Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Radiopharmaceutical Encapsulated Liposomes as a Novel Radiotracer Im - aging and Drug Delivery Protocol

Author(s): Anfal M. Alkandari*, Yasser M. Alsayed and Atallah M. El-hanbaly

Volume 16, Issue 2, 2023

Published on: 21 December, 2022

Page: [133 - 139] Pages: 7

DOI: 10.2174/1874471016666221202094628

Price: $65

Abstract

Nuclear medicine specialty involves the administration of unsealed radioactive substances to patients to allow specific diagnostics and treatments using radiopharmaceuticals, radiotracers, and materials. Developing a radiopharmaceutical must involve considering and addressing some limitations such as its retention by unintended organs, which can influence patient and worker safety, imaging findings, and diagnostic and therapeutic accuracy. This paper presents data on the changing biodistribution, localization, stability, and accuracy patterns of radiopharmaceuticals by liposome encapsulation.

Methods: Data are presented for 5 male New Zealand white rabbits. They were injected intravenously with the 99mTc-liposomes encapsulated MIBI through a marginal ear vein, and whole-body images were acquired using a dual-head gamma camera. Cationic PEGylated liposomes were prepared using the conventional thin-film-hydration method. The liposomes were tested for particle size, zeta potential, high-performance-liquid-chromatography (HPLC), and toxicity.

Results: The liver activity was slightly greater than or equivalent to heart uptake, using 99mTcsestamibi, MIBI, without liposome as a reference. The absorbed doses in myocardium cells after injecting rabbits with 99mTc-MIBI labeled with free positive lower pH liposomes was greater than in the liver, whereas 99mTc labeled with encapsulated MIBI within positive liposomes showed a significantly higher heart-to-liver ratio. The heart-to-spleen activity uptake ratio in 99mTc-MIBI was higher than or equal to one but increased in 99mTc labeled with MIBI and free positive liposomes. Injecting rabbits with 99mTc labeled with encapsulated MIBI raised myocardium uptake to 2-4 times more than the spleen. Heart-to-bowel activity began to rise with 99m Tc-labeld-MIBI and liposomes.

Conclusion: This study provides findings in radiopharmaceutical biodistribution using liposomal agents. Adding free liposomes using a pH gradient technique enhanced the uptake and localization of the radiotracer. However, tracer encapsulation during the formation of the liposomes showed even better specificity.

Keywords: Myocardial-imaging, nuclear-medicine, radiopharmaceutical, sestamibi, cationic, liposome.

Graphical Abstract
[1]
Ziessman, H.A.; O’Malley, J.P.; Thrall, J.H. Nuclear Medicine: The Requisites in Radiology, 3rd ed; Mosby: Philadelphia, PA, 2006, pp. 3-51.
[http://dx.doi.org/10.1016/B978-0-323-02946-9.50006-4]
[2]
Mettler, F.A. Guiberteau: Essentials of Nuclear Medicine Imaging, 5th ed; W.B. Saunders-Elsevier: Philadelphia, PA, 2006, pp. 1-51.
[3]
Powsner, R.A.; Palmer, M.R.; Powsner, E.R. Essentials of Nuclear Medicine Physics and Instrumentation, 3rd ed; Wiley-Blackwell: Oxford, UK, 2013, pp. 60-91.
[http://dx.doi.org/10.1002/9781118473481.ch5]
[4]
Cherry, S.R.; Sorenson, J.A.; Phelps, M.E. Physics in nuclear medicine, 4th ed; Saunders-Elsevier: Philadelphia, PA, 2012, pp. 19-28.
[5]
Perkins, A.; Lees, J.E. Series in Medical Physics and Biomedical Engineering: Gamma Cameras for Interventional and Intraoperative Imaging; CRC Press: Broken Sound Parkway, NW,, 2016, 30-53.
[6]
Monteiro, N.; Martins, A.; Reis, R.L.; Neves, N.M. Liposomes in tissue engineering and regenerative medicine. J. R. Soc. Interface, 2014, 11(101), 1-24.
[7]
Dua, JS; Rana, AC Liposome: Methods of preparation and applications., 2012.
[8]
Betageri, G.V.; Jenkis, S.A.; Parsons, D.L. Liposome drug delivery systems; Technomic: Lancaster, PA, 1993, pp. 40-45.
[9]
Lopes, S.C.; Giuberti, C.D.; Rocha, T.G.; Ferreira, D.S.; Leite, E.A.; Oliveira, M.C. Liposomes as carriers of anticancer drugs. Intech, 2013, 94-97, 91.
[10]
Deamer, D.W. Preparation of liposomes. In: Liposomes; Marcel Dekker: New York, 1983; pp. 27-51.
[11]
Stano, P.; Souza, T.P.; Carrara, P.; Altamura, E.; Aguanno, E.; Caputo, M.; Luisi, P.; Mavelli, F. Recent biophysical issues about the preparation of solute-filled lipid vesicles; Tylor&Francis: Roma, Italy, 2013, pp. 750-752.
[12]
Juliano, R.L. Targeted Drug Delivery, 1st ed; Springer-Verlag: Berlin, 1991, pp. 295-312.
[http://dx.doi.org/10.1007/978-3-642-75862-1]
[13]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices; Dovepress: Roma, Italy, 2015.
[http://dx.doi.org/10.2147/IJN.S68861]
[14]
Kalepu, S. Liposomal drug delivery system Int. Drug Dev. & Res,, 2013.
[15]
Mozafari, M.R. Liposomes: An overview of manufacturing techniques. Cell. Mol. Biol. Lett., 2005, 10(4), 711-719.
[PMID: 16341279]
[16]
Bangham, A.D.; Horne, R.W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol., 1964, 8(5), 660-IN10.
[http://dx.doi.org/10.1016/S0022-2836(64)80115-7] [PMID: 14187392]
[17]
Bangham, A.D.; Hill, M.W.; Miller, N.G.A. Preparation and use of liposomes as models of biological membranes. In: Methods in Membrane Biology; Korn, E.D., Ed.; Plenum Press: New York, 1974; Vol. 1, p. I-68.
[http://dx.doi.org/10.1007/978-1-4615-7422-4_1]
[18]
Kozubek, A.; Gubernator, J.; Przeworska, E.; Stasiuk, M. Liposomal drug delivery, a novel approach: PLARosomes. Acta Biochim. Pol., 2000, 47(3), 639-649.
[http://dx.doi.org/10.18388/abp.2000_3985] [PMID: 11310966]
[19]
Barenholz, Y. Liposome application: Problems and prospects. Curr. Opin. Colloid Interface Sci., 2001, 6(1), 66-77.
[http://dx.doi.org/10.1016/S1359-0294(00)00090-X]
[20]
Morgan, R.A.; Anderson, W.F. Human gene therapy. Annu. Rev. Biochem., 1993, 33.
[21]
Mortimer, I.; Tamp, P.; MacLachlan, I.; Graham, R.W.; Saravolac, E.G.; Joshi, P.B. Cationic lipid-mediated transfection of cells in culture requires mitotic activity. Gene Ther., 1999, 6(3), 403-411.
[http://dx.doi.org/10.1038/sj.gt.3300837]
[22]
Poste, G.; Papahadjopoulos, D.; Vail, W.J. Lipid vesicles as carriers for introducing biologically active materials into cells. In: Prescott, D.M., Ed.; Methods in Cell Biology; Academic Press: New York, NY; , 1976; Vol. 8, pp. 33-71.
[23]
Vyas, S.P.; Khar, R.K. Targeted and controlled drug delivery:Novel carrier systems; CBS publishers, 2002, pp. 173-248.
[24]
Lasic, D.D. The mechanism of vesicle formation. Biochem. J., 1988, 256(1), 1-11.
[http://dx.doi.org/10.1042/bj2560001] [PMID: 3066342]
[25]
Lasic, D.D.; Joannic, R.; Keller, B.C.; Frederik, P.M.; Auvray, L. Spontaneous vesiculation. Adv. Colloid Interface Sci., 2001, 89-90, 337-349.
[http://dx.doi.org/10.1016/S0001-8686(00)00067-1] [PMID: 11215803]
[26]
Sharma, A.; Sharma, U.S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm., 1997, 154(2), 123-140.
[http://dx.doi.org/10.1016/S0378-5173(97)00135-X]
[27]
Ohsawa, T.; Miura, H.; Harada, K. A novel method for preparing liposome with a high capacity to encapsulate proteinous drugs: Freeze-drying method. Chem. Pharm. Bull. , 1984, 32(6), 2442-2445.
[http://dx.doi.org/10.1248/cpb.32.2442] [PMID: 6488413]
[28]
Kirby, C.J.; Gregoriadis, G. A simple procedure for preparing liposomes capable of high encapsulation efficiency under mild conditions. In: Liposome Technology; CRC Press: BocaRaton, FL, 1984; Vol. I, pp. 19-27.
[29]
Papahadjopoulos, D.; Watkins, J.C. Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals. Biochim. Biophys. Acta Biomembr., 1967, 135(4), 639-652.
[http://dx.doi.org/10.1016/0005-2736(67)90095-8] [PMID: 6048247]
[30]
Gruner, S.M.; Lenk, R.P.; Janoff, A.S.; Ostro, N.J. Novel multilayered lipid vesicles: comparison of physical characteristics of multilamellar liposomes and stable plurilamellar vesicles. Biochemistry, 1985, 24(12), 2833-2842.
[http://dx.doi.org/10.1021/bi00333a004] [PMID: 2990532]
[31]
Adamson, A.W. Physical chemistry of surface, 5th ed; Interscience: New York, 1967, p. 23.
[32]
Samadikhah, H.R.; Majidi, A.; Nikkhah, M.; Hosseinkhani, S. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes. Int. J. Nanomedicine, 2011, 6, 2275-2283.
[PMID: 22072865]
[33]
Manosroi, A.; Khositsuntiwong, N.; Komno, C.; Manosroi, W.; Werner, R.G.; Manosoi, J. Chemical stability and cytotoxicity of human insulin loaded in cationic DPPC/CTA/DDAB liposomes. J. Biomed. Nanotechnol., 2011, 7(2), 308-316.
[http://dx.doi.org/10.1166/jbn.2011.1282] [PMID: 21702369]
[34]
Galvão, A.M.; Galvão, J.S.; Pereira, M.A.; Cadena, P.G.; Magalhães, N.S.S.; Fink, J.B.; de Andrade, A.D.; Castro, C.M.M.B.; de Sousa Maia, M.B. Cationic liposomes containing antioxidants reduces pulmonary injury in experimental model of sepsis. Respir. Physiol. Neurobiol., 2016, 231, 55-62.
[http://dx.doi.org/10.1016/j.resp.2016.06.001] [PMID: 27267466]
[35]
Wheeler, J.J.; Palmer, L.; Ossanlou, M.; MacLachlan, I.; Graham, R.W.; Zhang, Y.P.; Hope, M.J.; Scherrer, P.; Cullis, P.R. Stabilized plasmid-lipid particles: Construction and characterization. Gene Ther., 1999, 6(2), 271-281.
[http://dx.doi.org/10.1038/sj.gt.3300821] [PMID: 10435112]
[36]
Koltover, I.; Salditt, T.; Safinya, C.R. Phase diagram, stability, and overcharging of lamellar cationic lipid-DNA self-assembled complexes. Biophys. J., 1999, 77(2), 915-924.
[http://dx.doi.org/10.1016/S0006-3495(99)76942-0] [PMID: 10423436]
[37]
Brandenberger, C.; Rothen-Rutishauser, B.; Mühlfeld, C.; Schmid, O.; Ferron, G.A.; Maier, K.L.; Gehr, P.; Lenz, A.G. Effects and uptake of gold nanoparticles deposited at the air–liquid interface of a human epithelial airway model. Toxicol. Appl. Pharmacol., 2010, 242(1), 56-65.
[http://dx.doi.org/10.1016/j.taap.2009.09.014] [PMID: 19796648]
[38]
Mailänder, V.; Landfester, K. Interaction of nanoparticles with cells. Biomacromolecules, 2009, 10(9), 2379-2400.
[http://dx.doi.org/10.1021/bm900266r] [PMID: 19637907]
[39]
Miragoli, M.; Novak, P.; Ruenraroengsak, P.; Shevchuk, A. Functional interaction between charged nanoparticles and cardiac tissue: A new paradigm for cardiac arrhythmia? Nanomedicine , 2012, 8(5), 725-737.
[40]
C.I.S. STAMICIS Kit for preparation of Technetiom (99mTc), Sestamib injection. Geneesmiddeleninformatiebank. 2008. Available from: https://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=e545ac6a-83dc-485a-8bb4-c0b9d8f3d144
[41]
Technetium, T.C. 99M Sestamibi; , 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK553148/
[42]
Alkandari, A.M.; Shafaa, M.W.; Alsayed, Y.M. Preclinical Assessment of 99m Tc-labeled liposome agents as an effective tracer in nuclear medicine. J. Nucl. Med. Technol., 2020, 48(3), 269-273.
[http://dx.doi.org/10.2967/jnmt.119.239756] [PMID: 32518123]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy