Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Investigation of Chemical Constituents of Chamaenerion latifolium L.

Author(s): Zhanar Iskakova, Akmaral Kozhantayeva*, Gaukhar Tazhkenova, Togzhan Mashan, Kuldi Tosmaganbetova and Yerbolat Tashenov*

Volume 21, Issue 3, 2022

Published on: 22 December, 2022

Page: [173 - 178] Pages: 6

DOI: 10.2174/1871523022666221125111235

Price: $65

Abstract

Background: Chamaenerion latifolium is a perennial herbaceous plant of the Onagraceae family. The purpose of this study was to evaluate and compare the volatile chemical components of the aerial parts of Chamaenerion latifolium growing in the Republic of Kazakhstan.

Methods: The leaves and stems of Chamaenerion latifolium were extracted with hexane and analysed by gas chromatography-mass spectrometry (GC-MS).

Results: The regularisation of peak areas method was used to calculate the concentrations of the sixty-five identified compounds.

Conclusion: Among them, the major components are alkanes (leaves 31.339%, stems 48.158%), esters (leaves 10.216%, stems 12.196%), alcohols (leaves 5.483% and stems 5.14%), aldehydes (leaves 3.155%, stems 1.592%), triterpenoids (leaves 2.247% stems 3.785%).

Keywords: Chamaenerion latifolium, aerial part, hexane extract, GC-MS, volatile compounds, chemical composition.

[1]
Wan, L.; Xing, Z.; Chang, X.; Liu, J.; Zhang, G. Research on light response curve fitting model of four chamaenerion plants on the Serzilla Mountains. Am. J. Plant Sci., 2018, 9(8), 1630-1645.
[http://dx.doi.org/10.4236/ajps.2018.98118]
[2]
Punt, W.; Rovers, J.; Hoen, P.P. Onagraceae. Rev. Palaeobot. Palynol., 2003, 123(1-2), 107-161.
[http://dx.doi.org/10.1016/S0034-6667(02)00158-6]
[3]
Lusheng, W.; Zhen, X.; Xinyue, Ch.; Jiang, L.; Guorong, Zh. Photoresponse characteristics of chamaenerion spp. in Mount Shergyla. Asian Agric. Res., 2018, 10(6), 61-65.
[4]
Granica, S.; Piwowarski, J.P.; Czerwińska, M.E.; Kiss, A.K. Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): A review. J. Ethnopharmacol., 2014, 156, 316-346.
[http://dx.doi.org/10.1016/j.jep.2014.08.036] [PMID: 25196824]
[5]
Kozhantayeva, A.; Rakhmadiyeva, S.; Gulmira, O. Investigation of polyphenolic compounds of Chamaenerion latifolium (l) plant. Rasayan J. Chem., 2020, 13(4), 2474-2482.
[http://dx.doi.org/10.31788/RJC.2020.1345919]
[6]
Shashurin, M.M.; Zhuravskaya, A.N. Analysis of adaptive capacities of plants in the zone of technogenic impact. Russ. J. Ecol., 2007, 38(2), 85-89.
[http://dx.doi.org/10.1134/S1067413607020038]
[7]
Kozhantayeva, A.; Rakhmadiyeva, S. Research of polyphenolic compounds of Circaea lutetiana l. Chem. Bull. Kazakh Nat. Univ., 2020, 3(3), 18-27.
[http://dx.doi.org/10.15328/cb1151]
[8]
Afieroho, O.E.; Ugoeze, K.C. Gas chromatography-mass spectroscopic (GC-MS) analysis of n-Hexane extract of Lentinus tuberregium (Fr) Fr (Polyporaceae) syn Pleurotus tuber regium Fr sclerotia. Trop. J. Pharm. Res., 2014, 13(11), 1911-1915.
[http://dx.doi.org/10.4314/tjpr.v13i11.20]
[9]
Kaškonienė, V.; Stankevičius, M.; Drevinskas, T.; Akuneca, I.; Kaškonas, P.; Bimbiraitė-Survilienė, K.; Maruška, A.; Ragažinskienė, O.; Kornyšova, O.; Briedis, V.; Ugenskienė, R. Evaluation of phytochemical composition of fresh and dried raw material of introduced Chamerion angustifolium L. using chromatographic, spectrophotometric and chemometric techniques. Phytochemistry, 2015, 115, 184-193.
[http://dx.doi.org/10.1016/j.phytochem.2015.02.005] [PMID: 25725961]
[10]
Kozhantayeva, A. Carbohydrate composition of Chamaenerion latifolium l., Annalid’Italia, 2020, 6, 1-10.
[11]
Haridha, R.S.P.; Jeyamangalam, F.; Jenila, R.M.; Vella Durai, S.C.R.; Vella Durai, S.C. Mineralogical and morphological characterization of organically amended soil. Rasayan J. Chem., 2021, 14(4), 2255-2262.
[http://dx.doi.org/10.31788/RJC.2021.1446515]
[12]
Dutta, D.; Bordoloi, M.J. M.J.; Bhattacharyya, N.K. Genus pothos: A review of chemical constituents and biological activities. Rasayan J. Chem., 2021, 14, 2161-2170.
[http://dx.doi.org/10.31788/RJC.2021.1446353]
[13]
Kozhantayeva, A.; Rakhmadiyeva, S.; Ozek, G. Evaluation of metal content of Circaea lutetiana (l) plant. J. Chem. Technol. Metall., 2022, 1, 114-118.
[14]
Granica, S.; Piwowarski, J.P.; Kiss, A.K. Polyphenol composition of extract from aerial part of Circaea lutetiana L. and its antioxidant and anti inflammatory activity in vitro. Acta Biol. Cracov. Ser.; Bot., 2013, 55(1), 641-651.
[http://dx.doi.org/10.2478/abcsb-2013-0005]
[15]
Bliedtner, M.; Schäfer, I.K.; Zech, R.; von Suchodoletz, H. Leaf wax <i>n</i>-alkanes in modern plants and topsoils from eastern Georgia (Caucasus) - implications for reconstructing regional paleovegetation. Biogeosciences, 2018, 15(12), 3927-3936.
[http://dx.doi.org/10.5194/bg-15-3927-2018]
[16]
Dnyaneshwar, G.K.; Shamrao, P.; Lawande, W. GS-MS analysis of crude extracts of Moullava spicata (dalz.). Nicolson J. Pharmaceut. Res., 2017, 6, 1164-1172.
[17]
Sawai, S.; Saito, K. Triterpenoid biosynthesis and engineering in plants. Front. Plant Sci., 2011, 2, 25.
[http://dx.doi.org/10.3389/fpls.2011.00025] [PMID: 22639586]
[18]
Vincken, J.P.; Heng, L.; de Groot, A.; Gruppen, H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 2007, 68(3), 275-297.
[http://dx.doi.org/10.1016/j.phytochem.2006.10.008] [PMID: 17141815]
[19]
Wen, M.; Jetter, R. Composition of secondary alcohols, ketones, alkanediols, and ketols in Arabidopsis thaliana cuticular waxes. J. Exp. Bot., 2009, 60(6), 1811-1821.
[http://dx.doi.org/10.1093/jxb/erp061] [PMID: 19346242]
[20]
De Melo, K.M.; de Oliveira, F.T.B.; Costa Silva, R.A.; Gomes Quinderé, A.L.; Marinho Filho, J.D.B.; Araújo, A.J.; Barros Pereira, E.D.; Carvalho, A.A.; Chaves, M.H.; Rao, V.S.; Santos, F.A. α, β-Amyrin, a pentacyclic triterpenoid from Protium heptaphyllum suppresses adipocyte differentiation accompanied by down regulation of PPARγ and C/EBPα in 3T3-L1 cells. Biomed. Pharmacother., 2019, 109, 1860-1866.
[http://dx.doi.org/10.1016/j.biopha.2018.11.027] [PMID: 30551441]
[21]
Viet, T.D.; Xuan, T.D.; Anh, L.H. α-Amyrin and β-Amyrin Isolated from Celastrus hindsii leaves and their antioxidant, anti-xanthine oxidase, and anti-tyrosinase potentials. Molecules, 2021, 26(23), 7248.
[http://dx.doi.org/10.3390/molecules26237248] [PMID: 34885832]
[22]
Oliveira, F.A.; Chaves, M.H.; Almeida, F.R.C.; Lima, R.C.P., Jr; Silva, R.M.; Maia, J.L.; Brito, G.A.A.C.; Santos, F.A.; Rao, V.S. Protective effect of α- and β-amyrin, a triterpene mixture from Protium heptaphyllum (Aubl.) March. trunk wood resin, against acetaminophen-induced liver injury in mice. J. Ethnopharmacol., 2005, 98(1-2), 103-108.
[http://dx.doi.org/10.1016/j.jep.2005.01.036] [PMID: 15763370]
[23]
Oliveira, F.A.; Vieira-Júnior, G.M.; Chaves, M.H.; Almeida, F.R.; Santos, K.A.; Martins, F.S.; Silva, R.M.; Santos, F.A.; Rao, V.S. Gastroprotective effect of the mixture of α- and β-amyrin from Protium heptaphyllum: Role of capsaicin-sensitive primary afferent neurons. Planta Med., 2004, 70(8), 780-782.
[http://dx.doi.org/10.1055/s-2004-827212] [PMID: 15368675]
[24]
Karen Cardoso, B.; Line Marko de Oliveira, H.; Zonta Melo, U.; Mariano Fernandez, C.M.; Franco de Araújo Almeida Campo, C.; Gonçalves, J.E.; Laverde, A., Jr; Barion Romagnolo, M.; Andrea Linde, G.; Cristiani Gazim, Z. Antioxidant activity of α and β -amyrin isolated from Myrcianthes pungens leaves. Nat. Prod. Res., 2020, 34(12), 1777-1781.
[http://dx.doi.org/10.1080/14786419.2018.1525715] [PMID: 30465617]
[25]
Melo, C.M.; Carvalho, K.M.M.B.; Neves, J.C.; Morais, T.C.; Rao, V.S.; Santos, F.A.; Brito, G.A.; Chaves, M.H. α,β-amyrin, a natural triterpenoid ameliorates L-arginine-induced acute pancreatitis in rats. World J. Gastroenterol., 2010, 16(34), 4272-4280.
[http://dx.doi.org/10.3748/wjg.v16.i34.4272] [PMID: 20818810]
[26]
Da Silva Júnior, W.F.; Bezerra de Menezes, D.L.; de Oliveira, L.C.; Koester, L.S.; Oliveira de Almeida, P.D.; Lima, E.S.; de Azevedo, E.P.; da Veiga Júnior, V.F.; Neves de Lima, Á.A. Inclusion complexes of β and HPβ-cyclodextrin with α, β amyrin and in vitro anti-inflammatory activity. Biomolecules, 2019, 9(6), 241.
[http://dx.doi.org/10.3390/biom9060241] [PMID: 31234312]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy