Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Study of Photo-transformation of Ag Nanoparticles under Green LEDs Light Source and their Changes Induced by Z-scan Technique

Author(s): O. Ortiz-Jimenez, M. Trejo-Durán*, E. Alvarado-Méndez, A. Vázquez and J.E. Castellanos-Águila

Volume 19, Issue 5, 2023

Published on: 26 December, 2022

Page: [736 - 744] Pages: 9

DOI: 10.2174/1573413719666221201091401

Price: $65

Abstract

Background: The study of metallic nanoparticles is important since they present nonlinear optical properties crucial for modern photonic science and technology. Moreover, their mechanical, chemical, and optical properties are different from those presented with respect to volumetric material. Said properties can be adjusted by controlling the size and shape of the studied nanoparticles, and various methodologies have been developed to obtain nanoparticles by chemical and physical means.

Methods: Spherical nanoparticles were synthesized by chemically reducing silver nitrate, sodium borohydride, and sodium citrate precursors. Different amounts of silver nitrate were added to the original spherical nanoparticles and then exposed to a green LED light source to convert the spherical nanoparticles to triangular prisms. The changes in the samples were monitored using absorption spectra obtained with a UV-Vis spectrophotometer. The nonlinear refractive index was determined with Z-scan measurements, and a scanning electron microscope was used to observe the silver nanoparticles before and after laser irradiation.

Results: The absorption spectra show a band of around 418 nm for the original spherical nanoparticles, which shifted to blue after the irradiation with green LED light. Furthermore, a new band was obtained, centered around 565 nm, which indicates the presence of triangular prisms. From SEM images, it was confirmed that the spherical nanoparticles were transformed into triangular nanoprisms. The non-linear (negative) refractive index depends on the shape and number of nanoparticles; however, using the Z-scan technique caused photo-melting and photofragmentation of the triangular prisms, which was corroborated by SEM images.

Conclusion: These results suggest that the shape and amount of AgNPs can be controlled with excess silver ions and irradiation time. In addition, the Z-scan technique causes photo-melting and photo-fragmentation of AgNPs, and their nonlinear refraction index is negative due to thermal origin.

Keywords: Silver nanoparticles, nonlinear optical properties, photo-fragmentation, photo-melting, Z-scan, nonlinear refractive index.

« Previous
Graphical Abstract
[1]
Jalili, B.; Sadighi, S.; Jalili, P.; Ganji, D.D. Numerical analysis of MHD nanofluid flow and heat transfer in a circular porous medium containing a Cassini oval under the influence of the Lorentz and buoyancy forces. Heat Transfer, 2022, 51(7), 6122-6138. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/htj.22582
[http://dx.doi.org/10.1002/htj.22582]
[2]
Jalili, P.; Kazerani, K.; Jalili, B.; Ganji, D.D. Investigation of thermal analysis and pressure drop in non-continuous helical baffle with different helix angles and hybrid nano-particles. Case Stud. Therm. Eng., 202236, 102209.https://www.sciencedirect.com/science/article/pii/S2214157X22004555
[http://dx.doi.org/10.1016/j.csite.2022.102209]
[3]
Jalili, B.; Aghaee, N.; Jalili, P.; Domiri Ganji, D. Novel usage of the curved rectangular fin on the heat transfer of a double-pipe heat exchanger with a nanofluid. Case Stud. Therm. Eng., 2022, 35, 102086. Available from: https://www.sciencedirect.com/science/ article/pii/S2214157X2200332X
[http://dx.doi.org/10.1016/j.csite.2022.102086]
[4]
Siddiqui, A.A.; Turkyilmazoglu, M. Natural convection in the ferrofluid enclosed in a porous and permeable cavity. Int. Commun. Heat Mass Transf., 2020, 113, 104499.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104499]
[5]
Siddiqui, A.A.; Turkyilmazoglu, M. A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids. Micromachines (Basel), 2019, 10(6), 373.
[http://dx.doi.org/10.3390/mi10060373] [PMID: 31167483]
[6]
Turkyilmazoglu, M. Algebraic solutions of flow and heat for some nanofluids over deformable and permeable surfaces. Int. J. Numer. Methods Heat Fluid Flow, 2017, 27(10), 2259-2267.
[http://dx.doi.org/10.1108/HFF-09-2016-0358]
[7]
Mohajerani, A.; Burnett, L.; Smith, J.V.; Kurmus, H.; Milas, J.; Arulrajah, A.; Horpibulsuk, S.; Abdul Kadir, A. Nanoparticles in construction materials and other applications, and implications of nanoparticle use. Materials (Basel), 2019, 12(19), 3052.
[http://dx.doi.org/10.3390/ma12193052] [PMID: 31547011]
[8]
Li, W.; Fortner, J.D. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration. Front. Environ. Sci. Eng., 2020, 14(5), 77.
[http://dx.doi.org/10.1007/s11783-020-1256-7]
[9]
Huang, P.Y.; Chiu, C.W.; Huang, C.Y.; Shen, S.Y.; Lee, Y.C.; Cheng, C.C.; Jeng, R.J.; Lin, J.J. Facile fabrication of flexible electrodes and immobilization of silver nanoparticles on nanoscale silicate platelets to form highly conductive nanohybrid films for wearable electronic devices. Nanomaterials (Basel), 2019, 10(1), 65.
[http://dx.doi.org/10.3390/nano10010065] [PMID: 31892169]
[10]
Kwon, Y.T.; Yune, S.J.; Song, Y.; Yeo, W.H.; Choa, Y.H. Green manufacturing of highly conductive Cu2O and Cu nanoparticles for photonic-sintered printed electronics. ACS Appl. Electron. Mater., 2019, 1(10), 2069-2075.
[http://dx.doi.org/10.1021/acsaelm.9b00444]
[11]
Raza, S.A.; Awan, S.U.; Hussain, S.; Shah, S.A.; Iqbal, A.M.; Khurshid Hasanain, S. Structural, ferromagnetic, electrical, and dielectric relaxor properties of BaTiO 3 and CoFe2O4 bulk, nanoparticles, and nanocomposites materials for electronic devices. J. Appl. Phys., 2020, 128(12), 124101.
[http://dx.doi.org/10.1063/1.5131467]
[12]
Saraf, M.; Rajak, R.; Mobin, S.M. MOF derived high surface area enabled porous Co3O4 nanoparticles for supercapacitors. ChemistrySelect, 2019, 4(27), 8142-8149.
[http://dx.doi.org/10.1002/slct.201901652]
[13]
Sheikholeslami, M.; Mahian, O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J. Clean. Prod., 2019, 215, 963-977.
[http://dx.doi.org/10.1016/j.jclepro.2019.01.122]
[14]
Yousef, B.A.A.; Elsaid, K.; Abdelkareem, M.A. Potential of nanoparticles in solar thermal energy storage. Therm. Sci. Eng. Prog., 2021, 25, 101003.
[http://dx.doi.org/10.1016/j.tsep.2021.101003]
[15]
Zhou, K.; Zhou, X.; Liu, J.; Huang, Z. Application of magnetic nanoparticles in petroleum industry: A review. Journal of Petroleum Science and Engineering, 2020, 188, 106943.
[http://dx.doi.org/10.1016/j.petrol.2020.106943]
[16]
Nikolova, M.P.; Chavali, M.S. Metal oxide nanoparticles as biomedical materials. Biomimetics (Basel), 2020, 5(2), 27.
[http://dx.doi.org/10.3390/biomimetics5020027] [PMID: 32521669]
[17]
Sahmani, S.; Shahali, M.; Nejad, M.G.; Khandan, A.; Aghdam, M.M. Effect of copper oxide nanoparticles on electrical conductivity and cell viability of calcium phosphate scaffolds with improved mechanical strength for bone tissue engineering. Eur. Phys. J. Plus, 2019, 7, 134.
[http://dx.doi.org/10.1140/epjp/i2019-12375-x]
[18]
Li, R.; Pang, C.; Li, Z.; Chen, F. Plasmonic nanoparticles in dielectrics synthesized by ion beams: Optical properties and photonic applications. Adv. Opt. Mater., 2020, 8(9), 1902087.
[http://dx.doi.org/10.1002/adom.201902087]
[19]
Allioux, F.; Merhebi, S.; Tang, J.; Idrus-saidi, S.A.; Abbasi, R.; Saborio, M.G. Catalytic Metal Foam by Chemical Melting and Sintering of Liquid Metal Nanoparticles., 2019, 1907879, 1-13.
[20]
Wang, L.; Kafshgari, M.H.; Meunier, M. Optical Properties and Applications of Plasmonic-Metal Nanoparticles., 2020, 30(51), 1-28.
[21]
Masunga, N.; Mmelesi, O.K.; Kefeni, K.K.; Mamba, B.B. Recent advances in copper ferrite nanoparticles and nanocomposites synthesis, magnetic properties and application in water treatment: Review. J. Environ. Chem. Eng., 2019, 7(3), 103179.[Review].
[http://dx.doi.org/10.1016/j.jece.2019.103179]
[22]
Zhang, B.; Sato, R.; Tanaka, M.; Takeda, Y. Spectral dependence of third-order susceptibility of Au triangular nanoplates. Sci. Rep., 2020, 10(1), 13855.
[http://dx.doi.org/10.1038/s41598-020-70868-4] [PMID: 32807869]
[23]
AL-Rubaye, H.I.; AL-Rubaye, B.; Al-Abodi, E.E.; Yousif, E.I. Green chemistry synthesis of modified silver nanoparticles. J. Phys. Conf. Ser., 2020, 1664(1), 012080.
[http://dx.doi.org/10.1088/1742-6596/1664/1/012080]
[24]
Xu, L.; Wang, Y.Y.; Huang, J.; Chen, C.Y.; Wang, Z.X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 2020, 10(20), 8996-9031.
[http://dx.doi.org/10.7150/thno.45413] [PMID: 32802176]
[25]
Nadar, G.; Maruthupandy, M.; Li, J.; Dong, L. Materials science & Engineering C photocatalytic reduction and anti-bacterial activity of biosynthesized silver nanoparticles against multi drug resistant Staphylococcus saprophyticus. Mater. Sci. Eng. C, 2020, 114, 111024.
[http://dx.doi.org/10.1016/j.msec.2020.111024]
[26]
Pulit-Prociak, J.; Grabowska, A.; Chwastowski, J.; Majka, T.M.; Banach, M. Safety of the application of nanosilver and nanogold in topical cosmetic preparations. Colloids Surf. B Biointerfaces, 2019, 183, 110416.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110416] [PMID: 31398622]
[27]
El barghouti, M.; Akjouj, A.; Mir, A. Design of silver nanoparticles with graphene coatings layers used for LSPR biosensor applications. Vacuum, 2020, 180, 109497.
[http://dx.doi.org/10.1016/j.vacuum.2020.109497]
[28]
Maurya, S.K.; Rout, A.; Ganeev, R.A.; Guo, C. Effect of size on the saturable absorption and reverse saturable absorption in silver nanoparticle and ultrafast dynamics at 400 nm. J. Nanomater., 2019, 2019Available from:.
[http://dx.doi.org/10.1155/2019/9686913]
[29]
Mamdouh, S.; Mahmoud, A.; Samir, A.; Mobarak, M.; Mohamed, T. Using femtosecond laser pulses to investigate the nonlinear optical properties of silver nanoparticles colloids in distilled water synthesized by laser ablation. Physica B, 2022, 631, 413727.
[http://dx.doi.org/10.1016/j.physb.2022.413727]
[30]
Fathima, R.; Mujeeb, A. Nonlinear optical investigations of laser generated gold, silver and gold-silver alloy nanoparticles and optical limiting applications. J. Alloys Compd., 2021, 858, 157667.
[http://dx.doi.org/10.1016/j.jallcom.2020.157667]
[31]
Alnayli, R.S.; Alkazaali, H. Properties studies of silver nanoparticles colloids in ethanol prepared by means pulses laser. J. Nano Res., 2019, 60, 154-161.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.60.154]
[32]
Jiang, J.; Jia, Y.; Wu, T.; Gao, Y. Transformation from self-focusing to self-defocusing of silver nanoparticles. Nanomaterials (Basel), 2021, 11(10), 2485.
[http://dx.doi.org/10.3390/nano11102485] [PMID: 34684926]
[33]
Thi, N.; Nhung, H.; Thanh, N.; Minh, C.; Viet, P.V. Fast and simple synthesis of triangular silver nanoparticles under the assistance of light. Coll. Surf. A Physicochem. Eng. Aspects, 2020, 594, 124659. Available from: 10.1016/j.colsurfa.2020.124659
[34]
Synthesis and characterization of size-and shape-controlled silver nanoparticles. Metallic Nanomater., 2018, 1(Part B), 1-73.
[35]
Alnayli, S.H.; Alkazaali, D.; Non, H. Linear optical properties of silver nanoparticles doped polyvinyl alcohol. Al-Qadisiyah J. Pure Sci., 2018, 23(3), 140-147. Available from: http://qu.edu.iq/journalsc/index.php/JOPS/article/view/900
[36]
López, I.; Vázquez, A.; Hernández-Padrón, G.H.; Gómez, I. Electrophoretic deposition (EPD) of silver nanoparticles and their application as surface-enhanced Raman scattering (SERS) substrates. Appl. Surf. Sci., 2013, 280, 715-719.
[http://dx.doi.org/10.1016/j.apsusc.2013.05.048]
[37]
Sheik-Bahae, M.; Wang, J.; DeSalvo, R.; Hagan, D.J.; Van Stryland, E.W. Measurement of nondegenerate nonlinearities using a two-color Z scan. Opt. Lett., 1992, 17(4), 258-260. Available from: https://www.osapublishing.org/viewmedia.cfm?uri=ol-17-4-258&seq=0&html=true
[http://dx.doi.org/10.1364/OL.17.000258] [PMID: 19784294]
[38]
Severiano-Carrillo, I.; Alvarado-Méndez, E.; Trejo-Durán, M.; Méndez-Otero, M.M. Improved Z-scan adjustment to thermal nonlinearities by including nonlinear absorption. Opt. Commun., 2017, 397, 140-146.
[http://dx.doi.org/10.1016/j.optcom.2017.03.073]
[39]
Wu, X.; Redmond, P.L.; Liu, H.; Chen, Y.; Steigerwald, M.; Brus, L. Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. J. Am. Chem. Soc., 2008, 130(29), 9500-9506.
[http://dx.doi.org/10.1021/ja8018669] [PMID: 18578529]
[40]
Romanovskaya, G.I.; Koroleva, M.V.; Zuev, B.K. Photochemical conversion of silver cations into nanoparticles of different morphologies in aqueous solutions of sodium citrate. Russ. J. Phy. Chem. A, 2019, 93(1), 173-176.
[41]
Scardaci, V.; Pulvirenti, M.; Condorelli, M.; Compagnini, G. Monochromatic light driven synthesis and growth of flat silver nanoparticles and their plasmon sensitivity. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(28), 9734-9741.
[http://dx.doi.org/10.1039/D0TC00367K]
[42]
Desai, R.; Mankad, V.; Gupta, S.; Jha, P. Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. Nanosci. Nanotechnol. Lett., 2012, 4(1), 30-34.
[http://dx.doi.org/10.1166/nnl.2012.1278]
[43]
Badr, Y.; Wahed, M.G.A.E.; Mahmoud, M.A. On 308 nm photofragmentation of the silver nanoparticles. Appl. Surf. Sci., 2006, 253(5), 2502-2507.
[http://dx.doi.org/10.1016/j.apsusc.2006.05.021]
[44]
Weng, G; Feng, Y; Zhao, J; Li, J; Zhu, J; Zhao, J Applied surface science size dependent SERS activity of Ag triangular nanoplates on different substrates : Glass vs paper. 2019, 478(2018), 275-283.
[45]
Noginov, M.A.; Zhu, G.; Bahoura, M.; Adegoke, J.; Small, C.E.; Ritzo, B.A.; Drachev, V.P.; Shalaev, V.M. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt. Lett., 2006, 31(20), 3022-3024.
[http://dx.doi.org/10.1364/OL.31.003022] [PMID: 17001387]
[46]
Karimzadeh, R.; Mansour, N. The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles. Opt. Laser Technol., 2010, 42(5), 783-789.
[http://dx.doi.org/10.1016/j.optlastec.2009.12.003]
[47]
Aleali, H.; Mansour, N. Thermal-induced nonlinearity enhancement in Ag nanoparticles colloids by low thermal conductivity liquids. J. Opt., 2019, 48(2), 172-178.
[http://dx.doi.org/10.1007/s12596-019-00520-6]
[48]
Shahriari, E.; Moradi, M.; Varnamkhasti, M.G. Investigation of nonlinear optical properties of Ag nanoparticles. Inter. J. Optics Phot., 2015, 9(2), 107-114.
[49]
Sendhil, K.; Vijayan, C.; Kothiyal, M.P. Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphyrin. Opt. Laser Technol., 2006, 38(7), 512-515.
[http://dx.doi.org/10.1016/j.optlastec.2004.12.005]
[50]
Zvyagin, A.I.; Perepelitsa, A.S.; Lavlinskaya, M.S.; Ovchinnikov, O.V.; Smirnov, M.S.; Ganeev, R.A. Demonstration of variation of the nonlinear optical absorption of non-spherical silver nanoparticles. Optik (Stuttg.), 2018, 175, 93-98.
[http://dx.doi.org/10.1016/j.ijleo.2018.08.117]
[51]
Ortega-Mendoza, G.; Goiz, O.; Padilla-Vivanco, A.; Toxqui-Quitl, C.; Zaca-Moran, P.; Chavez, F. Photofusion and disaggregation of silver nanoparticles suspended in ethanol by laser irradiation. Curr. Nanosci., 2017, 14(1), 50-53.
[http://dx.doi.org/10.2174/1573413713666171002124415]
[52]
Ortega-Mendoza, J.G.; Hernández-Álvarez, C.; Padilla-Vivanco, A.; Toxqui-Quitl, C.; Zaca-Moran, P.; Chávez, F.; Goiz, O. Photomelting and photofragmentation of silver nanoparticles suspended in ethanol. Nanophotonic Materials XII., 2015, 9545, 954510.
[http://dx.doi.org/10.1117/12.2188730]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy