Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

An Overview of Radiolabeled RGD Peptides for Theranostic Applications

Author(s): Fateme Badipa, Behrouz Alirezapour and Hassan Yousefnia*

Volume 16, Issue 2, 2023

Published on: 21 December, 2022

Page: [107 - 122] Pages: 16

DOI: 10.2174/1874471016666221207122731

Price: $65

Abstract

Angiogenesis phenomenon, as a highly affecting factor on the growth and spread of cancer cells, depends on specific molecular interactions between components of the extracellular matrix and vascular cells. αv integrin acts as a cell adhesive molecule involved in tumor invasion and angiogenesis. Among the various combinations of integrin subunits expressed on the surface of cells, αvβ3 integrin has a particularly interesting expression pattern during angiogenesis. The αvβ3 integrin is a vital receptor affecting tumor growth, tumor invasiveness, metastasis, and angiogenesis overexpressed on various human tumors, leading to the development of different theranostics probes and radiopharmaceuticals. The αvβ3 integrin can recognize several extracellular matrix molecules in the base of the RGD adhesive sequence. This review provides an overview of the status, trends and future of the most studied αvβ3 integrin-binding ligand, RGD tripeptides, labeled with various radioisotopes. An overview of the pre-clinical models for radiolabeled RGD peptides and clinical aspects of the RGD- based radiopharmaceuticals is provided with some new considerations and ways forward.

Keywords: αvβ3 integrin, RGD, radioisotopes, theranostics, labeling, pre-clinical studies, clinical trials.

Next »
Graphical Abstract
[1]
Shi, J.; Wang, F.; Liu, S. Radiolabeled cyclic RGD peptides as radiotracers for tumor imaging. Biophys. Rep., 2016, 2(1), 1-20.
[http://dx.doi.org/10.1007/s41048-016-0021-8] [PMID: 27819026]
[2]
Liolios, C.; Sachpekidis, C.; Kolocouris, A.; Dimitrakopoulou-Strauss, A.; Bouziotis, P. PET diagnostic molecules utilizing multimeric cyclic RGD peptide analogs for imaging Integrin αvβ3 Receptors. Molecules, 2021, 26(6), 1792.
[http://dx.doi.org/10.3390/molecules26061792] [PMID: 33810198]
[3]
Leung, K. 99mTc(CO)3-Pyrazolyl-cyclo(Arg-Gly-Asp-D-Tyr-Lys). In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23036/
[PMID: 20641243]
[4]
Chen, X.; Tohme, M.; Park, R.; Hou, Y.; Bading, J.R.; Conti, P.S. Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide. Mol. Imaging, 2004, 3(2), 96-104.
[http://dx.doi.org/10.1162/1535350041464892] [PMID: 15296674]
[5]
Chen, H.; Niu, G.; Wu, H.; Chen, X. Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3. Theranostics, 2016, 6(1), 78-92.
[http://dx.doi.org/10.7150/thno.13242] [PMID: 26722375]
[6]
Cheng, K.T. [18F] FB-NH-mini-PEG-E{E[c(RGDyK)]2}2. In: molecular imaging and contrast agent database (MICAD); national center for biotechnology information (US): bethesda (MD), 2004-2013. Available from:https://www.ncbi.nlm.nih.gov/books/NBK23235/
[PMID: 20641437]
[7]
Guo, N.; Lang, L.; Gao, H.; Niu, G.; Kiesewetter, D.O.; Xie, Q.; Chen, X. Quantitative analysis and parametric imaging of 18F-labeled monomeric and dimeric RGD peptides using compartment model. Mol. Imaging Biol., 2012, 14(6), 743-752.
[http://dx.doi.org/10.1007/s11307-012-0541-7] [PMID: 22437879]
[8]
Zhou, Y.; Chakraborty, S.; Liu, S. Radiolabeled cyclic RGD peptides as radiotracers for imaging tumors and thrombosis by SPECT. Theranostics, 2011, 1, 58-82.
[http://dx.doi.org/10.7150/thno/v01p0058] [PMID: 21547153]
[9]
Tateishi, U.; Oka, T.; Inoue, T. Radiolabeled RGD Peptides as Integrin alpha(v)beta3–targeted PET Tracers. Curr. Med. Chem., 2012, 19(20), 3301-3309.
[http://dx.doi.org/10.2174/092986712801215937] [PMID: 22664242]
[10]
Leung, K. 68Ga-1,4,7,10-Tetraazacyclododecane-N,N',N'',N'''-tetra acetic acid-cyclo(Arg-Gly-Asp-D-Phe-Lys). In: molecular imaging and contrast agent database (MICAD); national center for biotechnology information (US): bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23545/.
[11]
Leung, K. 111In-Diethylenetriamine pentaacetic acid-NAVPNLRG DLQVLAQKVART. In: molecular imaging and contrast agent database (MICAD); National Center for Biotechnology Information (US);: Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK114462/
[PMID: 23193616]
[12]
Rezazadeh, F.; Sadeghzadeh, N. Tumor targeting with 99m Tc radiolabeled peptides: Clinical application and recent development. Chem. Biol. Drug Des., 2019, 93(3), 205-221.
[http://dx.doi.org/10.1111/cbdd.13413] [PMID: 30299570]
[13]
Fani, M.; Maecke, H.R.; Okarvi, S.M. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics, 2012, 2(5), 481-501.
[http://dx.doi.org/10.7150/thno.4024] [PMID: 22737187]
[14]
Chakraborty, S.; Chakravarty, R.; Sarma, H.D.; Dash, A.; Pillai, M.R.A. The practicality of nanoceria-PAN-based (68)Ge/(68)Ga generator toward preparation of (68)Ga-labeled cyclic RGD dimer as a potential PET radiotracer for tumor imaging. Cancer Biother. Radiopharm., 2013, 28(1), 77-83.
[http://dx.doi.org/10.1089/cbr.2012.1252] [PMID: 22967229]
[15]
Haubner, R.; Decristoforo, C. Radiolabelled RGD peptides and peptidomimetics for tumour targeting. Front. Biosci., 2009, 14, 872-886.
[http://dx.doi.org/10.2741/3283] [PMID: 19273105]
[16]
Dijkgraaf, I.; Kruijtzer, J.A.W.; Frielink, C.; Soede, A.C.; Hilbers, H.W.; Oyen, W.J.G.; Corstens, F.H.M.; Liskamp, R.M.J.; Boerman, O.C. Synthesis and biological evaluation of potent αvβ3-integrin receptor antagonists. Nucl. Med. Biol., 2006, 33(8), 953-961.
[http://dx.doi.org/10.1016/j.nucmedbio.2006.08.008] [PMID: 17127167]
[17]
Decristoforo, C.; Santos, I.; Pietzsch, H.J.; Kuenstler, J.U.; Duatti, A.; Smith, C.J.; Rey, A.; Alberto, R.; Von Guggenberg, E.; Haubner, R. Comparison of in vitro and in vivo properties of [99mTc]cRGD peptides labeled using different novel Tc-cores. Q. J. Nucl. Med. Mol. Imaging, 2007, 51(1), 33-41.
[PMID: 17372571]
[18]
Chen, X.; Park, R.; Shahinian, A.H.; Bading, J.R.; Conti, P.S. Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl. Med. Biol., 2004, 31(1), 11-19.
[http://dx.doi.org/10.1016/j.nucmedbio.2003.07.003] [PMID: 14741566]
[19]
Wängler, C.; Maschauer, S.; Prante, O.; Schäfer, M.; Schirrmacher, R.; Bartenstein, P.; Eisenhut, M.; Wängler, B. Multimerization of cRGD peptides by click chemistry: synthetic strategies, chemical limitations, and influence on biological properties. ChemBioChem, 2010, 11(15), 2168-2181.
[http://dx.doi.org/10.1002/cbic.201000386] [PMID: 20827791]
[20]
Fani, M.; Maecke, H.R. Radiopharmaceutical development of radiolabelled peptides. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(S1), 11-30.
[http://dx.doi.org/10.1007/s00259-011-2001-z] [PMID: 22388624]
[21]
Sun, F.; Wang, J.; Sun, Q.; Li, F.; Gao, H.; Xu, L.; Zhang, J.; Sun, X.; Tian, Y.; Zhao, Q.; Shen, H.; Zhang, K.; Liu, J. Interleukin-8 promotes integrin β3 upregulation and cell invasion through PI3K/Akt pathway in hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2019, 38(1), 449.
[http://dx.doi.org/10.1186/s13046-019-1455-x] [PMID: 31684995]
[22]
Mohammadi, R.; Shokri, B.; Shamshirian, D.; Zarghi, A.; Shahhosseini, S. Synthesis and biological evaluation of RGD conjugated with Ketoprofen/Naproxen and radiolabeled with [99mTc] via N4(GGAG) for αVβ3 integrin-targeted drug delivery. Daru, 2020, 28(1), 87-96.
[http://dx.doi.org/10.1007/s40199-019-00318-8] [PMID: 31845157]
[23]
Montenegro, C.F.; Casali, B.C.; Lino, R.L.B.; Pachane, B.C.; Santos, P.K.; Horwitz, A.R.; Selistre-de-Araujo, H.S.; Lamers, M.L. Inhibition of αvβ3 integrin induces loss of cell directionality of oral squamous carcinoma cells (OSCC). PLoS One, 2017, 12(4), e0176226.
[http://dx.doi.org/10.1371/journal.pone.0176226] [PMID: 28437464]
[24]
Saviola, A.J.; Burns, P.D.; Mukherjee, A.K.; Mackessy, S.P. The disintegrin tzabcanin inhibits adhesion and migration in melanoma and lung cancer cells. Int. J. Biol. Macromol., 2016, 88, 457-464.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.008] [PMID: 27060015]
[25]
Raposo Moreira Dias, A.; Bodero, L.; Martins, A.; Arosio, D.; Gazzola, S.; Belvisi, L.; Pignataro, L.; Steinkühler, C.; Dal Corso, A.; Gennari, C.; Piarulli, U. Synthesis and biological evaluation of RGD and iso DGR-monomethyl auristatin conjugates targeting integrin αVβ3. ChemMedChem, 2019, 14(9), 938-942.
[http://dx.doi.org/10.1002/cmdc.201900049] [PMID: 30840356]
[26]
Hou, L.; Zhao, X.; Wang, P.; Ning, Q.; Meng, M.; Liu, C. Antitumor activity of antimicrobial peptides containing CisoDGRC in CD13 negative breast cancer cells. PLoS One, 2013, 8(1), e53491.
[http://dx.doi.org/10.1371/journal.pone.0053491] [PMID: 23326440]
[27]
Pu, Y.; Zhang, H.; Peng, Y.; Fu, Q.; Yue, Q.; Zhao, Y.; Guo, L.; Wu, Y. Dual-targeting liposomes with active recognition of GLUT5 and αvβ3 for triple-negative breast cancer. Eur. J. Med. Chem., 2019, 183111720.
[http://dx.doi.org/10.1016/j.ejmech.2019.111720] [PMID: 31553933]
[28]
Biswas, S.; Wang, X.; Morales, A.R.; Ahn, H.Y.; Belfield, K.D. Integrin-targeting block copolymer probes for two-photon fluorescence bioimaging. Biomacromolecules, 2011, 12(2), 441-449.
[http://dx.doi.org/10.1021/bm1012212] [PMID: 21190348]
[29]
Cohen, K.; Flint, N.; Shalev, S.; Erez, D.; Baharal, T.; Davis, P.J.; Hercbergs, A.; Ellis, M.; Ashur-Fabian, O. Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells. Oncotarget, 2014, 5(15), 6312-6322.
[http://dx.doi.org/10.18632/oncotarget.2205] [PMID: 25071016]
[30]
Jiang, Y.; Li, T.; Lu, M.; Li, D.; Ren, F.; Zhao, H.; Li, Y. TEMPO-oxidized starch nanoassemblies of negligible toxicity compared with polyacrylic acids for high performance anti-cancer therapy. Int. J. Pharm., 2018, 547(1-2), 520-529.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.019] [PMID: 29886098]
[31]
Bellone, M.; Cocco, E.; Varughese, J.; Bellone, S.; Todeschini, P.; El-Sahwi, K.; Carrara, L.; Guzzo, F.; Schwartz, P.E.; Rutherford, T.J.; Pecorelli, S.; Marshall, D.J.; Santin, A.D. Expression of αV-integrins in uterine serous papillary carcinomas; implications for targeted therapy with intetumumab (CNTO 95), a fully human antagonist anti-αV-integrin antibody. Int. J. Gynecol. Cancer, 2011, 21(6), 1084-1090.
[http://dx.doi.org/10.1097/IGC.0b013e3182187324] [PMID: 21633302]
[32]
Lobeek, D.; Franssen, G.M.; Ma, M.T.; Wester, H.J.; Decristoforo, C.; Oyen, W.J.G.; Boerman, O.C.; Terry, S.Y.A.; Rijpkema, M. In Vivo characterization of 4 68 Ga-labeled multimeric RGD peptides to image αvβ3 integrin expression in 2 human tumor xenograft mouse models. J. Nucl. Med., 2018, 59(8), 1296-1301.
[http://dx.doi.org/10.2967/jnumed.117.206979] [PMID: 29626124]
[33]
Jain, A.; Chakraborty, S.; Sarma, H.D.; Dash, A. A Systematic Comparative Evaluation of 68Ga-Labeled RGD Peptides Conjugated with Different Chelators. Nucl. Med. Mol. Imaging, 2018, 52(2), 125-134.
[http://dx.doi.org/10.1007/s13139-017-0499-0] [PMID: 29662561]
[34]
Leung, K. 64Cu-1,4,7-Triazacyclononane,1-glutaric acid-4,7-acetic acid-cyclo(Arg-Gly-Asp-d-Tyr-Lys). In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK143128/
[PMID: 23741768]
[35]
Leung, K. 99mTc-Regioselectively addressable functionalized template-[cyclo-(Arg-Gly-Asp-d-Phe-Lys)]4. MICAD, 2008, 2004-2013.
[PMID: 20641939]
[36]
Morales-Avila, E.; Ferro-Flores, G.; Ocampo-García, B.E.; De León-Rodríguez, L.M.; Santos-Cuevas, C.L.; García-Becerra, R.; Medina, L.A.; Gómez-Oliván, L. Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor α(v)β(3) expression. Bioconjug. Chem., 2011, 22(5), 913-922.
[http://dx.doi.org/10.1021/bc100551s] [PMID: 21513349]
[37]
Leung, K. [99mTc-Gly-Gly-Cys]-Ornithine-ornithine-ornithine-cy clo(Arg-Gly-Asp-d-Phe-Lys). In: molecular imaging and contrast agent database (MICAD); national center for biotechnology information (US): bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK132429/
[PMID: 23596642]
[38]
Leung, K. K99mTc-Glucosamino-Asp-cyclo(Arg-Gly-Asp-D-Phe-Lys). In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23378/
[PMID: 20641579]
[39]
Leung, K. 99mTc-Hydrazinonicotinic acid-Glu-[cyclo(Arg-Gly- Asp-D-Phe-Lys)]2. In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23040/
[PMID: 20641247]
[40]
Leung, K. 99mTc-Ethylenediaminediacetic acid/hydrazinonicotinic acid-cyclo(Arg-Gly-Asp-D-Try-Lys). In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23607/
[PMID: 20641803]
[41]
Leung, K. 99mTc-Hydrazinonicotinic acid-Glu-{Glu-[cyclo(Arg- Gly-Asp-D-Phe-Lys)]2}2. In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23471/
[PMID: 20641670]
[42]
Janssen, M.; Oyen, W.J.G.; Massuger, L.F.A.G.; Frielink, C.; Dijkgraaf, I.; Edwards, D.S.; Radjopadhye, M.; Corstens, F.H.M.; Boerman, O.C. Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. Cancer Biother. Radiopharm., 2002, 17(6), 641-646.
[http://dx.doi.org/10.1089/108497802320970244] [PMID: 12537667]
[43]
de Oliveira, É.A.; Faintuch, B.L.; Targino, R.C.; Moro, A.M.; Martinez, R.C.R.; Pagano, R.L.; Fonoff, E.T.; Carneiro, C.G.; Garcez, A.T.; Faria, D.P.; Buchpiguel, C.A. Evaluation of GX1 and RGD-GX1 peptides as new radiotracers for angiogenesis evaluation in experimental glioma models. Amino Acids, 2016, 48(3), 821-831.
[http://dx.doi.org/10.1007/s00726-015-2130-y] [PMID: 26592499]
[44]
Decristoforo, C.; Faintuch-Linkowski, B.; Rey, A.; von Guggenberg, E.; Rupprich, M.; Hernandez-Gonzales, I.; Rodrigo, T.; Haubner, R. [99mTc]HYNIC-RGD for imaging integrin αvβ3 expression. Nucl. Med. Biol., 2006, 33(8), 945-952.
[http://dx.doi.org/10.1016/j.nucmedbio.2006.09.001] [PMID: 17127166]
[45]
Lo, W.L.; Lo, S.W.; Chen, S.J.; Chen, M.W.; Huang, Y.R.; Chen, L.C.; Chang, C.H.; Li, M.H. Molecular Imaging and Preclinical Studies of Radiolabeled Long-Term RGD Peptides in U-87 MG Tumor-Bearing Mice. Int. J. Mol. Sci., 2021, 22(11), 5459.
[http://dx.doi.org/10.3390/ijms22115459] [PMID: 34064291]
[46]
Bernard, B.; Capello, A.; van Hagen, M.; Breeman, W.; Srinivasan, A.; Schmidt, M.; Erion, J.; van Gameren, A.; Krenning, E.; De Jong, M. Radiolabeled RGD-DTPA-Tyr3-octreotate for receptor-targeted radionuclide therapy. Cancer Biother. Radiopharm., 2004, 19(2), 173-180.
[http://dx.doi.org/10.1089/108497804323071940] [PMID: 15186597]
[47]
Leung, K. 111In-Diethylenetriaminepentaacetic acid-benzyl-succinamido-Lys-IRDye800-c(Arg-Gly-Asp-D-Phe-Lys). In: molecular imaging and contrast agent database (MICAD); national center for biotechnology information (US): bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23456/
[PMID: 20641655]
[48]
Chakraborty, S.; Shi, J.; Kim, Y.S.; Zhou, Y.; Jia, B.; Wang, F.; Liu, S. Evaluation of 111In-labeled cyclic RGD peptides: tetrameric not tetravalent. Bioconjug. Chem., 2010, 21(5), 969-978.
[http://dx.doi.org/10.1021/bc900555q] [PMID: 20387808]
[49]
Leung, K. 111In-Tetraazacyclododecane-N,N′,N”,N”'-tetraacetic ac id-Glu-cyclo(Arg-Gly-Asp-D-Phe-Lys). In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23270/
[PMID: 20641472]
[50]
Leung, K. 111In-1,4,7-Triazacyclononane,1-glutaric acid-4,7-ace tic acid-Glu-[cyclo(Arg-Gly-Asp-d-Phe-Lys)]2. In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK143726/
[PMID: 23785729]
[51]
Decristoforo, C.; Hernandez Gonzalez, I.; Carlsen, J.; Rupprich, M.; Huisman, M.; Virgolini, I.; Wester, H.J.; Haubner, R. 68Ga- and 111In-labelled DOTA-RGD peptides for imaging of αvβ3 integrin expression. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(8), 1507-1515.
[http://dx.doi.org/10.1007/s00259-008-0757-6] [PMID: 18369617]
[52]
Leung, K. 111In-Tetraazacyclododecane-N,N',N'',N'''-tetraacetic ac id-Glu-[cyclo(Arg-Gly-Asp-D-Phe-Lys)]2. In: molecular imaging and contrast agent database (micad); national center for biotechnology information (US): bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23652/
[PMID: 20641847]
[53]
Leung, K. 111In-Tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-Glu-{Glu-[cyclo(Arg-Gly-Asp-D-Phe-Lys)]2}2. In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US);: Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23524/
[PMID: 20641723]
[54]
Dijkgraaf, I.; Yim, C.B.; Franssen, G.M.; Schuit, R.C.; Luurtsema, G.; Liu, S.; Oyen, W.J.G.; Boerman, O.C. PET imaging of αvβ3 integrin expression in tumours with 68Ga-labelled mono-, di- and tetrameric RGD peptides. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38(1), 128-137.
[http://dx.doi.org/10.1007/s00259-010-1615-x] [PMID: 20857099]
[55]
Dijkgraaf, I.; Kruijtzer, J.A.W.; Frielink, C.; Corstens, F.H.M.; Oyen, W.J.G.; Liskamp, R.M.J.; Boerman, O.C. αvβ3 Integrin-targeting of intraperitoneally growing tumors with a radiolabeled RGD peptide. Int. J. Cancer, 2007, 120(3), 605-610.
[http://dx.doi.org/10.1002/ijc.22297] [PMID: 17096340]
[56]
Ferro-Flores, G.; Ocampo-García, B.; Santos-Cuevas, C.; María Ramírez, F.; Azorín-Vega, E.; Meléndez-Alafort, L. Theranostic Radiopharmaceuticals Based on Gold Nanoparticles Labeled with 177Lu and Conjugated to Peptides. Curr. Radiopharm., 2015, 8(2), 150-159.
[http://dx.doi.org/10.2174/1874471008666150313115423] [PMID: 25771363]
[57]
Dijkgraaf, I.; Liu, S.; Kruijtzer, J.A.W.; Soede, A.C.; Oyen, W.J.G.; Liskamp, R.M.J.; Corstens, F.H.M.; Boerman, O.C. Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide. Nucl. Med. Biol., 2007, 34(1), 29-35.
[http://dx.doi.org/10.1016/j.nucmedbio.2006.10.006] [PMID: 17210459]
[58]
Shi, J.; Kim, Y.S.; Chakraborty, S.; Zhou, Y.; Wang, F.; Liu, S. Impact of bifunctional chelators on biological properties of 111In-labeled cyclic peptide RGD dimers. Amino Acids, 2011, 41(5), 1059-1070.
[http://dx.doi.org/10.1007/s00726-009-0439-0] [PMID: 20052508]
[59]
Dijkgraaf, I.; Terry, S.Y.A.; McBride, W.J.; Goldenberg, D.M.; Laverman, P.; Franssen, G.M.; Oyen, W.J.G.; Boerman, O.C. Imaging integrin alpha-v-beta-3 expression in tumors with an 18 F-labeled dimeric RGD peptide. Contrast Media Mol. Imaging, 2013, 8(3), 238-245.
[http://dx.doi.org/10.1002/cmmi.1523] [PMID: 23606427]
[60]
Laverman, P.; Meeuwissen, S.A.; van Berkel, S.S.; Oyen, W.J.G.; van Delft, F.L.; Rutjes, F.P.J.T.; Boerman, O.C. In-depth evaluation of the cycloaddition–retro-Diels–Alder reaction for in vivo targeting with [111In]-DTPA-RGD conjugates. Nucl. Med. Biol., 2009, 36(7), 749-757.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.05.001] [PMID: 19720287]
[61]
Liu, S. Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. Mol. Pharm., 2006, 3(5), 472-487.
[http://dx.doi.org/10.1021/mp060049x] [PMID: 17009846]
[62]
Novy, Z.; Stepankova, J.; Hola, M.; Flasarova, D.; Popper, M.; Petrik, M. Preclinical evaluation of radiolabeled peptides for PET imaging of glioblastoma multiforme. Molecules, 2019, 24(13), 2496.
[http://dx.doi.org/10.3390/molecules24132496] [PMID: 31288488]
[63]
Leung, K. 68Ga-Tetraazacyclododecane-N,N',N'',N'''-tetraacetic ac id-Glu-[cyclo(Arg-Gly-Asp-D-Phe-Lys)]2. In: molecular imaging and contrast agent database (MICAD); national center for biotechnology information (US): bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK54550/
[PMID: 21595126]
[64]
Leung, K. 68Ga-1,4,7-Triazacyclononane-1,4-7-triacetic acid-Glu- [Gly-Gly-Gly-c(Arg-Gly-Asp-D-Phe-Lys)]2. MICAD, 2009, 2004-2013.
[PMID: 20641458]
[65]
Leung, K. 68Ga-1,4,7-Triazacyclononane-1,4-7-triacetic acid-Glu-[15-amino-4,7,10,13-tetraoxapentadecanoic acid-c(Arg-Gly-Asp-D-Phe-Lys)]. In: molecular imaging and contrast agent database (MICAD); national center for biotechnology information (US): bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23722/
[PMID: 20641917]
[66]
Leung, K. 68Ga-1,4,7-Triazacyclononane,1-glutaric acid-4,7-acetic acid-cyclo(Arg-Gly-Asp-d-Phe-Lys). In: molecular imaging and contrast agent database (MICAD); national center for biotechnology information (US): bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK66064/
[PMID: 22091477]
[67]
Satpati, D.; Sharma, R.; Kumar, C.; Sarma, H.D.; Dash, A. 68 Ga-Chelation and comparative evaluation of N,N′-bis-[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N′-diacetic acid (HBED-CC) conjugated NGR and RGD peptides as tumor targeted molecular imaging probes. MedChemComm, 2017, 8(3), 673-679.
[http://dx.doi.org/10.1039/C7MD00006E] [PMID: 30108785]
[68]
Liu, Z.; Yan, Y.; Liu, S.; Wang, F.; Chen, X. (18)F, (64)Cu, and (68)Ga labeled RGD-bombesin heterodimeric peptides for PET imaging of breast cancer. Bioconjug. Chem., 2009, 20(5), 1016-1025.
[http://dx.doi.org/10.1021/bc9000245] [PMID: 20540537]
[69]
Vatsa, R.; Shukla, J.; Kumar, S.; Chakraboarty, S.; Dash, A.; Singh, G.; Mittal, B.R. Effect of macro-cyclic bifunctional chelators DOTA and NODAGA on radiolabeling and In Vivo biodistribution of Ga-68 cyclic RGD dimer. Cancer Biother. Radiopharm., 2019, 34(7), 427-435.
[http://dx.doi.org/10.1089/cbr.2019.2811] [PMID: 31112044]
[70]
Dumont, R.A.; Deininger, F.; Haubner, R.; Maecke, H.R.; Weber, W.A.; Fani, M. Novel (64)Cu- and (68)Ga-labeled RGD conjugates show improved PET imaging of α(ν)β(3) integrin expression and facile radiosynthesis. J. Nucl. Med., 2011, 52(8), 1276-1284.
[http://dx.doi.org/10.2967/jnumed.111.087700] [PMID: 21764795]
[71]
Liu, Z.; Niu, G.; Shi, J.; Liu, S.; Wang, F.; Liu, S.; Chen, X. 68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin αvβ3 PET imaging. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36(6), 947-957.
[http://dx.doi.org/10.1007/s00259-008-1045-1] [PMID: 19159928]
[72]
Su, Z.F.; Liu, G.; Gupta, S.; Zhu, Z.; Rusckowski, M.; Hnatowich, D.J. In vitro and in vivo evaluation of a Technetium-99m-labeled cyclic RGD peptide as a specific marker of alpha(V)beta(3) integrin for tumor imaging. Bioconjug. Chem., 2002, 13(3), 561-570.
[http://dx.doi.org/10.1021/bc0155566] [PMID: 12009947]
[73]
Imberti, C.; Terry, S.Y.A.; Cullinane, C.; Clarke, F.; Cornish, G.H.; Ramakrishnan, N.K.; Roselt, P.; Cope, A.P.; Hicks, R.J.; Blower, P.J.; Ma, M.T. Enhancing PET signal at target tissue in Vivo: dendritic and multimeric Tris(hydroxypyridinone) conjugates for molecular imaging of α v β 3 integrin expression with gallium-68. Bioconjug. Chem., 2017, 28(2), 481-495.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00621] [PMID: 27966893]
[74]
Leung, K. 68Ga-1,4,7-Triazacyclononane-1,4,7-triacetic acidc( RGDfK)-human serum albumin-tissue inhibitor of matrix metalloproteinase 2 fusion protein. In: molecular imaging and contrast agent database (MICAD); national center for biotechnology information (US): bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK97122/
[PMID: 22649804]
[75]
Knetsch, P.A.; Zhai, C.; Rangger, C.; Blatzer, M.; Haas, H.; Kaeopookum, P.; Haubner, R.; Decristoforo, C. [68Ga]FSC-(RGD)3 a trimeric RGD peptide for imaging αvβ3 integrin expression based on a novel siderophore derived chelating scaffold—synthesis and evaluation. Nucl. Med. Biol., 2015, 42(2), 115-122.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.10.001] [PMID: 25459110]
[76]
Chakraborty, S.; Chakravarty, R.; Vatsa, R.; Bhusari, P.; Sarma, H.D.; Shukla, J.; Mittal, B.R.; Dash, A. Toward realization of ‘mix-and-use’ approach in 68 Ga radiopharmacy: preparation, evaluation and preliminary clinical utilization of 68 Ga-labeled NODAGA-coupled RGD peptide derivative. Nucl. Med. Biol., 2016, 43(1), 116-123.
[http://dx.doi.org/10.1016/j.nucmedbio.2015.09.010] [PMID: 26527030]
[77]
Lang, L.; Li, W.; Guo, N.; Ma, Y.; Zhu, L.; Kiesewetter, D.O.; Shen, B.; Niu, G.; Chen, X. Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice. Bioconjug. Chem., 2012, 23(2), 308.
[http://dx.doi.org/10.1021/bc200673p] [PMID: 22026940]
[78]
Hernandez, R.; Czerwinski, A.; Chakravarty, R.; Graves, S.A.; Yang, Y.; England, C.G.; Nickles, R.J.; Valenzuela, F.; Cai, W. Evaluation of two novel 64Cu-labeled RGD peptide radiotracers for enhanced PET imaging of tumor integrin αvβ3. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(12), 1859-1868.
[http://dx.doi.org/10.1007/s00259-015-3085-7] [PMID: 26016906]
[79]
Kang, C.M.; Koo, H.J.; An, G.I.; Choe, Y.S.; Choi, J.Y.; Lee, K.H.; Kim, B.T. Hybrid PET/optical imaging of integrin αVβ3 receptor expression using a 64Cu-labeled streptavidin/biotin-based dimeric RGD peptide. EJNMMI Res., 2015, 5(1), 60.
[http://dx.doi.org/10.1186/s13550-015-0140-0] [PMID: 26518424]
[80]
Mantz, A.; Rosenthal, A.; Farris, E.; Kozisek, T.; Bittrich, E.; Nazari, S.; Schubert, E.; Schubert, M.; Stamm, M.; Uhlmann, P.; Pannier, A.K. Free Polyethylenimine Enhances Substrate-Mediated Gene Delivery on Titanium Substrates Modified With RGD-Functionalized Poly(acrylic acid) Brushes. Front Chem., 2019, 7, 51.
[http://dx.doi.org/10.3389/fchem.2019.00051] [PMID: 30792979]
[81]
Leung, K. 64Cu-1,4,7-Triazacyclononane,1-glutaric acid-4,7-acetic acid-cyclo(Arg-Gly-Asp-d-Phe-Lys); MICAD, 2011, pp. 2004-2013.
[PMID: 22359779]
[82]
Li, Z.; Cai, W.; Cao, Q.; Chen, K.; Wu, Z.; He, L.; Chen, X. (64)Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression. J. Nucl. Med., 2007, 48(7), 1162-1171.
[http://dx.doi.org/10.2967/jnumed.107.039859] [PMID: 17574975]
[83]
Leung, K. 64Cu-1,4,8,11-Tetraazacyclotetradecane-regioselectively addressable functionalized template-[cyclo-(Arg-Gly-Asp-d- Phe-Lys)]4. In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK82386/
[PMID: 22171395]
[84]
Leung, K. Cys-Asp-Cys-Arg-Gly-Asp-Cys-Phe-Cys/Cy5.5-Ferritin 64Cu-loaded nanocages. In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK63519/
[PMID: 21938857]
[85]
Leung, K. 64Cu-1,4,7,10-Tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid-iron oxide-c(RGDyK) nanoparticles. In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23557/
[PMID: 20641755]
[86]
Leung, K. 64Cu-Tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid-quantum dot-c(Arg-Gly-Asp-D-Tyr-Lys). In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23692/
[PMID: 20641887]
[87]
Lee, J.W.; Park, J.A.; Lee, Y.J.; Shin, U.C.; Kim, S.W.; Kim, B.I.; Lim, S.M.; An, G.I.; Kim, J.Y.; Lee, K.C. New Glucocyclic RGD Dimers for Positron Emission Tomography Imaging of Tumor Integrin Receptors. Cancer Biother. Radiopharm., 2016, 31(6), 209-216.
[http://dx.doi.org/10.1089/cbr.2016.2015] [PMID: 27403677]
[88]
Jadvar, H.; Chen, K.; Park, R.; Yap, L.P.; Vorobyova, I.; Swenson, S.; Markland, F.S. Preclinical evaluation of a 64Cu-labeled disintegrin for PET imaging of prostate cancer. Amino Acids, 2019, 51(10-12), 1569-1575.
[http://dx.doi.org/10.1007/s00726-019-02794-3] [PMID: 31621030]
[89]
Liu, Z.; Li, Z.B.; Cao, Q.; Liu, S.; Wang, F.; Chen, X. Small-animal PET of tumors with (64)Cu-labeled RGD-bombesin heterodimer. J. Nucl. Med., 2009, 50(7), 1168-1177.
[http://dx.doi.org/10.2967/jnumed.108.061739] [PMID: 19525469]
[90]
Durkan, K.; Jiang, Z.; Rold, T.L.; Sieckman, G.L.; Hoffman, T.J.; Bandari, R.P.; Szczodroski, A.F.; Liu, L.; Miao, Y.; Reynolds, T.S.; Smith, C.J. A heterodimeric [RGD-Glu-[64Cu-NO2A]-6-Ahx-RM2] αvβ3/GRPr-targeting antagonist radiotracer for PET imaging of prostate tumors. Nucl. Med. Biol., 2014, 41(2), 133-139.
[http://dx.doi.org/10.1016/j.nucmedbio.2013.11.006] [PMID: 24480266]
[91]
Li, Z.; Jin, Q.; Huang, C.; Dasa, S.; Chen, L.; Yap, L.; Liu, S.; Cai, H.; Park, R.; Conti, P.S. Trackable and Targeted Phage as Positron Emission Tomography (PET) Agent for Cancer Imaging. Theranostics, 2011, 1, 371-380.
[http://dx.doi.org/10.7150/thno/v01p0371] [PMID: 22211143]
[92]
Jackson, A.B.; Nanda, P.K.; Rold, T.L.; Sieckman, G.L.; Szczodroski, A.F.; Hoffman, T.J.; Chen, X.; Smith, C.J. 64Cu-NO2A-RGD-Glu-6-Ahx-BBN(7-14)NH2: a heterodimeric targeting vector for positron emission tomography imaging of prostate cancer. Nucl. Med. Biol., 2012, 39(3), 377-387.
[http://dx.doi.org/10.1016/j.nucmedbio.2011.10.004] [PMID: 22226021]
[93]
Wu, Y.; Zhang, X.; Xiong, Z.; Cheng, Z.; Fisher, D.R.; Liu, S.; Gambhir, S.S.; Chen, X. microPET imaging of glioma integrin alphavbeta3 expression using (64)Cu-labeled tetrameric RGD peptide. J. Nucl. Med., 2005, 46(10), 1707-1718.
[PMID: 16204722]
[94]
Chen, X.; Sievers, E.; Hou, Y.; Park, R.; Tohme, M.; Bart, R.; Bremner, R.; Bading, J.R.; Conti, P.S. Integrin alpha v beta 3-targeted imaging of lung cancer. Neoplasia, 2005, 7(3), 271-279.
[http://dx.doi.org/10.1593/neo.04538] [PMID: 15799827]
[95]
Jin, Z.H.; Furukawa, T.; Galibert, M.; Boturyn, D.; Coll, J.L.; Fukumura, T.; Saga, T.; Dumy, P.; Fujibayashi, Y. Noninvasive visualization and quantification of tumor αVβ3 integrin expression using a novel positron emission tomography probe, 64Cu-cyclam-RAFT-c(-RGDfK-)4. Nucl. Med. Biol., 2011, 38(4), 529-540.
[http://dx.doi.org/10.1016/j.nucmedbio.2010.11.008] [PMID: 21531290]
[96]
Cai, W.; Zhang, X.; Wu, Y.; Chen, X. A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido)ethyl]maleimide, and synthesis of RGD peptide-based tracer for PET imaging of alpha v beta 3 integrin expression. J. Nucl. Med., 2006, 47(7), 1172-1180.
[PMID: 16818952]
[97]
Leung, K. N-4-[18F]Fluorobenzoyl-c[(RGDyK)]2. In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23294
[PMID: 20641534]
[98]
Leung, K. 4-[18F]Fluorobenzoyl-ε-Lys1-c(KRGDe)MDDPGRNPHhCitGPAT. In: molecular imaging and contrast agent database (MICAD); national center for biotechnology information (US): bethesda (MD), 2004-2013. Available from:https://www.ncbi.nlm.nih.gov/books/NBK23383/
[PMID: 20641584]
[99]
Leung, K. N-4-[18F]Fluorobenzoyl-c[(RGDyK)]2. In: molecular imaging and contrast agent database (MICAD); national center for biotechnology information (US): bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23294/
[PMID: 20641496]
[100]
Cheng, K.T. N-[2-(4-[18F]Fluorobenzamido)ethyl]maleimidesulfhydryl-cyclic-arginine-glycine-aspartic acid peptide. In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23418/
[PMID: 20641618]
[101]
Li, W.; Lang, L.; Niu, G.; Guo, N.; Ma, Y.; Kiesewetter, D.O.; Shen, B.; Chen, X. N-Succinimidyl 4-[18F]-fluoromethylbenzoate-labeled dimeric RGD peptide for imaging tumor integrin expression. Amino Acids, 2012, 43(3), 1349-1357.
[http://dx.doi.org/10.1007/s00726-011-1208-4] [PMID: 22209865]
[102]
Chen, Z.; Fu, H.; Wu, H.; Huang, J.; Yao, L.; Zhang, X.; Li, Y. Syntheses and preliminary evaluation of dual target PET probe [18F]-NOTA-Gly3- E (2PEG4-RGD-WH701) for PET imaging of breast cancer. Anticancer. Agents Med. Chem., 2020, 20(13), 1548-1557.
[http://dx.doi.org/10.2174/1871520620666200424101936] [PMID: 32329699]
[103]
Guo, J.; Lang, L.; Hu, S.; Guo, N.; Zhu, L.; Sun, Z.; Ma, Y.; Kiesewetter, D.O.; Niu, G.; Xie, Q.; Chen, X. Comparison of three dimeric 18F-AlF-NOTA-RGD tracers. Mol. Imaging Biol., 2014, 16(2), 274-283.
[http://dx.doi.org/10.1007/s11307-013-0668-1] [PMID: 23982795]
[104]
Haskali, M.B.; Denoyer, D.; Noonan, W.; Culinane, C.; Rangger, C.; Pouliot, N.; Haubner, R.; Roselt, P.D.; Hicks, R.J.; Hutton, C.A. Sulfonation of Tyrosine as a Method To Improve Biodistribution of Peptide-Based Radiotracers: Novel 18 F-Labeled Cyclic RGD Analogues. Mol. Pharm., 2017, 14(4), 1169-1180.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01062] [PMID: 28191977]
[105]
Dall’Angelo, S.; Zhang, Q.; Fleming, I.N.; Piras, M.; Schweiger, L.F.; O’Hagan, D.; Zanda, M. Efficient bioconjugation of 5-fluoro-5-deoxy-ribose (FDR) to RGD peptides for positron emission tomography (PET) imaging of αvβ3 integrin receptor. Org. Biomol. Chem., 2013, 11(27), 4551-4558.
[http://dx.doi.org/10.1039/c3ob40550h] [PMID: 23733207]
[106]
Li, Z.B.; Wu, Z.; Chen, K.; Chin, F.T.; Chen, X. Click chemistry for (18)F-labeling of RGD peptides and microPET imaging of tumor integrin alphavbeta3 expression. Bioconjug. Chem., 2007, 18(6), 1987-1994.
[http://dx.doi.org/10.1021/bc700226v] [PMID: 18030991]
[107]
Li, Z.B.; Wu, Z.; Chen, K.; Ryu, E.K.; Chen, X. 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. J. Nucl. Med., 2008, 49(3), 453-461.
[http://dx.doi.org/10.2967/jnumed.107.048009] [PMID: 18287274]
[108]
Wu, H.; Chen, H.; Pan, D.; Ma, Y.; Liang, S.; Wan, Y.; Fang, Y. Imaging integrin αvβ 3 and NRP-1 positive gliomas with a novel fluorine-18 labeled RGD-ATWLPPR heterodimeric peptide probe. Mol. Imaging Biol., 2014, 16(6), 781-792.
[http://dx.doi.org/10.1007/s11307-014-0761-0] [PMID: 25001194]
[109]
Namavari, M.; Cheng, Z.; Zhang, R.; De, A.; Levi, J.; Hoerner, J.K.; Yaghoubi, S.S.; Syud, F.A.; Gambhir, S.S. A novel method for direct site-specific radiolabeling of peptides using [18F]FDG. Bioconjug. Chem., 2009, 20(3), 432-436.
[http://dx.doi.org/10.1021/bc800422b] [PMID: 19226160]
[110]
Liu, Z.; Yan, Y.; Chin, F.T.; Wang, F.; Chen, X. Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN. J. Med. Chem., 2009, 52(2), 425-432.
[http://dx.doi.org/10.1021/jm801285t] [PMID: 19113865]
[111]
Hu, K.; Tang, X.; Tang, G.; Yao, S.; Yao, B.; Wang, H.; Nie, D.; Liang, X.; Tang, C.; He, S. 18F-FP-PEG2-β-Glu-RGD2: A Symmetric Integrin αvβ3-Targeting Radiotracer for Tumor PET Imaging. PLoS One, 2015, 10(9), e0138675.
[http://dx.doi.org/10.1371/journal.pone.0138675] [PMID: 26397833]
[112]
Liu, Z.; Liu, S.; Wang, F.; Liu, S.; Chen, X. Noninvasive imaging of tumor integrin expression using 18F-labeled RGD dimer peptide with PEG4 linkers. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36(8), 1296-1307.
[http://dx.doi.org/10.1007/s00259-009-1112-2] [PMID: 19296102]
[113]
Chen, X.; Park, R.; Hou, Y.; Khankaldyyan, V.; Gonzales-Gomez, I.; Tohme, M.; Bading, J.; Laug, W.; Conti, P. MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide. Eur. J. Nucl. Med. Mol. Imaging, 2004, 31(8), 1081-1089.
[http://dx.doi.org/10.1007/s00259-003-1452-2] [PMID: 15118844]
[114]
Chen, X.; Park, R.; Tohme, M.; Shahinian, A.H.; Bading, J.R.; Conti, P.S. MicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug. Chem., 2004, 15(1), 41-49.
[http://dx.doi.org/10.1021/bc0300403] [PMID: 14733582]
[115]
Cui, Y.; Liu, H.; Liang, S.; Zhang, C.; Cheng, W.; Hai, W.; Yin, B.; Wang, D. The feasibility of 18F-AlF-NOTA-PRGD2 PET/CT for monitoring early response of Endostar antiangiogenic therapy in human nasopharyngeal carcinoma xenograft model compared with 18F-FDG. Oncotarget, 2016, 7(19), 27243-27254.
[http://dx.doi.org/10.18632/oncotarget.8402] [PMID: 27029065]
[116]
Li, J.; Shi, L.; Jia, L.; Jiang, D.; Zhou, W.; Hu, W.; Qi, Y.; Zhang, L. Radiolabeling of RGD peptide and preliminary biological evaluation in mice bearing U87MG tumors. Bioorg. Med. Chem., 2012, 20(12), 3850-3855.
[http://dx.doi.org/10.1016/j.bmc.2012.04.037] [PMID: 22583670]
[117]
Leung, K. Al18F-1,4,7-Triazacyclononane,1-glutaric acid-4,7- acetic acid-Glu-[cyclo(Arg-Gly-Asp-d-Phe-Lys)]2. In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK143730/
[PMID: 23785733]
[118]
The MICAD Research Team. 64Cu-1,4,7,10-Tetraazacyclodode cane-N,N',N'',N'''-tetraacetic acid-PEGylated cyclic arginineglycine- aspartic acid peptide. In: molecular imaging and contrast agent database (MICAD); national center for biotechnology information (US): bethesda (MD), 2004-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK23598/
[PMID: 20641795]
[119]
Tornesello, A.L.; Tornesello, M.L.; Buonaguro, F.M. An overview of bioactive peptides for in vivo imaging and therapy in human diseases. Mini Rev. Med. Chem., 2017, 17(9), 758-770.
[http://dx.doi.org/10.2174/1389557517666170120151739] [PMID: 28117023]
[120]
Bozon-Petitprin, A.; Bacot, S.; Gauchez, A.S.; Ahmadi, M.; Bourre, J.C.; Marti-Batlle, D.; Perret, P.; Broisat, A.; Riou, L.M.; Claron, M.; Boturyn, D.; Fagret, D.; Ghezzi, C.; Vuillez, J.P. Targeted radionuclide therapy with RAFT-RGD radiolabelled with 90Y or 177Lu in a mouse model of αvβ3-expressing tumours. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(2), 252-263.
[http://dx.doi.org/10.1007/s00259-014-2891-7] [PMID: 25164771]
[121]
RGD PET/CT Imaging in COVID-19 Patients. ClinicalTrials.gov Identifier: NCT04596943. Available from:https://ClinicalTrials.gov/show/NCT04596943
[122]
68Ga-NOTA-BBN-RGD PET/CT in Prostate Cancer Patients. ClinicalTrials.gov Identifier: NCT02747290. Available from:https://ClinicalTrials.gov/show/NCT02747290
[123]
Study of Cardiac Lesions Angiogenesis by 68Ga-NODAGA-RGD Cardiac PET. ClinicalTrials.gov Identifier: NCT03809689. Available from: https://ClinicalTrials.gov/show/NCT03809689
[124]
68Ga-NODAGA-RGD PET/CT for Tumoral Neoangiogenesis. ClinicalTrials.gov Identifier: NCT02666547. Available from: https://ClinicalTrials.gov/show/NCT02666547
[125]
68Ga-NODAGA-RGD PET in Patients With an Occluded Coronary Artery (RGDHeart). ClinicalTrials.gov Identifier: NCT04871217 .Available from:https://ClinicalTrials.gov/show/NCT04871217
[126]
Imaging of Tumour Microenvironment in Patients With Oropharyngeal Head and Neck Squamous Cell Carcinoma Using RGD PET/CT Imaging (PIVOT). ClinicalTrials.gov Identifier: NCT04222543. Available from: https://ClinicalTrials.gov/show/NCT04222543
[127]
RGD PET/MRI in Sporadic Vestibular Schwannoma. ClinicalTrials. gov Identifier: NCT03393689. Available from: https://ClinicalTrials.gov/show/NCT03393689
[128]
RGD-PET-CT in Cancer Angiogenesis. ClinicalTrials.gov Identifier: NCT01492192. Available from: https://ClinicalTrials.gov/show/NCT01492192
[129]
[F-18] RGD-K5 Positron Emission Tomography (PET) in Participants With Carotid Artery Stenosis. ClinicalTrials.gov Identifier: NCT01602471. Available from: https://ClinicalTrials.gov/show/NCT01602471
[130]
RGD-K5 in Head and Neck Cancer Patients. ClinicalTrials.gov Identifier: NCT01447134. Available from: https://ClinicalTrials.gov/show/NCT01447134
[131]
Efficacy Study of [F-18]RGD-K5 Positron Emission Tomography (PET) as a Tool to Monitor Response to an Anti-angiogenic Drug (K5-101). ClinicalTrials.gov Identifier: NCT00988936. Available from: https://ClinicalTrials.gov/show/NCT00988936
[132]
DNX-2401 (Formerly Known as Delta-24-RGD-4C) for Recurrent Malignant Gliomas. ClinicalTrials.gov Identifier: NCT00805376. Available from: https://ClinicalTrials.gov/show/NCT00805376
[133]
TRACER RGD-K5 Carotid Plaque Imaging Study (TRACER). ClinicalTrials.gov Identifier: NCT01968226. Available from: https://ClinicalTrials.gov/show/NCT01968226
[134]
Exploratory, Phase 0 Study of Positron Emission Tomography (PET) Imaging Agent, F-18 RGD-K5 (K5). ClinicalTrials.govIdentifier: NCT00743353. Available from: https://ClinicalTrials.gov/show/NCT00743353
[135]
Safety Study of Replication-competent Adenovirus (Delta-24-rgd) in Patients With Recurrent Glioblastoma. ClinicalTrials.gov Identifier: NCT01582516. Available from: https://ClinicalTrials.gov/show/NCT01582516
[136]
Dual Integrin αvβ3 and GRPR Targeting PET Imaging in Breast Cancer Patients. ClinicalTrials.gov Identifier: NCT02749019. Available from: https://ClinicalTrials.gov/show/NCT02749019
[137]
Dual SSTR2 and Integrin αvβ3 Targeting PET/CT Imaging. ClinicalTrials. gov Identifier: NCT02817945. Available from: https://ClinicalTrials.gov/show/NCT02817945
[138]
Multimodal Imaging Assessment of the Inflammatory Atheromatous Plaque. ClinicalTrials.gov Identifier: NCT01608516. Available from: https://ClinicalTrials.gov/show/NCT01608516
[139]
A Study of 99mTc-3PRGD2 Injection in Healthy Volunteers. ClinicalTrials. gov Identifier: NCT03974685. Available from: https://ClinicalTrials.gov/show/NCT03974685
[140]
A Study of 99mTc-3PRGD2 Injection in Lung Cancer Patient. ClinicalTrials.gov Identifier: NCT04233476. Available from: https://ClinicalTrials.gov/show/NCT04233476
[141]
Virus DNX2401 and Temozolomide in Recurrent Glioblastoma(D24GBM). ClinicalTrials.gov Identifier: NCT01956734. Available from: https://ClinicalTrials.gov/show/NCT01956734
[142]
Safety Study of a Genetically Modified Adenovirus in Ovarian Cancer Patients (Ad5Delta24RGD). ClinicalTrials.gov Identifier: NCT00562003. Available from: https://ClinicalTrials.gov/show/NCT00562003
[143]
A Study of an Infectivity Enhanced Suicide Gene Expressing Adenovirus for Ovarian Cancer in Patients With Recurrent Ovarian and Other Selected Gynecologic Cancers. ClinicalTrials.gov Identifier: NCT00964756. Available from:https://ClinicalTrials.gov/show/NCT00964756
[144]
Study of the Angiogenesis by PET/CT in Patients With Lymphoma (RGDLymphome). ClinicalTrials.gov Identifier: NCT02490891. Available from:https://ClinicalTrials.gov/show/NCT02490891
[145]
TRACER [F-18] RDG-K5 Carotid Plaque Imaging Study (K5- C200). ClinicalTrials.gov Identifier: NCT03364270. Available from: https://ClinicalTrials.gov/show/NCT03364270
[146]
The Use of 18F-ALF-NOTA-PRGD2 PET/CT Scan to Predict the Efficacy and Adverse Events of Apatinib in Malignancies. ClinicalTrials. gov Identifier: NCT03384511. Available from: https://ClinicalTrials.gov/show/NCT03384511
[147]
68Ga-AlfatideII for the Differential Diagnosis of of Lung Cancer and Lung Tuberculosis by PET/CT. ClinicalTrials.gov Identifier: NCT02481726. Available from: https://ClinicalTrials.gov/show/NCT02481726
[148]
PET/CT Imaging of Angiogenesis in Lung or Head and Neck Cancers Prior or During Chemotherapy With Antiangiogenic Agents (MLAPOCHI). ClinicalTrials.gov Identifier: NCT02325349. Available from: https://ClinicalTrials.gov/show/NCT02325349
[149]
Combination Adenovirus + Pembrolizumab to Trigger Immune Virus Effects (CAPTIVE). ClinicalTrials.gov Identifier: NCT02798406. Available from: https://ClinicalTrials.gov/show/NCT02798406
[150]
DNX-2401 With Interferon Gamma (IFN-γ) for Recurrent Glioblastoma or Gliosarcoma Brain Tumors (TARGET-I). ClinicalTrials. gov Identifier: NCT02197169. Available from: https://ClinicalTrials.gov/show/NCT02197169
[151]
Targeted PET/CT and PET/MRI Imaging of Vascular Inflammation. ClinicalTrials.gov Identifier: NCT02995642. Available from: https://ClinicalTrials.gov/show/NCT02995642

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy