Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Promises of Molecular Pharmaceutics in the Development of Novel Drug Delivery Formulations

Author(s): Parveen Kumar, Benu Chaudhary, Vivek Jain, Sanjula Baboota, Palanisamy Shivanandy*, Khalid Saad Alharbi, Mohammed M Ghoneim, Sultan Alshehri, Syed Sarim Imam, Gaurav Gupta and Madan Mohan Gupta*

Volume 20, Issue 9, 2023

Published on: 13 December, 2022

Page: [1262 - 1274] Pages: 13

DOI: 10.2174/1567201820666221114113637

Price: $65

Abstract

Molecular pharmaceutics play a critical role in the drug delivery system, representing the direct interconnection of drug bioavailability with its molecular form. There is a diversity in the molecular structures by which it affects its properties, such as amorphous form, crystalline form, partialamorphous molecular dispersion, and disordered state. The active pharmaceutical ingredient (API) and the excipients utilized in the formulation process contain various divergent modes used in the formulation process. They include better formulations of any type to obtain good quality pharmaceutical products. This review reveals how the molecular states affect the API and are important in maintaining the quality of dosage forms. Furthermore, the physio-chemical properties of the components and various pharmaceutical approaches employed in the formulation of dosage forms are studied from the point of view of molecular pharmaceutics.

Keywords: Molecular pharmaceutics, drug delivery, active pharmaceutical ingredients, formulation, polymer, microparticles.

Graphical Abstract
[1]
Molecular Pharmaceutics & Drug Delivery. Available from: https://pharmacy.utexas.edu/research-practice/college-divisions/molecular-pharmaceutics (Accessed 24-11-2021).
[2]
Aso, Y.; Yoshioka, S.; Miyazaki, T.; Kawanishi, T.; Tanaka, K.; Kitamura, S.; Takakura, A.; Hayashi, T.; Muranushi, N. Miscibility of nifedipine and hydrophilic polymers as measured by (1)H-NMR spin-lattice relaxation. Chem. Pharm. Bull. (Tokyo), 2007, 55(8), 1227-1231.
[http://dx.doi.org/10.1248/cpb.55.1227] [PMID: 17666850]
[3]
Amidon, G.L. Finding the “Magic”. Mol. Pharm., 2004, 1(1), 1.
[http://dx.doi.org/10.1021/mp0300021] [PMID: 15832495]
[4]
Hüttenrauch, R.; Fricke, S. Molecular galenics. 8. Proof of H-bonding in structure-viscosity systems in the example of silicone dioxide gels. Pharmazie, 1976, 31(6), 409-410.
[PMID: 959307]
[5]
Deininger, M.W.N.; Goldman, J.M.; Lydon, N.; Melo, J.V. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood, 1997, 90(9), 3691-3698.
[http://dx.doi.org/10.1182/blood.V90.9.3691] [PMID: 9345054]
[6]
Demetri, G.D.; von Mehren, M.; Blanke, C.D.; Van den Abbeele, A.D.; Eisenberg, B.; Roberts, P.J.; Heinrich, M.C.; Tuveson, D.A.; Singer, S.; Janicek, M.; Fletcher, J.A.; Silverman, S.G.; Silberman, S.L.; Capdeville, R.; Kiese, B.; Peng, B.; Dimitrijevic, S.; Druker, B.J.; Corless, C.; Fletcher, C.D.M.; Joensuu, H. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med., 2002, 347(7), 472-480.
[http://dx.doi.org/10.1056/NEJMoa020461] [PMID: 12181401]
[7]
O’Brien, S.G.; Guilhot, F.; Larson, R.A.; Gathmann, I.; Baccarani, M.; Cervantes, F.; Cornelissen, J.J.; Fischer, T.; Hochhaus, A.; Hughes, T.; Lechner, K.; Nielsen, J.L.; Rousselot, P.; Reiffers, J.; Saglio, G.; Shepherd, J.; Simonsson, B.; Gratwohl, A.; Goldman, J.M.; Kantarjian, H.; Taylor, K.; Verhoef, G.; Bolton, A.E.; Capdeville, R.; Druker, B.J. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med., 2003, 348(11), 994-1004.
[http://dx.doi.org/10.1056/NEJMoa022457] [PMID: 12637609]
[8]
Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M.; Lillibridge, S.; Osterholm, M.T.; O’Toole, T.; Parker, G.; Perl, T.M.; Russell, P.K.; Swerdlow, D.L.; Tonat, K. Botulinum toxin as a biological weapon: Medical and public health management. JAMA, 2001, 285(8), 1059-1070.
[http://dx.doi.org/10.1001/jama.285.8.1059] [PMID: 11209178]
[9]
Habermann, E.; Reiz, K.G. On the biochemistry of bee venom peptides, melittin and apamin. Biochem. Z., 1965, 343(2), 192-203.
[PMID: 5876063]
[10]
Son, D.; Lee, J.; Lee, Y.; Song, H.; Lee, C.; Hong, J. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther., 2007, 115(2), 246-270.
[http://dx.doi.org/10.1016/j.pharmthera.2007.04.004] [PMID: 17555825]
[11]
Aso, Y.; Yoshioka, S.; Miyazaki, T.; Kawanishi, T. Feasibility of 19F-NMR for assessing the molecular mobility of flufenamic acid in solid dispersions. Chem. Pharm. Bull. (Tokyo), 2009, 57(1), 61-64.
[http://dx.doi.org/10.1248/cpb.57.61] [PMID: 19122317]
[12]
Resende, M.T.; Osheter, T.; Linder, C.; Wiesman, Z. Proton low field NMR relaxation time domain sensor for monitoring of oxidation stability of PUFA-rich oils and emulsion products. Foods, 2021, 10(6), 1385.
[http://dx.doi.org/10.3390/foods10061385] [PMID: 34203981]
[13]
Yoshioka, S.; Aso, Y. Correlations between molecular mobility and chemical stability during storage of amorphous pharmaceuticals. J. Pharm. Sci., 2007, 96(5), 960-981.
[http://dx.doi.org/10.1002/jps.20926] [PMID: 17455355]
[14]
Rodríguez-Spong, B.Ch.P.; Jayasankar, A. General principles of pharmaceutical solid polymorphism: A supramolecular perspective. Adv. Drug Deliv. Rev., 2004, 56(3), 241-274.
[15]
Jayasankar, A.; Roy, L.; Rodríguez-Hornedo, N. Transformation pathways of cocrystal hydrates when coformer modulates water activity. J. Pharm. Sci., 2010, 99(9), 3977-3985.
[http://dx.doi.org/10.1002/jps.22245] [PMID: 20623694]
[16]
Seefeldt, K.; Miller, J.; Alvarez-Núñez, F.; Rodríguez-Hornedo, N. Crystallization pathways and kinetics of carbamazepine-nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy, and calorimetry studies. J. Pharm. Sci., 2007, 96(5), 1147-1158.
[http://dx.doi.org/10.1002/jps.20945] [PMID: 17455346]
[17]
Couture, O.; Dransart, E.; Dehay, S.; Nemati, F.; Decaudin, D.; Johannes, L.; Tanter, M. Tumor delivery of ultrasound contrast agents using Shiga toxin B subunit. Mol. Imaging., 2011, 10(2) 7290.2010.00030.
[http://dx.doi.org/10.2310/7290.2010.00030] [PMID: 21439258]
[18]
Haqqani, A.S.; Delaney, C.E.; Tremblay, T.L.; Sodja, C.; Sandhu, J.K.; Stanimirovic, D.B. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells. Fluids Barriers CNS, 2013, 10(1), 4.
[http://dx.doi.org/10.1186/2045-8118-10-4] [PMID: 23305214]
[19]
Gao, W.; Liu, Y.; Jing, G.; Li, K.; Zhao, Y.; Sha, B.; Wang, Q.; Wu, D. Rapid and efficient crossing blood-brain barrier: Hydrophobic drug delivery system based on propionylated amylose helix nanoclusters. Biomaterials, 2017, 113, 133-144.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.045] [PMID: 27815997]
[20]
Pardridge, W.M. Drug and gene targeting to the brain with molecular Trojan horses. Nat. Rev. Drug Discov., 2002, 1(2), 131-139.
[http://dx.doi.org/10.1038/nrd725] [PMID: 12120094]
[21]
Barbosa, J.S.; Almeida Paz, F.A.; Braga, S.S. Montelukast medicines of today and tomorrow: From molecular pharmaceutics to technological formulations. Drug Deliv., 2016, 23(9), 3257-3265.
[http://dx.doi.org/10.3109/10717544.2016.1170247] [PMID: 27011101]
[22]
Dua, K.; Hansbro, P.M.; Wadhwa, R.; Haghi, M.; Pont, L.G.; Williams, K.A. Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems; Academic Press: Cambridge, Massachusetts, 2020.
[23]
Nikolić, V.; Ilić-Stojanović, S.; Petrović, S.; Tačić, A.; Nikolić, L. Administration routes for nano drugs and characterization of nano drug loading. In: Characterization and Biology of Nanomaterials for Drug Delivery; Mohapatra, S.S.; Ranjan, S.; Dasgupta, N.; Mishra, R.K.; Thomas, S., Eds.; Elsevier: Amsterdam, Netherlands, 2019; pp. 587-625.
[24]
Seresirikachorn, B.; Ghadiri, M. Absorption enhancement of macromolecule-administered intrapulmonary. In: Targeting Chronic Inflammatory Lung Diseases using Advanced Drug Delivery Systems; Dua, K.; Hansbro, P.M.; Wadhwa, R.; Haghi, M.; Pont, L.G.; Williams, K.A., Eds.; Academic Press: Cambridge, Massachusetts, 2020; pp. 147-161.
[25]
Hu, Y.L.; Qi, W.; Han, F.; Shao, J.Z.; Gao, J.Q. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int. J. Nanomedicine, 2011, 6, 3351-3359.
[PMID: 22267920]
[26]
Das, S.; Chaudhury, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 2011, 12(1), 62-76.
[http://dx.doi.org/10.1208/s12249-010-9563-0] [PMID: 21174180]
[27]
Inamdar, B.P.; Kathawala, K.J.; Parikh, A.Y.; Shah, T.R.; Shah, J.N. Formulation, development and characterization of chitosan nanoparticles of montelukast sodium for site specific drug delivery in management of asthma. Int. J. Drug Formulation Res., 2013, 4(87), 101.
[28]
Glinka, M.; Filatova, K.; Kucińska-Lipka, J.; Bergerova, E.D.; Wasik, A.; Sedlařík, V. Encapsulation of amikacin into microparticles based on low-molecular-weight poly(lactic acid) and poly(lactic acid-co-polyethylene glycol). Mol. Pharm., 2021, 18(8), 2986-2996.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00193] [PMID: 34196555]
[29]
Cavalieri, F.; Chiessi, E.; Villa, R.; Viganò, L.; Zaffaroni, N.; Telling, M.F.; Paradossi, G. Novel PVA-based hydrogel microparticles for doxorubicin delivery. Biomacromolecules, 2008, 9(7), 1967-1973.
[http://dx.doi.org/10.1021/bm800225v] [PMID: 18533701]
[30]
Vyas, S.P.; Khar, R.K. Targeted & Controlled Drug delivery: Novel Carrier Systems; C.B.S. Publishers & Distributors: New Delhi, 2004.
[31]
Wang, Y.; Miao, L.; Satterlee, A.; Huang, L. Delivery of oligonucleotides with lipid nanoparticles. Adv. Drug Deliv. Rev., 2015, 87, 68-80.
[http://dx.doi.org/10.1016/j.addr.2015.02.007] [PMID: 25733311]
[32]
Gene Expression. Available from: https://en.wikipedia.org/wiki/Gene_expression (Accessed 24-11-2021).
[33]
Chaitanya, K.V. Structure and organization of virus genomes. In: Genome and Genomics; Springer: Singapore, 2019; pp. 1-30.
[http://dx.doi.org/10.1007/978-981-15-0702-1_1]
[34]
Vyas, S.P.; Khar, R.K. Controlled Drug Delivery - Concepts andAdvances,, 1st ed; , 2002.
[35]
Roland, A. Particulate carriers: Therapeutic applications. In: Drug Targeting Technology: Physical, Chemical and Biological Methods; Schreier, H., Ed.; Marcel Dekker: New York, 2001.
[36]
Özduman, K.; Wollmann, G.; Piepmeier, J.M. Gene therapy for meningiomas. In: Meningiomas; Pamir, M.N.; Black, P.M.; Fahlbusch, R., Eds.; W.B. Saunders: Philadelphia, USA, 2010; pp. 681-690.
[37]
Somatic Gene Therapy vs. Germine Gene Therapy. Available from: https://diffzi.com/somatic-gene-therapy-vs-germline-gene-therapy/
[38]
Moribe, K.; Tsuchiya, M.; Tozuka, Y.; Yamaguchi, K.; Oguchi, T.; Yamamoto, K. Grinding-induced equimolar complex formation between thiourea and ethenzamide. Chem. Pharm. Bull. (Tokyo), 2004, 52(5), 524-529.
[http://dx.doi.org/10.1248/cpb.52.524] [PMID: 15133201]
[39]
Yonemochi, E.; Kitahara, S.; Maeda, S.; Yamamura, S.; Oguchi, T.; Yamamoto, K. Physicochemical properties of amorphous clarithromycin obtained by grinding and spray drying. Eur. J. Pharm. Sci., 1999, 7(4), 331-338.
[http://dx.doi.org/10.1016/S0928-0987(98)00040-2] [PMID: 9971917]
[40]
Yamaguchi, T.; Nishimura, M.; Okamoto, R.; Takeuchi, T.; Yamamoto, K. Glass formation of 4″-O-(4-methoxyphenyl) acetyltylosin and physicochemical stability of the amorphous solid. Int. J. Pharm., 1992, 85(1-3), 87-96.
[http://dx.doi.org/10.1016/0378-5173(92)90137-Q]
[41]
Mura, P.; Cirri, M.; Faucci, M.T.; Ginès-Dorado, J.M.; Bettinetti, G.P. Investigation of the effects of grinding and co-grinding on physicochemical properties of glisentide. J. Pharm. Biomed. Anal., 2002, 30(2), 227-237.
[http://dx.doi.org/10.1016/S0731-7085(02)00252-2] [PMID: 12191707]
[42]
Wongmekiat, A.; Tozuka, Y.; Oguchi, T.; Yamamoto, K. Formation of fine drug particles by cogrinding with cyclodextrins. I. The use of β-cyclodextrin anhydrate and hydrate. Pharm. Res., 2002, 19(12), 1867-1872.
[http://dx.doi.org/10.1023/A:1021401826554] [PMID: 12523667]
[43]
Wongmekiat, A.; Tozuka, Y.; Oguchi, T.; Yamamoto, K. Formation of fine drug particle by cogrinding with cyclodextrins. Int. J. Pharm., 2003, 265(1-2), 85-93.
[http://dx.doi.org/10.1016/S0378-5173(03)00409-5] [PMID: 14522121]
[44]
Tozuka, Y.; Yonemochi, E.; Oguchi, T.; Yamamoto, K. Molecular states of 2-naphthoic acid in solid dispersions with porous crystalline cellulose, as investigated by fluorescence spectroscopy. Bull. Chem. Soc. Jpn., 2000, 73(7), 1567-1572.
[http://dx.doi.org/10.1246/bcsj.73.1567]
[45]
Gu, C.H.; Chatterjee, K.; Young, V., Jr; Grant, D.J.W. Stabilization of a metastable polymorph of sulfamerazine by structurally related additives. J. Cryst. Growth, 2002, 235(1-4), 471-481.
[http://dx.doi.org/10.1016/S0022-0248(01)01784-5]
[46]
Blagden, N.; Davey, R.J.; Lieberman, H.F.; Williams, L.; Payne, R.; Roberts, R.; Rowe, R.; Docherty, R. Crystal chemistry and solvent effects in polymorphic systems Sulfathiazole. J. Chem. Soc., Faraday Trans., 1998, 94(8), 1035-1044.
[http://dx.doi.org/10.1039/a706669d]
[47]
Kelly, R.C.; Rodríguez-Hornedo, N. Directed Nucleation and Solution-Mediated Phase Transformation of Carbamazepine in Aqueous and Organic Solutions; New Orleans, LA, U.S.A., IEC055, 2003.
[48]
Davey, R.J.; Allen, K.; Blagden, N.; Cross, W.I.; Lieberman, H.F.; Quayle, M.J.; Righini, S.; Seton, L.; Tiddy, G.J.T. Crystal engineering - nucleation, the key step. CrystEngComm, 2002, 4(47), 257-264.
[http://dx.doi.org/10.1039/B203521A]
[49]
Shalaev, E.; Zografi, G. The Concept of “Structure” in Amorphous Solids from the Perspective of the Pharmaceutical Sciences, Amorphous Food and Pharmaceutical Systems; Royal Society of Chemistry; , 2002, Vol. 281, pp. 11-30.
[50]
Tang, X.C.; Pikal, M.J.; Taylor, L.S. A spectroscopic investigation of hydrogen bond patterns in crystalline and amorphous phases in dihydropyridine calcium channel blockers. Pharm. Res., 2002, 19(4), 477-483.
[http://dx.doi.org/10.1023/A:1015147729564] [PMID: 12033383]
[51]
Hancock, B.C.; Zografi, G. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci., 1997, 86(1), 1-12.
[http://dx.doi.org/10.1021/js9601896] [PMID: 9002452]
[52]
Rodríguez-hornedo, N.; Murphy, D. Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems. J. Pharm. Sci., 1999, 88(7), 651-660.
[http://dx.doi.org/10.1021/js980490h] [PMID: 10393562]
[53]
Price, C.P.; Grzesiak, A.L.; Lang, M.; Matzger, A.J. Polymorphism of nabumetone. Cryst. Growth Des., 2002, 2(6), 501-503.
[http://dx.doi.org/10.1021/cg0255568]
[54]
Prabhakar, C.; Reddy, G.B.; Reddy, C.M.; Nageshwar, D.; Devi, A.S.; Babu, J.M.; Vyas, K.; Sarma, M.R.; Reddy, G.O. Process research and structural studies on nabumetone. Org. Process Res. Dev., 1999, 3(2), 121-125.
[http://dx.doi.org/10.1021/op980060d]
[55]
Tozuka, Y.; Takeshita, A.; Nagae, A.; Wongmekiat, A.; Moribe, K.; Oguchi, T.; Yamamoto, K. Specific inclusion mode of guest compounds in the amylose complex analyzed by solid state NMR spectroscopy. Chem. Pharm. Bull. (Tokyo), 2006, 54(8), 1097-1101.
[http://dx.doi.org/10.1248/cpb.54.1097] [PMID: 16880651]
[56]
Yamamoto, K.; Limwikrant, W.; Moribe, K. Analysis of molecular interactions in solid dosage forms; challenge to molecular pharmaceutics. Chem. Pharm. Bull. (Tokyo), 2011, 59(2), 147-154.
[http://dx.doi.org/10.1248/cpb.59.147] [PMID: 21297291]
[57]
Fundueanu, G.; Constantin, M.; Dalpiaz, A.; Bortolotti, F.; Cortesi, R.; Ascenzi, P.; Menegatti, E. Preparation and characterization of starch/cyclodextrin bioadhesive microspheres as platform for nasal administration of Gabexate Mesylate (Foy®) in allergic rhinitis treatment. Biomaterials, 2004, 25(1), 159-170.
[http://dx.doi.org/10.1016/S0142-9612(03)00477-0] [PMID: 14580919]
[58]
Panyam, J.; Dali, M.M.; Sahoo, S.K.; Ma, W.; Chakravarthi, S.S.; Amidon, G.L.; Levy, R.J.; Labhasetwar, V. Polymer degradation and in vitro release of a model protein from poly(d,l-lactide-co-glycolide) nano- and microparticles. J. Control. Release, 2003, 92(1-2), 173-187.
[http://dx.doi.org/10.1016/S0168-3659(03)00328-6] [PMID: 14499195]
[59]
Na, D.H.; Lee, J.E.; Jang, S.W.; Lee, K.C. Formation of acylated growth hormone-releasing peptide-6 by poly(lactide-co-glycolide) and its biological activity. AAPS PharmSciTech, 2007, 8(2), E105-E109.
[http://dx.doi.org/10.1208/pt0802043] [PMID: 17622118]
[60]
Wischke, C.; Schwendeman, S.P. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int. J. Pharm., 2008, 364(2), 298-327.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.042] [PMID: 18621492]
[61]
Berkland, C.; King, M.; Cox, A.; Kim, K.K.; Pack, D.W. Precise control of PLG microsphere size provides enhanced control of drug release rate. J. Control. Release, 2002, 82(1), 137-147.
[http://dx.doi.org/10.1016/S0168-3659(02)00136-0] [PMID: 12106984]
[62]
Notari, R.E. Pharmacokinetics and molecular modification: Implications in drug design and evaluation. J. Pharm. Sci., 1973, 62(6), 865-881.
[http://dx.doi.org/10.1002/jps.2600620602] [PMID: 4576424]
[63]
Widmark, E.M.P. Studies in the concentration of indifferent narcotics in blood and tissues. Acta Med. Scand., 1919, 52(1), 87-164.
[http://dx.doi.org/10.1111/j.0954-6820.1919.tb08277.x]
[64]
Nelson, E. Kinetics of drug absorption, distribution, metabolism, and excretion. J. Pharm. Sci., 1961, 50(3), 181-192.
[http://dx.doi.org/10.1002/jps.2600500302] [PMID: 13728276]
[65]
Wagner, J.G. Biopharmaceutics: Absorption aspects. J. Pharm. Sci., 1961, 50(5), 359-387.
[http://dx.doi.org/10.1002/jps.2600500502] [PMID: 13782507]
[66]
Notari, R.E. Biopharmaceutics and Clinical Pharmacokinetics; Routledge: New York, 1987.
[http://dx.doi.org/10.1201/9781315138350]
[67]
Wagner, J.G. Biopharmaceutics and Relevant Pharmacokinetics; Drug Intelligence Publications, 1971.
[68]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[69]
Jordan, M.C.; Standiford, H.C.; Kirby, W.M.M. Carbenicillin in treatment of severe infections due to pseudomonas. J. Infect. Dis., 1970, 122(Suppl. 1), S96-S103.
[http://dx.doi.org/10.1093/infdis/122.Supplement_1.S96] [PMID: 4319045]
[70]
Nayler, J.H. Structure-activity relationships in semi-synthetic penicillins. Proc. R. Soc. Lond. B Biol. Sci., 1971, 179(1057), 357-367.
[http://dx.doi.org/10.1098/rspb.1971.0102] [PMID: 4401415]
[71]
Tuano, S.B.; Johnson, L.D.; Brodie, J.L.; Kirby, W.M.M. Comparative blood levels of hetacillin, ampicillin and penicillin G. N. Engl. J. Med., 1966, 275(12), 635-639.
[http://dx.doi.org/10.1056/NEJM196609222751203] [PMID: 5331311]
[72]
Rosenblatt, J.E.; Kind, A.C.; Brodie, J.L.; Kirby, W.M. Mechanisms responsible for the blood level differences of isoxazolyl penicillins: Oxacillin, cloxacillin, and dicloxacillin. Arch. Intern. Med., 1968, 121(4), 345-348.
[http://dx.doi.org/10.1001/archinte.1968.03640040039008] [PMID: 5645708]
[73]
Ramesh, P. Transdermal delivery of drugs. Indian J. Pharmacol., 1997, 29(3), 140.
[74]
Rao, P.R.; Diwan, P.V. Permeability studies of cellulose acetate free films for transdermal use: Influence of plasticizers. Pharm. Acta Helv., 1997, 72(1), 47-51.
[http://dx.doi.org/10.1016/S0031-6865(96)00060-X] [PMID: 9063088]
[75]
Rao, P.R.; Diwan, P.V. Formulation and in vitro evaluation of polymeric films of diltiazem hydrochloride and indomethacin for transdermal administration. Drug Dev. Ind. Pharm., 1998, 24(4), 327-336.
[http://dx.doi.org/10.3109/03639049809085627] [PMID: 9876592]
[76]
Bhat, M.; Shenoy, S.D.; Udupa, N.; Srinivas, C.R. Optimization of delivery of betamethasone-dipropionate from skin preparation. Indian Drugs, 1995, 32(5), 211-214.
[77]
Krishna, R.; Pandit, J.K. Carboxymethylcellulose-sodium based transdermal drug delivery system for propranolol. J. Pharm. Pharmacol., 2011, 48(4), 367-370.
[http://dx.doi.org/10.1111/j.2042-7158.1996.tb05934.x] [PMID: 8794984]
[78]
Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; Du, B.; Li, L.J.; Zeng, G.; Yuen, K.Y.; Chen, R.C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N.S. China medical treatment expert group for COVID-19. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[79]
Puccetti, M.; Giovagnoli, S.; Zelante, T.; Romani, L.; Ricci, M. Development of novel indole-3-aldehyde-loaded gastro-resistant spray-dried microparticles for postbiotic small intestine local delivery. J. Pharm. Sci., 2018, 107(9), 2341-2353.
[http://dx.doi.org/10.1016/j.xphs.2018.04.023] [PMID: 29715478]
[80]
Tabas, I.; Glass, C.K. Anti-inflammatory therapy in chronic disease: Challenges and opportunities. Science, 2013, 339(6116), 166-172.
[http://dx.doi.org/10.1126/science.1230720] [PMID: 23307734]
[81]
Puccetti, M.; Costantini, C.; Ricci, M.; Giovagnoli, S. Tackling immune pathogenesis of COVID-19 through molecular pharmaceutics. Pharmaceutics, 2021, 13(4), 494.
[http://dx.doi.org/10.3390/pharmaceutics13040494] [PMID: 33916409]
[82]
Cong, H.; Wang, K.; Zhou, Z.; Yang, J.; Piao, Y.; Yu, B.; Shen, Y.; Zhou, Z. Tuning the brightness and photostability of organic dots for multivalent targeted cancer imaging and surgery. ACS Nano, 2020, 14(5), 5887-5900.
[http://dx.doi.org/10.1021/acsnano.0c01034] [PMID: 32356972]
[83]
Liu, M.; Li, C.; Pazgier, M.; Li, C.; Mao, Y.; Lv, Y.; Gu, B.; Wei, G.; Yuan, W.; Zhan, C.; Lu, W.Y.; Lu, W. D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proc. Natl. Acad. Sci. USA, 2010, 107(32), 14321-14326.
[http://dx.doi.org/10.1073/pnas.1008930107] [PMID: 20660730]
[84]
Bugno, J.; Hsu, H.J.; Pearson, R.M.; Noh, H.; Hong, S. Size and surface charge of engineered poly(amidoamine) dendrimers modulate tumor accumulation and penetration: A model study using multicellular tumor spheroids. Mol. Pharm., 2016, 13(7), 2155-2163.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00946] [PMID: 26828309]
[85]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
[86]
Padera, T.P.; Kadambi, A.; di Tomaso, E.; Carreira, C.M.; Brown, E.B.; Boucher, Y.; Choi, N.C.; Mathisen, D.; Wain, J.; Mark, E.J.; Munn, L.L.; Jain, R.K. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science, 2002, 296(5574), 1883-1886.
[http://dx.doi.org/10.1126/science.1071420] [PMID: 11976409]
[87]
Sun, Q.; Sun, X.; Ma, X.; Zhou, Z.; Jin, E.; Zhang, B.; Shen, Y.; Van Kirk, E.A.; Murdoch, W.J.; Lott, J.R.; Lodge, T.P.; Radosz, M.; Zhao, Y. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv. Mater., 2014, 26(45), 7615-7621.
[http://dx.doi.org/10.1002/adma.201401554] [PMID: 25328159]
[88]
Yu, W.; Liu, R.; Zhou, Y.; Gao, H. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent. Sci., 2020, 6(2), 100-116.
[http://dx.doi.org/10.1021/acscentsci.9b01139] [PMID: 32123729]
[89]
Zhong, W.; Pang, L.; Feng, H.; Dong, H.; Wang, S.; Cong, H.; Shen, Y.; Bing, Y. Recent advantage of hyaluronic acid for anti-cancer application: A review of “3S” transition approach. Carbohydr. Polym., 2020, 238, 116204.
[http://dx.doi.org/10.1016/j.carbpol.2020.116204] [PMID: 32299556]
[90]
Tiwari, G.; Tiwari, R.; Bannerjee, S.K.; Bhati, L.; Pandey, S.; Pandey, P.; Sriwastawa, B. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[91]
Chen, Y.P.; Zhang, J.L.; Zou, Y.; Wu, Y.L. Recent advances on polymeric beads or hydrogels as embolization agents for improved Transcatheter Arterial Chemoembolization (TACE). Front Chem., 2019, 7, 408.
[http://dx.doi.org/10.3389/fchem.2019.00408] [PMID: 31231636]
[92]
Singh, S.; Vardhan, H.; Kotla, N.G.; Maddiboyina, B.; Sharma, D.; Webster, T.J. The role of surfactants in the formulation of elastic liposomal gels containing a synthetic opioid analgesic. Int. J. Nanomedicine, 2016, 11, 1475-1482.
[PMID: 27114707]
[93]
Zheng, W.; Fang, X.; Wang, L.; Zhang, Y. Preparation and quality assessment of itraconazole transfersomes. Int. J. Pharm., 2012, 436(1-2), 291-298.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.003] [PMID: 22796030]
[94]
Hussain, A.; Singh, S.; Sharma, D.; Webster, T.; Shafaat, K.; Faruk, A. Elastic liposomes as novel carriers: Recent advances in drug delivery. Int. J. Nanomedicine, 2017, 12, 5087-5108.
[http://dx.doi.org/10.2147/IJN.S138267] [PMID: 28761343]
[95]
Uddin, M.S.; Begum, M.M. Carriers for brain targeting: Recent advances and challenges. In: Nanocarriers for Brain Targeting; Keservani, R.K.; Sharma, A.K.; Kesharwani, R.K., Eds.; Apple Academic Press: New York, 2019; pp. 3-6.
[http://dx.doi.org/10.1201/9780429465079-1]
[96]
Zhou, Z.; Sun, T.; Jiang, C. Recent advances on drug delivery nanocarriers for cerebral disorders. Biomed. Mater., 2021, 16(2), 024104.
[http://dx.doi.org/10.1088/1748-605X/abdc97] [PMID: 33455956]
[97]
Bahadur, S.; Naurange, T.; Baghel, P.; Sahu, M.; Yadu, K. Targeting the brain: Various approaches and science involved. ScienceRise. Pharm. Sci., 2020, (5(27)), 4-16.
[http://dx.doi.org/10.15587/2519-4852.2020.210824]
[98]
Keller, L.A.; Merkel, O.; Popp, A. Intranasal drug delivery: Opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res., 2022, 12(4), 735-757.
[PMID: 33491126]
[99]
Chandel, A.; Goyal, A.K.; Ghosh, G.; Rath, G. Recent advances in aerosolised drug delivery. Biomed. Pharmacother., 2019, 112, 108601.
[http://dx.doi.org/10.1016/j.biopha.2019.108601] [PMID: 30780107]
[100]
Davey, R.J.; Blagden, N.; Potts, G.D.; Docherty, R. Polymorphism in molecular crystals: Stabilization of a metastable form by conformational mimicry. J. Am. Chem. Soc., 1997, 119(7), 1767-1772.
[http://dx.doi.org/10.1021/ja9626345]
[101]
Weissbuch, I.; Popovitzbiro, R.; Lahav, M.; Leiserowitz, L. Understanding and control of nucleation, growth, habit, dissolution and structure of 2-dimensional and 3-dimensional crystals using tailor-made auxiliaries. Acta Crystallogr., 1995, 51(2), 115-148.
[102]
Söhnel, O.; Garside, J. Precipitation: Basic Principles and Industrial Applications; Butterworth-Heinemann: Boston, 1992.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy