Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

Nanotechnology in Smart Contact Lenses: Highlights on Sensor Technologies and Future Prospects

Author(s): Jino Affrald R*

Volume 8, Issue 4, 2023

Published on: 02 December, 2022

Page: [361 - 373] Pages: 13

DOI: 10.2174/2405461508666221118153823

Price: $65

Abstract

The eye is a complex organ in the body containing a repertoire of metabolite indicators such as glucose, peptides, specialized ions, and many critical biological data such as Intraocular Pressure (IOP), corneal temperature, and pH. Contact lens research and patient care have progressed substantially throughout the last three decades; hence smart contact lenses were developed with significant advancements in material biocompatibility, better lens layouts, the healthcare system, and more flexible and efficient modalities. Smart contact lenses are adjustable sophisticated visual prosthesis devices that monitor various significant physical and biochemical changes in ocular disorders, which are noninvasive and continuous. Wearable systems that utilize bodily fluids like sweat tears, saliva, and electrochemical interactions with steady physiological state and illness monitoring are currently developing. Because of its ease of access, fabrication, and noninvasiveness, tear fluid is commonly used to assess ocular disorders, blood glucose, and even cancers. Furthermore, the integration of nanotechnology into contact lenses has emerged as a promising platform for noninvasive point-of-care diagnostics. Utilizing nano-based contact lenses for ocular drug delivery is a new study area in bioengineering and innovative medical techniques. Despite all of the research done in this area, new technologies are still in their early stages of development, and more work in terms of clinical trials is required to commercialize nanotechnology-based contact lenses. This article encompasses nanotechnologybased smart contact lens technology, including materials, advancements, applications, sensor technologies, and prospects.

Keywords: Nanotechnology, drug delivery, biosensor, contact lens, sensor technology, intraocular pressure.

Graphical Abstract
[1]
McNeil SE. Nanotechnology for the biologist. J Leukoc Biol 2005; 78(3): 585-94.
[http://dx.doi.org/10.1189/jlb.0205074] [PMID: 15923216]
[2]
Emerich DF, Thanos CG. Nanotechnology and medicine. Expert Opin Biol Ther 2003; 3(4): 655-63.
[http://dx.doi.org/10.1517/14712598.3.4.655] [PMID: 12831370]
[3]
Egorov E, Pieters C, Korach-Rechtman H, Shklover J, Schroeder A. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems. Drug Deliv Transl Res 2021; 11(2): 345-52.
[http://dx.doi.org/10.1007/s13346-021-00929-2] [PMID: 33585972]
[4]
Kumar Teli M, Mutalik S, Rajanikant GK. Nanotechnology and nanomedicine: going small means aiming big. Curr Pharm Des 2010; 16(16): 1882-92.
[http://dx.doi.org/10.2174/138161210791208992] [PMID: 20222866]
[5]
Yadav HKS, Alsalloum GA, Al Halabi NA. Nanobionics and nanoengineered prosthetics. In: Nanostructures for the Engineering of Cells, Tissues and Organs. Grumezescu AM. William Andrew Publishing 2018; pp. 513-87.
[6]
Gavaskar A, Rojas D, Videla F. Nanotechnology: the scope and potential applications in orthopedic surgery. Eur J Orthop Surg Traumatol 2018; 28(7): 1257-60.
[http://dx.doi.org/10.1007/s00590-018-2193-z] [PMID: 29602957]
[7]
Moreddu R, Vigolo D, Yetisen AK. Contact lens technology: from fundamentals to applications. Adv Healthc Mater 2019; 8(15): 1900368.
[http://dx.doi.org/10.1002/adhm.201900368] [PMID: 31183972]
[8]
Nicolson PC, Vogt J. Soft contact lens polymers: an evolution. Biomaterials 2001; 22(24): 3273-83.
[http://dx.doi.org/10.1016/S0142-9612(01)00165-X] [PMID: 11700799]
[9]
Musgrave CSA, Fang F. Contact Lens Materials: A Materials Science Perspective. Materials 2019; 12(2): 261.
[http://dx.doi.org/10.3390/ma12020261]
[10]
Suchecki J, Donshik P, Ehlers W. Contact lens complications. Ophthalmol Clin North Am 2003; 16(3): 471-84.
[http://dx.doi.org/10.1016/S0896-1549(03)00056-7] [PMID: 14564768]
[11]
Bengani LC, Hsu KH, Gause S, Chauhan A. Contact lenses as a platform for ocular drug delivery. Expert Opin Drug Deliv 2013; 10(11): 1483-96.
[http://dx.doi.org/10.1517/17425247.2013.821462] [PMID: 23875917]
[12]
McDermott ML, Chandler JW. Therapeutic uses of contact lenses. Surv Ophthalmol 1989; 33(5): 381-94.
[http://dx.doi.org/10.1016/0039-6257(89)90015-5] [PMID: 2655141]
[13]
Grobe GL III, Valint PL Jr, Ammon DM Jr. Surface chemical structure for soft contact lenses as a function of polymer processing. J Biomed Mater Res 1996; 32(1): 45-54.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199609)32:1<45:AID-JBM6>3.0.CO;2-P] [PMID: 8864872]
[14]
Sariri R. Protein interaction with hydrogel contact lenses. J Appl Biomater Biomech 2004; 2(1): 1-19.
[http://dx.doi.org/10.1177/228080000400200101] [PMID: 20803446]
[15]
Banu Sp NS, Narayan S. Biomaterial based nanocarriers for delivering immunomodulatory agents. Nanomed Res J 2021; 6(3): 195-217.
[16]
Wang B, Lin Q, Shen C, Han Y, Tang J, Chen H. Synthesis of MA POSS–PMMA as an intraocular lens material with high light transmittance and good cytocompatibility. RSC Advances 2014; 4(95): 52959-66.
[http://dx.doi.org/10.1039/C4RA08060B]
[17]
Millodot M, Henson DB. OʼLEARY DJ. Measurement of corneal sensitivity and thickness with PMMA and gas-permeable contact lenses. Optom Vis Sci 1979; 56(10): 628-32.
[http://dx.doi.org/10.1097/00006324-197910000-00004] [PMID: 525666]
[18]
Jones L, Senchyna M, Glasier MA, et al. Lysozyme and lipid deposition on silicone hydrogel contact lens materials. Eye Contact Lens 2003; 29 (Suppl. 1): S75-9.
[http://dx.doi.org/10.1097/00140068-200301001-00021] [PMID: 12772737]
[19]
Kodjikian L, Casoli-Bergeron E, Malet F, et al. Bacterial adhesion to conventional hydrogel and new silicone-hydrogel contact lens materials. Graefes Arch Clin Exp Ophthalmol 2008; 246(2): 267-73.
[http://dx.doi.org/10.1007/s00417-007-0703-5] [PMID: 17987309]
[20]
Lira M, Lourenço C, Silva M, Botelho G. Physicochemical stability of contact lenses materials for biomedical applications. J Optom 2020; 13(2): 120-7.
[http://dx.doi.org/10.1016/j.optom.2019.10.002] [PMID: 31791819]
[21]
Pucker AD, Thangavelu M, Nichols JJ. Enzymatic quantification of cholesterol and cholesterol esters from silicone hydrogel contact lenses. Invest Ophthalmol Vis Sci 2010; 51(6): 2949-54.
[http://dx.doi.org/10.1167/iovs.08-3368] [PMID: 20089871]
[22]
Zhdanova OV, Chekman IS, Rykov SO. Using nanotechnology and nanomaterials in ophthalmology. Lik Sprava 2010; (5-6): 21-30.
[PMID: 21488365]
[23]
Tuby R, Gutfreund S, Perelshtein I, et al. Fabrication of a stable and efficient antibacterial nanocoating of Zn-CuO on contact lenses. ChemNanoMat 2016; 2(6): 547-51.
[http://dx.doi.org/10.1002/cnma.201600066]
[24]
Balaji S, Karthikeyan R, Kiran V, et al. Platelet lysate as a promising medium for nanocarriers in the management and treatment of ocular diseases. Curr Ophthalmol Rep 2022; 10(2): 19-41.
[http://dx.doi.org/10.1007/s40135-022-00285-5]
[25]
Durán Ospina P. Are nanotechnology and robotics alternatives for therapeutic and theragnostic ophthalmic applications technologies for eye care services? 2013.
[26]
Jung HJ, Abou-Jaoude M, Carbia BE, Plummer C, Chauhan A. Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses. J Control Release 2013; 165(1): 82-9.
[http://dx.doi.org/10.1016/j.jconrel.2012.10.010] [PMID: 23123188]
[27]
Maulvi FA, Mangukiya MA, Patel PA, et al. Extended release of ketotifen from silica shell nanoparticle-laden hydrogel contact lenses: in vitro and in vivo evaluation. J Mater Sci Mater Med 2016; 27(6): 113.
[http://dx.doi.org/10.1007/s10856-016-5724-3] [PMID: 27178036]
[28]
Liu Z, Kompella UB, Chauhan A. Gold nanoparticle synthesis in contact lenses for drug-less ocular cystinosis treatment. Eur J Pharm Biopharm 2021; 165: 271-8.
[http://dx.doi.org/10.1016/j.ejpb.2021.05.019] [PMID: 34044109]
[29]
Salih AE, Shanti A, Elsherif M, et al. Silver nanoparticle-loaded contact lenses for blue-yellow color vision deficiency. Physica Status Solidi 2022; 219(1): 2100294.
[30]
Kumar N, Aggarwal R, Chauhan MK. Extended levobunolol release from Eudragit nanoparticle-laden contact lenses for glaucoma therapy. Futur J Pharm Sci 2020; 6(1): 109.
[http://dx.doi.org/10.1186/s43094-020-00128-9]
[31]
ElShaer A, Mustafa S, Kasar M, Thapa S, Ghatora B, Alany R. Nanoparticle-laden contact lens for controlled ocular delivery of prednisolone: Formulation optimization using statistical experimental design. Pharmaceutics 2016; 8(2): 14.
[http://dx.doi.org/10.3390/pharmaceutics8020014] [PMID: 27104555]
[32]
Bin Sahadan MY, Tong WY, Tan WN, et al. Phomopsidione nanoparticles coated contact lenses reduce microbial keratitis causing pathogens. Exp Eye Res 2019; 178: 10-4.
[http://dx.doi.org/10.1016/j.exer.2018.09.011] [PMID: 30243569]
[33]
Dang H, Dong C, Zhang L. Sustained latanoprost release from PEGylated solid lipid nanoparticle-laden soft contact lens to treat glaucoma. Pharm Dev Technol 2022; 27(2): 127-33.
[http://dx.doi.org/10.1080/10837450.2021.1999471] [PMID: 34704874]
[34]
Ross AE, Bengani LC, Tulsan R, et al. Topical sustained drug delivery to the retina with a drug-eluting contact lens. Biomaterials 2019; 217: 119285.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119285] [PMID: 31299627]
[35]
Xinming L, Yingde C, Lloyd AW, et al. Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: A review. Cont Lens Anterior Eye 2008; 31(2): 57-64.
[http://dx.doi.org/10.1016/j.clae.2007.09.002] [PMID: 17962066]
[36]
Guzman-Aranguez A, Fonseca B, Carracedo G, Martin-Gil A, Martinez-Aguila A, Pintor J. Dry eye treatment based on contact lens drug delivery: a review. Eye Contact Lens: Sci Eye Contact Lens 2016; 42(5): 280-8.
[http://dx.doi.org/10.1097/ICL.0000000000000184] [PMID: 26372476]
[37]
Peng CC, Ben-Shlomo A, Mackay EO, Plummer CE, Chauhan A. Drug delivery by contact lens in spontaneously glaucomatous dogs. Curr Eye Res 2012; 37(3): 204-11.
[http://dx.doi.org/10.3109/02713683.2011.630154] [PMID: 22335807]
[38]
Christopher K, Chauhan A. Contact lens based drug delivery to the posterior segment via iontophoresis in cadaver rabbit eyes. Pharm Res 2019; 36(6): 87.
[http://dx.doi.org/10.1007/s11095-019-2625-4] [PMID: 31004227]
[39]
Desai AR, Maulvi FA, Desai DM, et al. Multiple drug delivery from the drug-implants-laden silicone contact lens: Addressing the issue of burst drug release. Mater Sci Eng C 2020; 112: 110885.
[http://dx.doi.org/10.1016/j.msec.2020.110885] [PMID: 32409042]
[40]
Geeva NS, Narayan S. Lithium entrapped chitosan nanoparticles to reduce toxicity and increase cellular uptake of lithium. Environ Toxicol Pharmacol 2018; 61: 79-86.
[http://dx.doi.org/10.1016/j.etap.2018.05.017] [PMID: 29852373]
[41]
Nikouei BM, Vahabzadeh SA, Mohajeri SA. Preparation of a molecularly imprinted soft contact lens as a new ocular drug delivery system for dorzolamide. Curr Drug Deliv 2013; 10(3): 279-85.
[http://dx.doi.org/10.2174/1567201811310030004] [PMID: 23360228]
[42]
Hu X, Tan H, Hao L. Functional hydrogel contact lens for drug delivery in the application of oculopathy therapy. J Mech Behav Biomed Mater 2016; 64: 43-52.
[http://dx.doi.org/10.1016/j.jmbbm.2016.07.005] [PMID: 27479893]
[43]
Gallagher AG, McLean K, Stewart RMK, Wellings DA, Allison HE, Williams RL. Development of a poly-ε-lysine contact lens as a drug delivery device for the treatment of fungal keratitis. Invest Ophthalmol Vis Sci 2017; 58(11): 4499-505.
[http://dx.doi.org/10.1167/iovs.17-22301] [PMID: 28873175]
[44]
Lee D, Cho S, Park HS, Kwon I. Ocular drug delivery through pHEMA-hydrogel contact lenses co-loaded with lipophilic vitamins. Sci Rep 2016; 6(1): 34194.
[http://dx.doi.org/10.1038/srep34194] [PMID: 27678247]
[45]
Hiratani H, Fujiwara A, Tamiya Y, Mizutani Y, Alvarez-Lorenzo C. Ocular release of timolol from molecularly imprinted soft contact lenses. Biomaterials 2005; 26(11): 1293-8.
[http://dx.doi.org/10.1016/j.biomaterials.2004.04.030] [PMID: 15475059]
[46]
Guzman-Aranguez A, Colligris B, Pintor J. Contact lenses: promising devices for ocular drug delivery. J Ocul Pharmacol Ther 2013; 29(2): 189-99.
[http://dx.doi.org/10.1089/jop.2012.0212] [PMID: 23215541]
[47]
Lenses C. Promising Devices for Ocular Drug Delivery. J Ocul Pharmacol Therap 2013; 29(2): 189-99.
[http://dx.doi.org/10.1089/jop.2012.0212]
[48]
Dupuis P, Prokopich CL, Hynes A, Kim H. A contemporary look at allergic conjunctivitis. Allergy Asthma Clin Immunol 2020; 16(1): 5.
[http://dx.doi.org/10.1186/s13223-020-0403-9] [PMID: 31993069]
[49]
Zhang T, Zhu T, Wang F, Peng L, Lai M. Ketotifen loaded solid lipid nanoparticles laden contact lens to manage allergic conjunctivitis. J Drug Deliv Sci Technol 2020; 60: 101949.
[http://dx.doi.org/10.1016/j.jddst.2020.101949]
[50]
Ran W, Ma H, Li M. In vitro and in vivo studies of polyvinyl pyrrolidone–coated sparfloxacin-loaded ring contact lens to treat conjunctivitis. J Pharm Sci 2020; 109(6): 1951-7.
[http://dx.doi.org/10.1016/j.xphs.2020.02.008] [PMID: 32070700]
[51]
Gulsen D, Chauhan A. Ophthalmic drug delivery through contact lenses. Invest Ophthalmol Vis Sci 2004; 45(7): 2342-7.
[http://dx.doi.org/10.1167/iovs.03-0959] [PMID: 15223815]
[52]
Xu J, Li X, Sun F. In vitro and in vivo evaluation of ketotifen fumarate-loaded silicone hydrogel contact lenses for ocular drug delivery. Drug Deliv 2011; 18(2): 150-8.
[http://dx.doi.org/10.3109/10717544.2010.522612] [PMID: 21043996]
[53]
Xue Y, Zhang W, Lei Y, Dang M. Novel polyvinyl pyrrolidone–loaded olopatadine HCl–laden doughnut contact lens to treat allergic conjunctivitis. J Pharm Sci 2020; 109(5): 1714-24.
[http://dx.doi.org/10.1016/j.xphs.2020.01.022] [PMID: 32007507]
[54]
Guo Q, Jia L. Qinggeletu, Zhang R, Yang X. In vitro and in vivo evaluation of ketotifen-gold nanoparticles laden contact lens for controlled drug delivery to manage conjunctivitis. J Drug Deliv Sci Technol 2021; 64: 102538.
[http://dx.doi.org/10.1016/j.jddst.2021.102538]
[55]
Maulvi FA, Singhania SS, Desai AR, et al. Contact lenses with dual drug delivery for the treatment of bacterial conjunctivitis. Int J Pharm 2018; 548(1): 139-50.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.059] [PMID: 29960036]
[56]
Deepthi S, Jose J. Novel hydrogel-based ocular drug delivery system for the treatment of conjunctivitis. Int Ophthalmol 2019; 39(6): 1355-66.
[http://dx.doi.org/10.1007/s10792-018-0955-6] [PMID: 29922978]
[57]
Kompella UB, Amrite AC, Pacha Ravi R, Durazo SA. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res 2013; 36: 172-98.
[http://dx.doi.org/10.1016/j.preteyeres.2013.04.001] [PMID: 23603534]
[58]
Phillips C, Sexton M, Wheeler G, McKenzie J. Retinoblastoma: Review of 30 years’ experience with external beam radiotherapy. 2003; 47(3): 226-30.
[http://dx.doi.org/10.1046/j.1440-1673.2003.01167.x]
[59]
Cocarta AI, Hobzova R, Sirc J, et al. Hydrogel implants for transscleral drug delivery for retinoblastoma treatment. Mater Sci Eng C 2019; 103: 109799.
[http://dx.doi.org/10.1016/j.msec.2019.109799] [PMID: 31349439]
[60]
Tseng R, Chen CC, Hsu SM, Chuang HS. Contact-Lens Biosensors. Sensors (Basel) 2018; 18(8): 2651.
[http://dx.doi.org/10.3390/s18082651] [PMID: 30104496]
[61]
Guo S, Wu K, Li C, et al. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 2021; 4(3): 969-85.
[http://dx.doi.org/10.1016/j.matt.2020.12.002] [PMID: 33398259]
[62]
Dou Z, Tang J, Liu Z, et al. Wearable contact lens sensor for non-invasive continuous monitoring of intraocular pressure. Micromachines (Basel) 2021; 12(2): 108.
[http://dx.doi.org/10.3390/mi12020108] [PMID: 33499080]
[63]
Dou Z, Tang J, Liu Z, Sun Q, Wang Y, Li Y, et al. Wearable contact lens sensor for non-invasive continuous monitoring of intraocular pressure. Micromachines 2021; 12(2): 108.
[64]
Farandos NM, Yetisen AK, Monteiro MJ, Lowe CR, Yun SH. Contact lens sensors in ocular diagnostics. Adv Healthc Mater 2015; 4(6): 792-810.
[http://dx.doi.org/10.1002/adhm.201400504] [PMID: 25400274]
[65]
Giri TK, Chakrabarty S, Ghosh B. Transdermal reverse iontophoresis: A novel technique for therapeutic drug monitoring. J Control Release 2017; 246: 30-8.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.007] [PMID: 27956143]
[66]
Badugu R, Lakowicz JR, Geddes CD. A glucose-sensing contact lens: from bench top to patient. Curr Opin Biotechnol 2005; 16(1): 100-7.
[http://dx.doi.org/10.1016/j.copbio.2004.12.007] [PMID: 15722022]
[67]
Elsherif M, Hassan MU, Yetisen AK, Butt H. Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano 2018; 12(6): 5452-62.
[http://dx.doi.org/10.1021/acsnano.8b00829] [PMID: 29750502]
[68]
Yao H, Liao Y, Lingley AR, et al. A contact lens with integrated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring. J Micromech Microeng 2012; 22(7): 075007.
[http://dx.doi.org/10.1088/0960-1317/22/7/075007]
[69]
Keum DH, Kim SK, Koo J, et al. Wireless smart contact lens for diabetic diagnosis and therapy. Sci Adv 2020; 6(17): eaba3252.
[http://dx.doi.org/10.1126/sciadv.aba3252] [PMID: 32426469]
[70]
March WF, Mueller A, Herbrechtsmeier P. Clinical trial of a noninvasive contact lens glucose sensor. Diabetes Technol Ther 2004; 6(6): 782-9.
[http://dx.doi.org/10.1089/dia.2004.6.782] [PMID: 15684630]
[71]
Park J, Kim J, Kim S-Y, Cheong WH, Jang J, Park Y-G, et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. App Sci Eng 2018; 4(1): eaap9841.
[http://dx.doi.org/10.1126/sciadv.aap9841]
[72]
Tang L, Chang SJ, Chen CJ, Liu JT. Non-invasive blood glucose monitoring technology: A Review. Sensors (Basel) 2020; 20(23): 6925.
[http://dx.doi.org/10.3390/s20236925] [PMID: 33291519]
[73]
Pang Y, Li Y, Wang X, Qi C, Yang Y. A contact lens promising for non-invasive continuous intraocular pressure monitoring 2019; 9(9): 5076-82.
[74]
Karunaratne IK, Lee CHC, Or PW, et al. Wearable dual-element intraocular pressure contact lens sensor. Sens Actuators A Phys 2021; 321: 112580.
[http://dx.doi.org/10.1016/j.sna.2021.112580]
[75]
Campigotto A, Leahy S, Zhao G, Campbell RJ, Lai Y. Non-invasive Intraocular pressure monitoring with contact lens. Br J Ophthalmol 2019; 104(9): 1324-8.
[http://dx.doi.org/10.1136/bjophthalmol-2018-313714] [PMID: 31266776]
[76]
An H, Chen L, Liu X, Zhao B, Zhang H, Wu Z. Microfluidic contact lenses for unpowered, continuous and non-invasive intraocular pressure monitoring. Sens Actuators A Phys 2019; 295: 177-87.
[http://dx.doi.org/10.1016/j.sna.2019.04.050]
[77]
Laukhin V, Sánchez I, Moya A, et al. Non-invasive intraocular pressure monitoring with a contact lens engineered with a nanostructured polymeric sensing film. Sens Actuators A Phys 2011; 170(1-2): 36-43.
[http://dx.doi.org/10.1016/j.sna.2011.05.021]
[78]
Kingman S. Glaucoma is second leading cause of blindness globally. Bull World Health Organ 2004; 82(11): 887-8.
[PMID: 15640929]
[79]
Leonardi M, Pitchon EM, Bertsch A, Renaud P, Mermoud A. Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmol 2009; 87(4): 433-7.
[http://dx.doi.org/10.1111/j.1755-3768.2008.01404.x]
[80]
Leonardi M, Leuenberger P, Bertrand D, Bertsch A, Renaud P. First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens. Invest Ophthalmol Vis Sci 2004; 45(9): 3113-7.
[http://dx.doi.org/10.1167/iovs.04-0015] [PMID: 15326128]
[81]
Kim J, Cha E, Park JU. Recent advances in smart contact lenses. Adv Mater Technol 2020; 5(1): 1900728.
[http://dx.doi.org/10.1002/admt.201900728]
[82]
Haerinia M, Shadid R. Wireless power transfer approaches for medical implants: A Review. Signals 2020; 1(2): 209-29.
[http://dx.doi.org/10.3390/signals1020012]
[83]
Park J, Ahn DB, Kim J, et al. Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations. Sci Adv 2019; 5(12)
[http://dx.doi.org/10.1126/sciadv.aay0764]
[84]
Chernenko S. Virtual reality contact lenses. Sumy State University 2012.
[85]
Peugnet F, Dubois P, Rouland JF. Virtual reality versus conventional training in retinal photocoagulation: a first clinical assessment. Comput Aided Surg 1998; 3(1): 20-6.
[http://dx.doi.org/10.3109/10929089809148124] [PMID: 9699075]
[86]
Satava RM, Jones SB. Current and future applications of virtual reality for medicine. Proc IEEE 1998; 86(3): 484-9.
[http://dx.doi.org/10.1109/5.662873]
[87]
Bun P, Gorski F, Grajewski D, Wichniarek R, Zawadzki P. Low – cost devices used in virtual reality exposure therapy. Procedia Comput Sci 2017; 104: 445-51.
[http://dx.doi.org/10.1016/j.procs.2017.01.158]
[88]
Viirre E, Pryor H, Nagata S, Furness TA III. The virtual retinal display: a new technology for virtual reality and augmented vision in medicine. Stud Health Technol Inform 1998; 50: 252-7.
[http://dx.doi.org/10.3233/978-1-60750-894-6-252] [PMID: 10180549]
[89]
Peddie J. Augmented reality: Where we will all live. Springer 2017.
[http://dx.doi.org/10.1007/978-3-319-54502-8]
[90]
Carmigniani J, Furht B. Augmented Reality: An Overview. Handbook of Augmented Reality. New York, NY: Springer New York 2011; pp. 3-46.
[http://dx.doi.org/10.1007/978-1-4614-0064-6_1]
[91]
Carmigniani J. Augmented reality: an overview. 2011; 3-46.
[92]
Singh R, Bailey S, Chang P, Olyaei A, Hekmat M, Winoto R. 342 A 21pJ/frame/pixel imager and 34pJ/frame/pixel image processor for a low-vision augmented-reality smart contact lens 2021 IEEE International Solid- State Circuits Conference. ISSCC 2021; pp. 482-4.
[93]
Lingley A, Parviz B. Multipurpose integrated active contact lenses. The Neuromorphic Engineer 2008.
[94]
Parviz B. Multipurpose integrated active contact lenses. Spie Newsroom 2009.
[http://dx.doi.org/10.1117/2.1200905.1154]
[95]
Gause S, Chauhan A. Nanoparticle-loaded UV-blocking contact lenses. J Appl Polym Sci 2015; 132(37) n/a.
[http://dx.doi.org/10.1002/app.42495]
[96]
Lai CF, Li JS, Fang YT, Chien CJ, Lee CH. UV and blue-light anti-reflective structurally colored contact lenses based on a copolymer hydrogel with amorphous array nanostructures. RSC Advances 2018; 8(8): 4006-13.
[http://dx.doi.org/10.1039/C7RA12753G]
[97]
Gause S, Chauhan A. Incorporation of ultraviolet (UV) absorbing nanoparticles in contact lenses for Class 1 UV blocking. J Mater Chem B Mater Biol Med 2016; 4(2): 327-39.
[http://dx.doi.org/10.1039/C5TB01532D] [PMID: 32263375]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy