S.; Cermak, R.; Wolffram, S.; Wolffram, S. Bioavailability of quercetin in pigs is influenced by the dietary fat content. J. Nutr., 2004, 134(6), 1508-1511.
[http://dx.doi.org/10.1093/jn/134.6.1508] [PMID: 15173420]
[85]
Zhang, R.; Wei, Y.; Yang, T.; Huang, X.; Zhou, J.; Yang, C.; Zhou, J.; Liu, Y.; Shi, S. Inhibitory effects of quercetin and its major metabolite quercetin-3-O-β-D-glucoside on human UDP-glucuronosyltransferase 1A isoforms by liquid chromatography-tandem mass spectrometry. Exp. Ther. Med., 2021, 22(2), 842.
[http://dx.doi.org/10.3892/etm.2021.10274] [PMID: 34149888]
[86]
Oliveira, E.J.; Watson, D.G. In vitro glucuronidation of kaempferol and quercetin by human UGT-1A9 microsomes. FEBS Lett., 2000, 471(1), 1-6.
[http://dx.doi.org/10.1016/S0014-5793(00)01355-7] [PMID: 10760502]
[87]
Oliveira, E.J.; Watson, D.G.; Grant, M.H. Metabolism of quercetin and kaempferol by rat hepatocytes and the identification of flavonoid glycosides in human plasma. Xenobiotica, 2002, 32(4), 279-287.
[http://dx.doi.org/10.1080/00498250110107886] [PMID: 12028662]
[88]
Chen, L.; Cao, H.; Huang, Q.; Xiao, J.; Teng, H. Absorption, metabolism and bioavailability of flavonoids: a review. Crit. Rev. Food Sci. Nutr., 2021, 2021, 1-13.
[http://dx.doi.org/10.1080/10408398.2021.1917508] [PMID: 34078189]
[89]
Shi, Y.; Williamson, G. Comparison of the urinary excretion of quercetin glycosides from red onion and aglycone from dietary supplements in healthy subjects: a randomized, single-blinded, cross-over study. Food Funct., 2015, 6(5), 1443-1448.
[http://dx.doi.org/10.1039/C5FO00155B] [PMID: 25832541]
[90]
Mullen, W.; Edwards, C.A.; Crozier, A. Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulphoconjugates of quercetin in human plasma and urine after ingestion of onions. Br. J. Nutr., 2006, 96(1), 107-116.
[http://dx.doi.org/10.1079/BJN20061809] [PMID: 16869998]
[91]
Hong, Y.J.; Mitchell, A.E. Metabolic profiling of flavonol metabolites in human urine by liquid chromatography and tandem mass spectrometry. J. Agric. Food Chem., 2004, 52(22), 6794-6801.
[http://dx.doi.org/10.1021/jf040274w] [PMID: 15506818]
[92]
Walle, T.; Walle, U.K.; Halushka, P.V. Carbon dioxide is the major metabolite of quercetin in humans. J. Nutr., 2001, 131(10), 2648-2652.
[http://dx.doi.org/10.1093/jn/131.10.2648] [PMID: 11584085]
[93]
Graf, B.A.; Ameho, C.; Dolnikowski, G.G.; Milbury, P.E.; Chen, C.Y.; Blumberg, J.B. Rat gastrointestinal tissues metabolize quercetin. J. Nutr., 2006, 136(1), 39-44.
[http://dx.doi.org/10.1093/jn/136.1.39] [PMID: 16365056]
[94]
Okamoto, T. Safety of quercetin for clinical application (Review). Int. J. Mol. Med., 2005, 16(2), 275-278.
[http://dx.doi.org/10.3892/ijmm.16.2.275] [PMID: 16012761]
[95]
Rauf, A.; Imran, M.; Khan, I.A.; ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer potential of quercetin: A comprehensive review. Phytother. Res., 2018, 32(11), 2109-2130.
[http://dx.doi.org/10.1002/ptr.6155] [PMID: 30039547]
[96]
Stoner, G.D. Lung tumors in strain A mice as a bioassay for carcinogenicity of environmental chemicals. Exp. Lung Res., 1991, 17(2), 405-423.
[http://dx.doi.org/10.3109/01902149109064428] [PMID: 2050040]
[97]
Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schäfer, B.; Hirsch-Ernst, K.I.; Lampen, A. Safety aspects of the use of quercetin as a dietary supplement. Mol. Nutr. Food Res., 2018, 62(1), 1700447.
[http://dx.doi.org/10.1002/mnfr.201700447] [PMID: 29127724]
[98]
Parasuraman, S.; Anand David, A.V.; Arulmoli, R. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[99]
Hollman, P.C.; de Vries, J.H.; van Leeuwen, S.D.; Mengelers, M.J.; Katan, M.B. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr., 1995, 62(6), 1276-1282.
[http://dx.doi.org/10.1093/ajcn/62.6.1276] [PMID: 7491892]
[100]
Scholz, S.; Williamson, G. Interactions affecting the bioavailability of dietary polyphenols in vivo. Int. J. Vitam. Nutr. Res., 2007, 77(3), 224-235.
[http://dx.doi.org/10.1024/0300-9831.77.3.224] [PMID: 18214024]
[101]
Ferry, D.R.; Smith, A.; Malkhandi, J.; Fyfe, D.W.; deTakats, P.G.; Anderson, D.; Baker, J.; Kerr, D.J. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin. Cancer Res., 1996, 2(4), 659-668.
[PMID: 9816216]
[102]
Erlund, I.; Kosonen, T.; Alfthan, G.; Mäenpää, J.; Perttunen, K.; Kenraali, J.; Parantainen, J.; Aro, A. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur. J. Clin. Pharmacol., 2000, 56(8), 545-553.
[http://dx.doi.org/10.1007/s002280000197] [PMID: 11151743]
[103]
Graefe, E.U.; Wittig, J.; Mueller, S.; Riethling, A.K.; Uehleke, B.; Drewelow, B.; Pforte, H.; Jacobasch, G.; Derendorf, H.; Veit, M. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharmacol., 2001, 41(5), 492-499.
[http://dx.doi.org/10.1177/00912700122010366] [PMID: 11361045]
[104]
Lee, I.H. Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp. Mol. Med., 2019, 51(9), 1-11.
[http://dx.doi.org/10.1038/s12276-019-0302-7] [PMID: 31492861]
[105]
Sung, M.S.; Lee, E.G.; Jeon, H.S.; Chae, H.J.; Park, S.J.; Lee, Y.C.; Yoo, W.H. Quercetin inhibits IL-1β-induced proliferation and production of MMPs, COX-2, and PGE2 by rheumatoid synovial fibroblast. Inflammation, 2012, 35(4), 1585-1594.
[http://dx.doi.org/10.1007/s10753-012-9473-2] [PMID: 22592909]
[106]
Liu, S.; Yang, H.; Hu, B.; Zhang, M. Sirt1 regulates apoptosis and extracellular matrix degradation in resveratrol-treated osteoarthritis chondrocytes via the Wnt/β-catenin signaling pathways. Exp. Ther. Med., 2017, 14(5), 5057-5062.
[http://dx.doi.org/10.3892/etm.2017.5165] [PMID: 29201214]
[107]
Luo, G.; Jian, Z.; Zhu, Y.; Zhu, Y.; Chen, B.; Ma, R.; Tang, F.; Xiao, Y. Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. Int. J. Mol. Med., 2019, 43(5), 2033-2043.
[http://dx.doi.org/10.3892/ijmm.2019.4125] [PMID: 30864731]
[108]
Chung, S.; Yao, H.; Caito, S.; Hwang, J.; Arunachalam, G.; Rahman, I. Regulation of SIRT1 in cellular functions: Role of polyphenols. Arch. Biochem. Biophys., 2010, 501(1), 79-90.
[http://dx.doi.org/10.1016/j.abb.2010.05.003] [PMID: 20450879]
[109]
Feng, K.; Chen, Z.; Pengcheng, L.; Zhang, S.; Wang, X. Quercetin attenuates oxidative stress‐induced apoptosis via SIRT1/AMPK‐mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model. J. Cell. Physiol., 2019, 234(10), 18192-18205.
[http://dx.doi.org/10.1002/jcp.28452] [PMID: 30854676]
[110]
Ospelt, C.; Brentano, F.; Rengel, Y.; Stanczyk, J.; Kolling, C.; Tak, P.P.; Gay, R.E.; Gay, S.; Kyburz, D. Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: Toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum., 2008, 58(12), 3684-3692.
[http://dx.doi.org/10.1002/art.24140] [PMID: 19035519]
[111]
Qin, Y.; Chen, Y.; Wang, W.; Wang, Z.; Tang, G.; Zhang, P.; He, Z.; Liu, Y.; Dai, S-M.; Shen, Q. HMGB1–LPS complex promotes transformation of osteoarthritis synovial fibroblasts to a rheumatoid arthritis synovial fibroblast-like phenotype. Cell Death Dis, 2014, 5(2), e1077-e.
[http://dx.doi.org/10.1038/cddis.2014.48]
[112]
Zhang, J.; Yin, J.; Zhao, D.; Wang, C.; Zhang, Y.; Wang, Y.; Li, T. Therapeutic effect and mechanism of action of quercetin in a rat model of osteoarthritis. Int. J. Med. Res, 2019, 16.
[http://dx.doi.org/10.1177/0300060519873461] [PMID: 31842639]
[113]
de Oliveira, M.R.; Nabavi, S.M.; Braidy, N.; Setzer, W.N.; Ahmed, T.; Nabavi, S.F. Quercetin and the mitochondria: A mechanistic view. Biotechnol. Adv., 2016, 34(5), 532-549.
[http://dx.doi.org/10.1016/j.biotechadv.2015.12.014] [PMID: 26740171]
[114]
Essa, M.M.; Moghadas, M.; Ba-Omar, T.; Walid Qoronfleh, M.; Guillemin, G.J.; Manivasagam, T.; Justin-Thenmozhi, A.; Ray, B.; Bhat, A.; Chidambaram, S.B.; Fernandes, A.J.; Song, B.J.; Akbar, M. Protective effects of antioxidants in huntington’s disease: an extensive review. Neurotox. Res., 2019, 35(3), 739-774.
[http://dx.doi.org/10.1007/s12640-018-9989-9] [PMID: 30632085]
[115]
Bauer, J.; Huy, C.; Brenmoehl, J.; Obermeier, F.; Bock, J. Matrix metalloproteinase-1 expression induced by IL-1β requires acid sphingomyelinase. FEBS Lett., 2009, 583(5), 915-920.
[http://dx.doi.org/10.1016/j.febslet.2009.02.008] [PMID: 19302792]
[116]
Valsamidou, E.; Gioxari, A.; Amerikanou, C.; Zoumpoulakis, P.; Skarpas, G.; Kaliora, A.C. Dietary interventions with polyphenols in osteoarthritis: a systematic review directed from the preclinical data to randomized clinical studies. Nutrients, 2021, 13(5), 1420.
[http://dx.doi.org/10.3390/nu13051420] [PMID: 33922527]
[117]
Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O.; Sharifi-Rad, M.; Sharopov, F.; Martins, N.; Martorell, M.; Cho, W.C. Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega, 2020, 5(20), 11849-11872.
[http://dx.doi.org/10.1021/acsomega.0c01818] [PMID: 32478277]
[118]
Michalski, J.; Deinzer, A.; Stich, L.; Zinser, E.; Steinkasserer, A.; Knippertz, I. Quercetin induces an immunoregulatory phenotype in maturing human dendritic cells. Immunobiology, 2020, 225(4), 151929.
[http://dx.doi.org/10.1016/j.imbio.2020.151929] [PMID: 32115260]
[119]
Yu, W.; Zhu, Y.; Li, H.; He, Y. Injectable quercetin-loaded hydrogel with cartilage-protection and immunomodulatory properties for articular cartilage repair. ACS Appl. Bio Mater., 2020, 3(2), 761-771.
[http://dx.doi.org/10.1021/acsabm.9b00673] [PMID: 35019280]
[120]
Hu, Y.; Gui, Z.; Zhou, Y.; Xia, L.; Lin, K.; Xu, Y. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radic. Biol. Med., 2019, 145, 146-160.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.09.024] [PMID: 31550528]
[121]
Samadi, F.; Kahrizi, M.S.; Heydari, F.; Arefnezhad, R.; Roghani-Shahraki, H.; Mokhtari Ardekani, A.; Rezaei-Tazangi, F. Quercetin and osteoarthritis: A mechanistic review on the present documents. Pharmacology, 2022, 107(9-10), 464-471.
[http://dx.doi.org/10.1159/000525494] [PMID: 35793647]
[122]
Leyva-López, N.; Gutierrez-Grijalva, E.; Ambriz-Perez, D.; Heredia, J. Flavonoids as cytokine modulators: A possible therapy for inflammation-related diseases. Int. J. Mol. Sci., 2016, 17(6), 921.
[http://dx.doi.org/10.3390/ijms17060921] [PMID: 27294919]
[123]
Haleagrahara, N.; Hodgson, K.; Miranda-Hernandez, S.; Hughes, S.; Kulur, A.B.; Ketheesan, N. Flavonoid quercetin–methotrexate combination inhibits inflammatory mediators and matrix metalloproteinase expression, providing protection to joints in collagen-induced arthritis. Inflammopharmacology, 2018, 26(5), 1219-1232.
[http://dx.doi.org/10.1007/s10787-018-0464-2] [PMID: 29616452]
[124]
Cui, Z.; Zhao, X.; Amevor, FK.; Du, X.; Wang, Y.; Li, D.; Shu, G.; Tian, Y.; Zhao, X. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front. Immunol., 2022, 22(13), 943321.
[http://dx.doi.org/10.3389/fimmu.2022.943321]
[125]
Karliana, D.; Anwar, E.; Bahtiar, A. Formulation and evaluation of quercetin nanoparticle gel for osteoarthritis. Int. J. Appl. Pharmaceut., 2019, 11(5), 54-59.
[http://dx.doi.org/10.22159/ijap.2019v11i5.33191]
[126]
Sul, O.J.; Ra, S.W. Quercetin Prevents LPS-Induced Oxidative Stress and Inflammation by Modulating NOX2/ROS/NF-kB in Lung Epithelial Cells. Molecules, 2021, 26(22), 6949.
[http://dx.doi.org/10.3390/molecules26226949] [PMID: 34834040]
[127]
Bureau, G.; Longpré, F.; Martinoli, M.G. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J. Neurosci. Res., 2008, 86(2), 403-410.
[http://dx.doi.org/10.1002/jnr.21503] [PMID: 17929310]
[128]
Boots, A.W.; Wilms, L.C.; Swennen, E.L.R.; Kleinjans, J.C.S.; Bast, A.; Haenen, G.R.M.M. In vitro and ex vivo anti-inflammatory activity of quercetin in healthy volunteers. Nutrition, 2008, 24(7-8), 703-710.
[http://dx.doi.org/10.1016/j.nut.2008.03.023] [PMID: 18549926]
[129]
Jiang, W.; Huang, Y.; Han, N.; He, F.; Li, M.; Bian, Z.; Liu, J.; Sun, T.; Zhu, L. Quercetin suppresses NLRP3 inflammasome activation and attenuates histopathology in a rat model of spinal cord injury. Spinal Cord, 2016, 54(8), 592-596.
[http://dx.doi.org/10.1038/sc.2015.227] [PMID: 26754474]
[130]
Liu, J.; Li, X.; Yue, Y.; Li, J.; He, T.; He, Y. The inhibitory effect of quercetin on IL-6 production by LPS-stimulated neutrophils. Cell. Mol. Immunol., 2005, 2(6), 455-460.
[PMID: 16426496]
[131]
Huang, R.Y.; Yu, Y.L.; Cheng, W.C.; OuYang, C.N.; Fu, E.; Chu, C.L. Immunosuppressive effect of quercetin on dendritic cell activation and function. J. Immunol., 2010, 184(12), 6815-6821.
[http://dx.doi.org/10.4049/jimmunol.0903991] [PMID: 20483746]
[132]
Granato, M.; Gilardini Montani, M.S.; Zompetta, C.; Santarelli, R.; Gonnella, R.; Romeo, M.A.; D’Orazi, G.; Faggioni, A.; Cirone, M. Quercetin interrupts the positive feedback loop between STAT3 and IL-6, promotes autophagy, and reduces ROS, preventing EBV-driven B cell immortalization. Biomolecules, 2019, 9(9), 482.
[http://dx.doi.org/10.3390/biom9090482] [PMID: 31547402]
[133]
Michaud-Levesque, J.; Bousquet-Gagnon, N.; Béliveau, R. Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration. Exp. Cell Res., 2012, 318(8), 925-935.
[http://dx.doi.org/10.1016/j.yexcr.2012.02.017] [PMID: 22394507]
[134]
Wung, B.S.; Hsu, M.C.; Wu, C.C.; Hsieh, C.W. Resveratrol suppresses IL-6-induced ICAM-1 gene expression in endothelial cells: Effects on the inhibition of STAT3 phosphorylation. Life Sci., 2005, 78(4), 389-397.
[http://dx.doi.org/10.1016/j.lfs.2005.04.052] [PMID: 16150460]
[135]
Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: Its main pharmacological activity and potential application in clinical medicine. Oxid. Med. Cell. Longev., 2020, 2020, 8825387.
[http://dx.doi.org/10.1155/2020/8825387] [PMID: 33488935]
[136]
Lim, W.; Yang, C.; Park, S.; Bazer, F.W.; Song, G. Inhibitory effects of quercetin on progression of human choriocarcinoma cells are mediated through PI3K/AKT and MAPK signal transduction cascades. J. Cell. Physiol., 2017, 232(6), 1428-1440.
[http://dx.doi.org/10.1002/jcp.25637] [PMID: 27714811]
[137]
Kępczyńska, M.A.; Zaibi, M.S.; Alomar, S.Y.; Trayhurn, P. PCR arrays indicate that the expression of extracellular matrix and cell adhesion genes in human adipocytes is regulated by IL-1 β (interleukin-1 β). Arch. Physiol. Biochem., 2017, 123(1), 61-67.
[http://dx.doi.org/10.1080/13813455.2016.1248979] [PMID: 27855518]
[138]
Asgharian, P.; Tazekand, A.P.; Hosseini, K.; Forouhandeh, H.; Ghasemnejad, T.; Ranjbar, M.; Hasan, M.; Kumar, M.; Beirami, S.M.; Tarhriz, V.; Soofiyani, S.R.; Kozhamzharova, L.; Sharifi-Rad, J.; Calina, D.; Cho, W.C. Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets. Cancer Cell Int., 2022, 22(1), 257.
[http://dx.doi.org/10.1186/s12935-022-02677-w] [PMID: 35971151]
[139]
Chuang, C.C.; Martinez, K.; Xie, G.; Kennedy, A.; Bumrungpert, A.; Overman, A.; Jia, W.; McIntosh, M.K. Quercetin is equally or more effective than resveratrol in attenuating tumor necrosis factor-α–mediated inflammation and insulin resistance in primary human adipocytes. Am. J. Clin. Nutr., 2010, 92(6), 1511-1521.
[http://dx.doi.org/10.3945/ajcn.2010.29807] [PMID: 20943792]
[140]
Mohany, M.; Ahmed, M.M.; Al-Rejaie, S.S. Molecular mechanistic pathways targeted by natural antioxidants in the prevention and treatment of chronic kidney disease. Antioxidants, 2021, 11(1), 15.
[http://dx.doi.org/10.3390/antiox11010015] [PMID: 35052518]
[141]
Kim, YI.; Ryu, JS; Yeo, JE.; Choi, YJ.; Kim, YS.; Ko, K.; Koh, YG. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells. Biochem. Biophys. Res. Commun., 2014, 450(4), 1593-9.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.045]
[142]
Vijayababu, M.R.; Arunkumar, A.; Kanagaraj, P.; Arunakaran, J. Effects of quercetin on insulin-like growth factors (IGFs) and their binding protein-3 (IGFBP-3) secretion and induction of apoptosis in human prostate cancer cells. J. Carcinog., 2006, 5(1), 10.
[http://dx.doi.org/10.1186/1477-3163-5-10] [PMID: 16600019]
[143]
Derlindati, E.; Dall’Asta, M.; Ardigò, D.; Brighenti, F.; Zavaroni, I.; Crozier, A.; Del Rio, D. Quercetin-3-O-glucuronide affects the gene expression profile of M1 and M2a human macrophages exhibiting anti-inflammatory effects. Food Funct., 2012, 3(11), 1144-1152.
[http://dx.doi.org/10.1039/c2fo30127j] [PMID: 22868869]
[144]
Lu, H.; Wu, L.; Liu, L.; Ruan, Q.; Zhang, X.; Hong, W.; Wu, S.; Jin, G.; Bai, Y. Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization. Biochem. Pharmacol., 2018, 154, 203-212.
[http://dx.doi.org/10.1016/j.bcp.2018.05.007] [PMID: 29753749]
[145]
Mantovani, A.; Biswas, S.K.; Galdiero, M.R.; Sica, A.; Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol., 2013, 229(2), 176-185.
[http://dx.doi.org/10.1002/path.4133] [PMID: 23096265]
[146]
Goyal, A.; Agrawal, N. Quercetin: A potential candidate for the treatment of arthritis. Curr. Mol. Med., 2022, 22(4), 325-335.
[http://dx.doi.org/10.2174/1566524021666210315125330] [PMID: 33719956]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy