Mini-Review Article

The Mechanistic Role of Different Mediators in the Pathophysiology of Nephropathy: A Review

Author(s): Jaspreet Singh, Akash Jain, Rashmi Bhamra, Vaibhav Rathi and Ashwani K. Dhingra*

Volume 24, Issue 2, 2023

Published on: 25 November, 2022

Page: [104 - 117] Pages: 14

DOI: 10.2174/1389450124666221026152647

Price: $65

Abstract

Nephropathy has become the most common reason for end-stage renal disease worldwide. The progression of end-stage renal disease occurs caused by decreased glomerular filtration rate, damage to capillaries in renal glomeruli or a higher risk of cardiovascular morbidity and mortality in diabetic patients. The involvement of mechanism in the development of nephropathy via generation of AGEs, the elevation of growth factors, altered hemodynamic and metabolic factors, inflammatory mediators, oxidative stress and dyslipidaemia. The prevalence of chronic kidney disease in India will rise from 3.7 million in 1990 to 7.63 million in 2020 becoming the main cause of mortality and morbidity. The pathogenesis of nephropathy mediates by various molecules that cause alterations in the structure and function of the kidney like growth factors, endothelins, transforming growth factor (TGF-β), and Angiotensin-converting enzymes (ACE), fibronectin and proinflammatory cytokines, mast cells and dyslipidemia. Growth factors like VEGF, IGFs, PDGF, EGFR and TGF-β contribute to excessive extracellular matrix accumulation, together with thickening of the glomerular and tubular basement membranes and an increase in the mesangial matrix, leading to glomerulosclerosis and tubulointerstitial fibrosis. Oxidative stress and inflammation factors like TNF-α, IL-1 and IL-6 are hypothesized to play a role in the development of pathological changes in nephropathy like renal hyperfiltration and hypertrophy, thickening of the glomerular basement membrane (GBM), glomerular lesion and tubulointerstitial fibrosis. Dyslipidemia is involved in the progression of nephropathy by impaired action of lipoprotein lipase, lecithincholesterol acyltransferase (LCAT) and cholesteryl ester transferase protein (CETP) resulting in the increased level of LDL-C, Triglyceride level and decrease HDL-C that enhance macrophage infiltration, excessive extracellular matrix production and accelerate inflammation with the development of proteinuria. Interruption in the RAS, oxidative stress and dyslipidemia have yielded much better results in terms of reno-protection and progression of nephropathy. In this review, we would focus on various factors that have been shown to contribute to renal injury in many experimental models of nephropathy.

Keywords: Nephropathy, renin-angiotensin, system, oxidative stress, dyslipidemia, growth factors.

Graphical Abstract
[1]
Lim A. Diabetic nephropathy-complications and treatment. Int J Nephrol Renovasc Dis 2014; 7: 361-81.
[http://dx.doi.org/10.2147/IJNRD.S40172] [PMID: 25342915]
[2]
Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Invest 2014; 124(6): 2333-40.
[http://dx.doi.org/10.1172/JCI72271] [PMID: 24892707]
[3]
Gall MA, Rossing P, Skøtt P, et al. Prevalence of micro- and macroalbuminuria, arterial hypertension, retinopathy and large vessel disease in European type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1991; 34(9): 655-61.
[http://dx.doi.org/10.1007/BF00400995] [PMID: 1955098]
[4]
Tunstall-Pedoe H. Preventing Chronic Diseases A vital investment: WHO Global Report. Geneva: World Health Organization 2005; p. 200.
[5]
Fioretto P, Mauer M, Brocco E, et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia 1996; 39(12): 1569-76.
[http://dx.doi.org/10.1007/s001250050616] [PMID: 8960844]
[6]
Wolf G. Growth factors and the development of diabetic nephropathy. Curr Diab Rep 2003; 3(6): 485-90.
[http://dx.doi.org/10.1007/s11892-003-0012-2] [PMID: 14611745]
[7]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813-20.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[8]
Sun GD, Li CY, Cui WP, et al. Review of herbal traditional chinese medicine for the treatment of diabetic nephropathy. J Diabetes Res 2016; 2016.
[9]
Navarro-González JF, Mora-Fernández C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 2008; 19(3): 433-42.
[http://dx.doi.org/10.1681/ASN.2007091048] [PMID: 18256353]
[10]
Cao Z, Cooper ME. Pathogenesis of diabetic nephropathy. J Diabetes Investig 2011; 2(4): 243-7.
[http://dx.doi.org/10.1111/j.2040-1124.2011.00131.x] [PMID: 24843491]
[11]
Cooper ME. Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet 1998; 352(9123): 213-9.
[http://dx.doi.org/10.1016/S0140-6736(98)01346-4] [PMID: 9683226]
[12]
Li YC, Shih YM, Lee JA. Gentamicin caused renal injury deeply related to methylglyoxal and Nɛ-(carboxyethyl)lysine (CEL). Toxicol Lett 2013; 219(1): 85-92.
[http://dx.doi.org/10.1016/j.toxlet.2013.01.024] [PMID: 23454834]
[13]
Maxey L, Magnusson J. Rehabilitation for the Postsurgical Orthopedic Patient. Amsterdam: Elsevier Health Sciences 2013.
[14]
Stone WL, Varacallo M. Physiology, growth factor.Stat Pearls. Treasure Island, FL: Stat Pearls Publishing 2022. Internet
[15]
Chiarelli F, Gaspari S, Marcovecchio ML. Role of growth factors in diabetic kidney disease. Horm Metab Res 2009; 41(8): 585-93.
[http://dx.doi.org/10.1055/s-0029-1220752] [PMID: 19452424]
[16]
Ferrara N, Gerber HP. The role of vascular endothelial growth factor in angiogenesis. Acta Haematol 2001; 106(4): 148-56.
[http://dx.doi.org/10.1159/000046610] [PMID: 11815711]
[17]
Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13(1): 9-22.
[http://dx.doi.org/10.1096/fasebj.13.1.9] [PMID: 9872925]
[18]
Guan F, Villegas G, Teichman J, Mundel P, Tufro A. Autocrine VEGF-A system in podocytes regulates podocin and its interaction with CD2AP. Am J Physiol Renal Physiol 2006; 291(2): F422-8.
[http://dx.doi.org/10.1152/ajprenal.00448.2005] [PMID: 16597608]
[19]
Sison K, Eremina V, Baelde H, et al. Glomerular structure and function require paracrine, not autocrine, VEGF-VEGFR-2 signaling. J Am Soc Nephrol 2010; 21(10): 1691-701.
[http://dx.doi.org/10.1681/ASN.2010030295] [PMID: 20688931]
[20]
Hood JD, Meininger CJ, Ziche M, Granger HJ. VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol 1998; 274(3): H1054-8.
[PMID: 9530221]
[21]
Mount PF, Power DA. Nitric oxide in the kidney: Functions and regulation of synthesis. Acta Physiol 2006; 187(4): 433-46.
[http://dx.doi.org/10.1111/j.1748-1716.2006.01582.x] [PMID: 16866775]
[22]
Zoccali C. The endothelium as a target in renal diseases. J Nephrol 2007; 20(S12): S39-44.
[PMID: 18050141]
[23]
Sivaskandarajah GA, Jeansson M, Maezawa Y, Eremina V, Baelde HJ, Quaggin SE. Vegfa protects the glomerular microvasculature in diabetes. Diabetes 2012; 61(11): 2958-66.
[http://dx.doi.org/10.2337/DB11-1655] [PMID: 23093658]
[24]
Iida H, Seifert R, Alpers CE, et al. Platelet-derived growth factor (PDGF) and PDGF receptor are induced in mesangial proliferative nephritis in the rat. Proc Natl Acad Sci 1991; 88(15): 6560-4.
[http://dx.doi.org/10.1073/pnas.88.15.6560] [PMID: 1713682]
[25]
Ostendorf T, Eitner F, Floege J. The PDGF family in renal fibrosis. Pediatr Nephrol 2012; 27(7): 1041-50.
[http://dx.doi.org/10.1007/s00467-011-1892-z] [PMID: 21597969]
[26]
Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev 2008; 22(10): 1276-312.
[http://dx.doi.org/10.1101/gad.1653708] [PMID: 18483217]
[27]
Floege J, Eng E, Young BA, et al. Infusion of platelet-derived growth factor or basic fibroblast growth factor induces selective glomerular mesangial cell proliferation and matrix accumulation in rats. J Clin Invest 1993; 92(6): 2952-62.
[http://dx.doi.org/10.1172/JCI116918] [PMID: 7902849]
[28]
Schöcklmann HO, Lang S, Sterzel RB. Regulation of mesangial cell proliferation. Kidney Int 1999; 56(4): 1199-207.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00710.x] [PMID: 10610410]
[29]
Johnson RJ, Raines EW, Floege J, et al. Inhibition of mesangial cell proliferation and matrix expansion in glomerulonephritis in the rat by antibody to platelet-derived growth factor. J Exp Med 1992; 175(5): 1413-6.
[http://dx.doi.org/10.1084/jem.175.5.1413] [PMID: 1569407]
[30]
Dennler S, Goumans MJ, ten Dijke P. Transforming growth factor β signal transduction. J Leukoc Biol 2002; 71(5): 731-40.
[http://dx.doi.org/10.1189/jlb.71.5.731] [PMID: 11994497]
[31]
Patel SR, Dressler GR. BMP7 signaling in renal development and disease. Trends Mol Med 2005; 11(11): 512-8.
[http://dx.doi.org/10.1016/j.molmed.2005.09.007] [PMID: 16216558]
[32]
Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J. Mechanism of activation of the TGF-β receptor. Nature 1994; 370(6488): 341-7.
[http://dx.doi.org/10.1038/370341a0] [PMID: 8047140]
[33]
Chang AS, Hathaway CK, Smithies O, Kakoki M. Transforming growth factor-β1 and diabetic nephropathy. Am J Physiol Renal Physiol 2016; 310(8): F689-96.
[http://dx.doi.org/10.1152/ajprenal.00502.2015] [PMID: 26719364]
[34]
Lan HY. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int J Biol Sci 2011; 7(7): 1056-67.
[http://dx.doi.org/10.7150/ijbs.7.1056] [PMID: 21927575]
[35]
Mason RM. Connective tissue growth factor(CCN2), a pathogenic factor in diabetic nephropathy. What does it do? How does it do it? J Cell Commun Signal 2009; 3(2): 95-104.
[http://dx.doi.org/10.1007/s12079-009-0038-6] [PMID: 19214781]
[36]
Burns WC, Twigg SM, Forbes JM, et al. Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition: Implications for diabetic renal disease. J Am Soc Nephrol 2006; 17(9): 2484-94.
[http://dx.doi.org/10.1681/ASN.2006050525] [PMID: 16914537]
[37]
Leask A, Abraham DJ. All in the CCN family: Essential matricellular signaling modulators emerge from the bunker. J Cell Sci 2006; 119(23): 4803-10.
[http://dx.doi.org/10.1242/jcs.03270] [PMID: 17130294]
[38]
Wahab NA, Weston BS, Mason RM. Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J Am Soc Nephrol 2005; 16(2): 340-51.
[http://dx.doi.org/10.1681/ASN.2003100905] [PMID: 15601748]
[39]
Patel SR, Dressler GR. Outstanding questions. Trends Mol Med 2005; 11(11): 512-8.
[http://dx.doi.org/10.1016/j.molmed.2005.09.007] [PMID: 16216558]
[40]
Wang S, de Caestecker M, Kopp J, Mitu G, LaPage J, Hirschberg R. Renal bone morphogenetic protein-7 protects against diabetic nephropathy. J Am Soc Nephrol 2006; 17(9): 2504-12.
[http://dx.doi.org/10.1681/ASN.2006030278] [PMID: 16899516]
[41]
Bach LA, Hale LJ. Insulin-like growth factors and kidney disease. Am J Kidney Dis 2015; 65(2): 327-36.
[http://dx.doi.org/10.1053/j.ajkd.2014.05.024] [PMID: 25151409]
[42]
Dupont J, LeRoith D. Insulin and insulin-like growth factor I receptors: Similarities and differences in signal transduction. Horm Res 2001; 55(S2): 22-6.
[PMID: 11684871]
[43]
Vasylyeva TL, Ferry RJ Jr. Novel roles of the IGF-IGFBP axis in etiopathophysiology of diabetic nephropathy. Diabetes Res Clin Pract 2007; 76(2): 177-86.
[http://dx.doi.org/10.1016/j.diabres.2006.09.012] [PMID: 17011663]
[44]
Whaley-Connell A, Sowers JR. Insulin resistance in kidney disease: Is there a distinct role separate from that of diabetes or obesity. Cardiorenal Med 2018; 8(1): 41-9.
[http://dx.doi.org/10.1159/000479801] [PMID: 29344025]
[45]
Holbro T, Hynes NE. ErbB receptors: Directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol 2004; 44(1): 195-217.
[http://dx.doi.org/10.1146/annurev.pharmtox.44.101802.121440] [PMID: 14744244]
[46]
Bollée G, Flamant M, Schordan S, et al. Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nat Med 2011; 17(10): 1242-50.
[http://dx.doi.org/10.1038/nm.2491] [PMID: 21946538]
[47]
Melenhorst WBWH, Mulder GM, Xi Q, et al. Epidermal growth factor receptor signaling in the kidney: Key roles in physiology and disease. Hypertension 2008; 52(6): 987-93.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.113860] [PMID: 18981331]
[48]
Zeng F, Singh AB, Harris RC. The role of the EGF family of ligands and receptors in renal development, physiology and pathophysiology. Exp Cell Res 2009; 315(4): 602-10.
[http://dx.doi.org/10.1016/j.yexcr.2008.08.005] [PMID: 18761338]
[49]
Rayego-Mateos S, Rodrigues-Diez R, Morgado-Pascual JL, et al. Role of epidermal growth factor receptor (EGFR) and its ligands in kidney inflammation and damage. Mediators Inflamm 2018; 2018: 1-22.
[http://dx.doi.org/10.1155/2018/8739473]
[50]
Fischer OM, Hart S, Gschwind A, Ullrich A. EGFR signal transactivation in cancer cells. Biochem Soc Trans 2003; 31(6): 1203-8.
[http://dx.doi.org/10.1042/bst0311203] [PMID: 14641026]
[51]
Alsaad KO, Herzenberg AM. Distinguishing diabetic nephropathy from other causes of glomerulosclerosis: An update. J Clin Pathol 2007; 60(1): 18-26.
[http://dx.doi.org/10.1136/jcp.2005.035592] [PMID: 17213346]
[52]
Chen S, Jim B, Ziyadeh FN. Diabetic nephropathy and transforming growth factor-β Transforming our view of glomerulosclerosis and fibrosis build-up. Semin Nephrol 2003; 23(6): 532-43.
[http://dx.doi.org/10.1053/S0270-9295(03)00132-3] [PMID: 14631561]
[53]
Thrailkill KM, Clay Bunn R, Fowlkes JL. Matrix metalloproteinases: Their potential role in the pathogenesis of diabetic nephropathy. Endocrine 2009; 35(1): 1-10.
[http://dx.doi.org/10.1007/s12020-008-9114-6] [PMID: 18972226]
[54]
Lan T, Liu W, Xie X, et al. Sphingosine kinase-1 pathway mediates high glucose-induced fibronectin expression in glomerular mesangial cells. Mol Endocrinol 2011; 25(12): 2094-105.
[http://dx.doi.org/10.1210/me.2011-0095] [PMID: 21998146]
[55]
Qian Y, Feldman E, Pennathur S, Kretzler M, Brosius FC III. From fibrosis to sclerosis: Mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes 2008; 57(6): 1439-45.
[http://dx.doi.org/10.2337/db08-0061] [PMID: 18511444]
[56]
García-García PM, Getino-Melián MA, Domínguez-Pimentel V, Navarro-González JF. Inflammation in diabetic kidney disease. World J Diabetes 2014; 5(4): 431-43.
[http://dx.doi.org/10.4239/wjd.v5.i4.431] [PMID: 25126391]
[57]
Sarafidis PA, Bakris GL. Protection of the kidney by thiazolidinediones: An assessment from bench to bedside. Kidney Int 2006; 70(7): 1223-33.
[http://dx.doi.org/10.1038/sj.ki.5001620] [PMID: 16883325]
[58]
Hai W, Ping X, Zhi-wen Y, Chun Z. [RETRACTED ARTICLE] Therapeutic effect and potential mechanism of pioglitazone in rats with severe acute pancreatitis. Braz J Med Biol Res 2018; 51(2): e6812.
[http://dx.doi.org/10.1590/1414-431x20176812] [PMID: 29267505]
[59]
Donate-Correa J, Martín-Núñez E, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. Inflammatory cytokines in diabetic nephropathy. J Diabetes Res 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/948417] [PMID: 25785280]
[60]
Navarro-González JF, Mora-Fernández C, de Fuentes MM, García-Pérez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 2011; 7(6): 327-40.
[http://dx.doi.org/10.1038/nrneph.2011.51] [PMID: 21537349]
[61]
Priante G, Gianesello L, Ceol M, Del Prete D, Anglani F. Cell death in the kidney. Int J Mol Sci 2019; 20(14): 3598.
[http://dx.doi.org/10.3390/ijms20143598] [PMID: 31340541]
[62]
Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 2014; 15(2): 135-47.
[http://dx.doi.org/10.1038/nrm3737] [PMID: 24452471]
[63]
Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ 2003; 10(1): 45-65.
[http://dx.doi.org/10.1038/sj.cdd.4401189] [PMID: 12655295]
[64]
Sindhughosa DA, Pranamartha AG. The involvement of proinflammatory cytokines in diabetic nephropathy: Focus on interleukin 1 (IL-1), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) signaling mechanism. BMJ 2017; 6: 299.
[65]
Ozbek E, Cekmen M, Ilbey YO, Simsek A, Polat EC, Somay A. Atorvastatin prevents gentamicin-induced renal damage in rats through the inhibition of p38-MAPK and NF-kappaB pathways. Ren Fail 2009; 31(5): 382-92.
[http://dx.doi.org/10.1080/08860220902835863] [PMID: 19839839]
[66]
Rao V, Rao LV, Tan SH, Candasamy M, Bhattamisra SK. Diabetic nephropathy: An update on pathogenesis and drug development. Diabetes Metab Syndr 2019; 13(1): 754-62.
[http://dx.doi.org/10.1016/j.dsx.2018.11.054] [PMID: 30641802]
[67]
Murray KN, Parry-Jones AR, Allan SM. Interleukin-1 and acute brain injury. Front Cell Neurosci 2015; 9: 18.
[http://dx.doi.org/10.3389/fncel.2015.00018] [PMID: 25705177]
[68]
Satirapoj B. Diabetic kidney disease: Important mechanisms and treatment. J Nephrol Soc Thai 2009; 15(2): 126-39.
[69]
Suzuki D, Miyazaki M, Naka R, et al. In situ hybridization of interleukin 6 in diabetic nephropathy. Diabetes 1995; 44(10): 1233-8.
[http://dx.doi.org/10.2337/diab.44.10.1233] [PMID: 7556963]
[70]
Nishimoto N, Kishimoto T. Interleukin 6: From bench to bedside. Nat Clin Pract Rheumatol 2006; 2(11): 619-26.
[http://dx.doi.org/10.1038/ncprheum0338] [PMID: 17075601]
[71]
Barton M, Yanagisawa M. Endothelin: 20 years from discovery to therapyThis article is one of a selection of papers published in the special issue (part 2 of 2) on Forefronts in Endothelin. Can J Physiol Pharmacol 2008; 86(8): 485-98.
[http://dx.doi.org/10.1139/Y08-059] [PMID: 18758495]
[72]
Benz K, Amann K. Endothelin in diabetic renal disease. Contrib Nephrol 2011; 172: 139-48.
[http://dx.doi.org/10.1159/000328695]
[73]
Rebibou JM, He CJ, Delarue F, et al. Functional endothelin 1 receptors on human glomerular podocytes and mesangial cells. Nephrol Dial Transplant 1992; 7(4): 288-92.
[http://dx.doi.org/10.1093/oxfordjournals.ndt.a092130] [PMID: 1317517]
[74]
Saleh MA, Boesen EI, Pollock JS, Savin VJ, Pollock DM. Endothelin-1 increases glomerular permeability and inflammation independent of blood pressure in the rat. Hypertension 2010; 56(5): 942-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.156570] [PMID: 20823379]
[75]
Nishiyama A, Kobori H. Independent regulation of renin-angiotensin-aldosterone system in the kidney. Clin Exp Nephrol 2018; 22(6): 1231-9.
[http://dx.doi.org/10.1007/s10157-018-1567-1] [PMID: 29600408]
[76]
Singh R, Singh AK, Alavi N, Leehey DJ. Mechanism of increased angiotensin II levels in glomerular mesangial cells cultured in high glucose. J Am Soc Nephrol 2003; 14(4): 873-80.
[http://dx.doi.org/10.1097/01.ASN.0000060804.40201.6E] [PMID: 12660321]
[77]
Kagami S, Border WA, Miller DE, Noble NA. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest 1994; 93(6): 2431-7.
[http://dx.doi.org/10.1172/JCI117251] [PMID: 8200978]
[78]
Edwards RM, Aiyar N. Angiotensin II receptor subtypes in the kidney. J Am Soc Nephrol 1993; 3(10): 1643-52.
[http://dx.doi.org/10.1681/ASN.V3101643] [PMID: 8318680]
[79]
Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical Renin-Angiotensin system in kidney physiology. Compr Physiol 2014; 4(3): 1201-28.
[http://dx.doi.org/10.1002/cphy.c130040] [PMID: 24944035]
[80]
Basile D, Yoder M. Renal endothelial dysfunction in acute kidney ischemia reperfusion injury. Cardiovasc Hematol Disord Drug Targets 2014; 14(1): 3-14.
[http://dx.doi.org/10.2174/1871529X1401140724093505] [PMID: 25088124]
[81]
Hodgkins KS, Schnaper HW. Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr Nephrol 2012; 27(6): 901-9.
[http://dx.doi.org/10.1007/s00467-011-1992-9] [PMID: 21947270]
[82]
Ruilope LM. Renin-angiotensin-aldosterone system blockade and renal protection: angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers? Acta Diabetol 2005; 42(S1): s33-41.
[http://dx.doi.org/10.1007/s00592-005-0179-x] [PMID: 15868118]
[83]
Bauer JH, Reams GP. Renal protection in essential hypertension: How do angiotensin-converting enzyme inhibitors compare with calcium antagonists? J Am Soc Nephrol 1990; 1(5)(S2): S80-7.
[PMID: 16989071]
[84]
Stumpe KO. Angiotensin-converting enzyme inhibition: Direct and indirect mechanisms. Klin Wochenschr 1985; 63(18): 897-906.
[http://dx.doi.org/10.1007/BF01738143] [PMID: 2997540]
[85]
Delles C, Jacobi J, John S, Fleischmann I, Schmieder RE. Effects of enalapril and eprosartan on the renal vascular nitric oxide system in human essential hypertension. Kidney Int 2002; 61(4): 1462-8.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00260.x] [PMID: 11918753]
[86]
Francischetti A, Ono H, Frohlich ED. Renoprotective effects of felodipine and/or enalapril in spontaneously hypertensive rats with and without L-NAME. Hypertension 1998; 31(3): 795-801.
[http://dx.doi.org/10.1161/01.HYP.31.3.795] [PMID: 9495263]
[87]
Wilens SL, Elster SK. The role of lipid deposition in renal arteriolar sclerosis. Am J Med Sci 1950; 219(2): 183-196, illust.
[http://dx.doi.org/10.1097/00000441-195002000-00009] [PMID: 15403163]
[88]
Groop PH, Elliott T, Friedman R, et al. Multiple lipoprotein abnormalities in type I diabetic patients with renal disease. Diabetes 1996; 45(7): 974-9.
[http://dx.doi.org/10.2337/diab.45.7.974] [PMID: 8666151]
[89]
Attman P, Knight-Gibson C, Tavella M, Samuelsson O, Alaupovic P. The compositional abnormalities of lipoproteins in diabetic renal failure. Nephrol Dial Transplant 1998; 13(11): 2833-41.
[http://dx.doi.org/10.1093/ndt/13.11.2833] [PMID: 9829487]
[90]
Hirano T, Naito H, Kurokawa M, et al. High prevalence of small LDL particles in non-insulin-dependent diabetic patients with nephropathy. Atherosclerosis 1996; 123(1-2): 57-72.
[http://dx.doi.org/10.1016/0021-9150(95)05772-2] [PMID: 8782837]
[91]
Listenberger LL, Han X, Lewis SE, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci 2003; 100(6): 3077-82.
[http://dx.doi.org/10.1073/pnas.0630588100] [PMID: 12629214]
[92]
Abrass CK. Cellular lipid metabolism and the role of lipids in progressive renal disease. Am J Nephrol 2004; 24(1): 46-53.
[http://dx.doi.org/10.1159/000075925] [PMID: 14707435]
[93]
Chait A, Heinecke JW. Lipoprotein modification. Curr Opin Lipidol 1994; 5(5): 365-70.
[http://dx.doi.org/10.1097/00041433-199410000-00008] [PMID: 7858911]
[94]
Wheeler DC, Chana RS. Interactions between lipoproteins, glomerular cells and matrix. Miner Electrolyte Metab 1993; 19(3): 149-64.
[PMID: 8232102]
[95]
Weinberg JM. Lipotoxicity. Kidney Int 2006; 70(9): 1560-6.
[http://dx.doi.org/10.1038/sj.ki.5001834] [PMID: 16955100]
[96]
Choi ME. Mechanism of transforming growth factor-β1 signaling: Role of the mitogen-activated protein kinase. Kidney Int 2000; 58: S53-8.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07709.x]
[97]
Prakash J. Dyslipidemia in diabetic kidney disease. Clin Queries Nephrol 2012; 1(2): 115-8.
[http://dx.doi.org/10.1016/S2211-9477(12)70003-1]
[98]
Kamanna VS, Bassa BV, Ganji SH. Low density lipoproteins transactivate EGF receptor: Role in mesangial cell proliferation. Life Sci 2008; 83(17-18): 595-601.
[http://dx.doi.org/10.1016/j.lfs.2008.08.010] [PMID: 18805430]
[99]
Lee HS. Oxidized LDL, glomerular mesangial cells and collagen. Diabetes Res Clin Pract 1999; 45(2-3): 117-22.
[http://dx.doi.org/10.1016/S0168-8227(99)00040-6] [PMID: 10588363]
[100]
Vaziri ND. Dyslipidemia of chronic renal failure: The nature, mechanisms, and potential consequences. Am J Physiol Renal Physiol 2006; 290(2): F262-72.
[http://dx.doi.org/10.1152/ajprenal.00099.2005] [PMID: 16403839]
[101]
Glass CK, Witztum JL. Atherosclerosis. Cell 2001; 104(4): 503-16.
[http://dx.doi.org/10.1016/S0092-8674(01)00238-0] [PMID: 11239408]
[102]
Portilla D, Mandel LJ, Bar-Sagi D, Millington DS. Anoxia induces phospholipase A2 activation in rabbit renal proximal tubules. Am J Physiol 1992; 262(3 Pt 2): F354-60.
[PMID: 1558154]
[103]
Ruan XZ, Moorhead JF, Fernando R, Wheeler DC, Powis SH, Varghese Z. PPAR agonists protect mesangial cells from interleukin 1β-induced intracellular lipid accumulation by activating the ABCA1 cholesterol efflux pathway. J Am Soc Nephrol 2003; 14(3): 593-600.
[http://dx.doi.org/10.1097/01.ASN.0000050414.52908.DA] [PMID: 12595494]
[104]
Nishida Y, Oda H, Yorioka N. Effect of lipoproteins on mesangial cell proliferation. Kidney Int 1999; 56: S51-3.
[http://dx.doi.org/10.1046/j.1523-1755.1999.07113.x] [PMID: 10412737]
[105]
Mayrhofer C, Krieger S, Huttary N, et al. Alterations in fatty acid utilization and an impaired antioxidant defense mechanism are early events in podocyte injury: A proteomic analysis. Am J Pathol 2009; 174(4): 1191-202.
[http://dx.doi.org/10.2353/ajpath.2009.080654] [PMID: 19264907]
[106]
Su Y, Chen Q, Ma K, et al. Astragaloside IV inhibits palmitate-mediated oxidative stress and fibrosis in human glomerular mesangial cells via downregulation of CD36 expression. Pharmacol Rep 2019; 71(2): 319-29.
[http://dx.doi.org/10.1016/j.pharep.2018.12.008] [PMID: 30826573]
[107]
Nosadini R, Tonolo G. Role of oxidized low density lipoproteins and free fatty acids in the pathogenesis of glomerulopathy and tubulointerstitial lesions in type 2 diabetes. Nutr Metab Cardiovasc Dis 2011; 21(2): 79-85.
[http://dx.doi.org/10.1016/j.numecd.2010.10.002] [PMID: 21186102]
[108]
Couser WG. Primary membranous nephropathy. Clin J Am Soc Nephrol 2017; 12(6): 983-97.
[http://dx.doi.org/10.2215/CJN.11761116] [PMID: 28550082]
[109]
Eom M, Hudkins KL, Alpers CE. Foam cells and the pathogenesis of kidney disease. Curr Opin Nephrol Hypertens 2015; 24(3): 1.
[http://dx.doi.org/10.1097/MNH.0000000000000112] [PMID: 25887903]
[110]
Takemura T, Yoshioka K, Aya N, et al. Apolipoproteins and lipoprotein receptors in glomeruli in human kidney diseases. Kidney Int 1993; 43(4): 918-27.
[http://dx.doi.org/10.1038/ki.1993.129] [PMID: 8479130]
[111]
Jiang T, Liebman SE, Scott Lucia M, Li J, Levi M. Role of altered renal lipid metabolism and the sterol regulatory element binding proteins in the pathogenesis of age-related renal disease. Kidney Int 2005; 68(6): 2608-20.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00733.x] [PMID: 16316337]
[112]
Hara S, Kobayashi N, Sakamoto K, et al. Podocyte injury-driven lipid peroxidation accelerates the infiltration of glomerular foam cells in focal segmental glomerulosclerosis. Am J Pathol 2015; 185(8): 2118-31.
[http://dx.doi.org/10.1016/j.ajpath.2015.04.007] [PMID: 26072030]
[113]
Wang TN, Chen X, Li R, et al. SREBP-1 mediates angiotensin II-induced TGF-β1 upregulation and glomerular fibrosis. J Am Soc Nephrol 2015; 26(8): 1839-54.
[http://dx.doi.org/10.1681/ASN.2013121332] [PMID: 25398788]
[114]
Zhou C, Lei H, Chen Y, et al. Enhanced SCAP glycosylation by inflammation induces macrophage foam cell formation. PLoS One 2013; 8(10): e75650.
[http://dx.doi.org/10.1371/journal.pone.0075650] [PMID: 24146768]
[115]
Genovese G, Friedman DJ, Ross MD, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 2010; 329(5993): 841-5.
[http://dx.doi.org/10.1126/science.1193032] [PMID: 20647424]
[116]
Hashizume M, Mihara M. Atherogenic effects of TNF-α and IL-6 via up-regulation of scavenger receptors. Cytokine 2012; 58(3): 424-30.
[http://dx.doi.org/10.1016/j.cyto.2012.02.010] [PMID: 22436638]
[117]
Wang XX, Jiang T, Shen Y, et al. The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. Am J Physiol Renal Physiol 2009; 297(6): F1587-96.
[http://dx.doi.org/10.1152/ajprenal.00404.2009] [PMID: 19776172]
[118]
Gai Z, Gui T, Hiller C, Kullak-Ublick GA. Farnesoid X receptor protects against kidney injury in uninephrectomized obese mice. J Biol Chem 2016; 291(5): 2397-411.
[http://dx.doi.org/10.1074/jbc.M115.694323] [PMID: 26655953]
[119]
Wang X, Collins HL, Ranalletta M, et al. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest 2007; 117(8): 2216-24.
[http://dx.doi.org/10.1172/JCI32057] [PMID: 17657311]
[120]
Tang C, Kanter JE, Bornfeldt KE, Leboeuf RC, Oram JF. Diabetes reduces the cholesterol exporter ABCA1 in mouse macrophages and kidneys. J Lipid Res 2010; 51(7): 1719-28.
[http://dx.doi.org/10.1194/jlr.M003525] [PMID: 19965614]
[121]
Ducasa GM, Mitrofanova A, Mallela SK, et al. ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes. J Clin Invest 2019; 129(8): 3387-400.
[http://dx.doi.org/10.1172/JCI125316] [PMID: 31329164]
[122]
Yin Q, Zhang R, Li L, et al. Exendin-4 ameliorates lipotoxicity-induced glomerular endothelial cell injury by improving ABC transporter A1-mediated cholesterol efflux in diabetic apoE knockout mice. J Biol Chem 2016; 291(51): 26487-501.
[http://dx.doi.org/10.1074/jbc.M116.730564] [PMID: 27784780]
[123]
Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 2010; 30(2): 139-43.
[http://dx.doi.org/10.1161/ATVBAHA.108.179283] [PMID: 19797709]
[124]
Yuhanna IS, Zhu Y, Cox BE, et al. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med 2001; 7(7): 853-7.
[http://dx.doi.org/10.1038/89986] [PMID: 11433352]
[125]
Vaziri ND, Norris K. Lipid disorders and their relevance to outcomes in chronic kidney disease. Blood Purif 2011; 31(1-3): 189-96.
[http://dx.doi.org/10.1159/000321845] [PMID: 21228589]
[126]
Di Bartolo B, Scherer DJ, Brown A, Psaltis PJ, Nicholls SJ. PCSK9 inhibitors in hyperlipidemia: Current status and clinical outlook. BioDrugs 2017; 31(3): 167-74.
[http://dx.doi.org/10.1007/s40259-017-0220-y] [PMID: 28424973]
[127]
Macé C, Chugh SS. Nephrotic syndrome: Components, connections, and angiopoietin-like 4-related therapeutics. J Am Soc Nephrol 2014; 25(11): 2393-8.
[http://dx.doi.org/10.1681/ASN.2014030267] [PMID: 24854282]
[128]
Sukonina V, Lookene A, Olivecrona T, Olivecrona G. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci 2006; 103(46): 17450-5.
[http://dx.doi.org/10.1073/pnas.0604026103] [PMID: 17088546]
[129]
Hagberg CE, Mehlem A, Falkevall A, et al. Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature 2012; 490(7420): 426-30.
[http://dx.doi.org/10.1038/nature11464] [PMID: 23023133]
[130]
Fessler MB, Parks JS. Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. J Immunol 2011; 187(4): 1529-35.
[http://dx.doi.org/10.4049/jimmunol.1100253] [PMID: 21810617]
[131]
Pommer W. Preventive nephrology: the role of obesity in different stages of chronic kidney disease. Kidney Dis 2018; 4(4): 199-204.
[http://dx.doi.org/10.1159/000490247] [PMID: 30574496]
[132]
Kasiske BL, O’donnell MP, Cleary MP, Keane WF. Treatment of hyperlipidemia reduces glomerular injury in obese Zucker rats. Kidney Int 1988; 33(3): 667-72.
[http://dx.doi.org/10.1038/ki.1988.51] [PMID: 3367557]
[133]
Allison SJ. Free fatty acid-induced macropinocytosis in podocytes. Nat Rev Nephrol 2015; 11(7): 386.
[http://dx.doi.org/10.1038/nrneph.2015.76] [PMID: 25963589]
[134]
Chung JJ, Huber TB, Gödel M, et al. Albumin-associated free fatty acids induce macropinocytosis in podocytes. J Clin Invest 2015; 125(6): 2307-16.
[http://dx.doi.org/10.1172/JCI79641] [PMID: 25915582]
[135]
Iwai T, Kume S, Chin-Kanasaki M, et al. Stearoyl-CoA desaturase-1 protects cells against lipotoxicity-mediated apoptosis in proximal tubular cells. Int J Mol Sci 2016; 17(11): 1868.
[http://dx.doi.org/10.3390/ijms17111868] [PMID: 27834856]
[136]
Sieber J, Weins A, Kampe K, et al. Susceptibility of podocytes to palmitic acid is regulated by stearoyl-CoA desaturases 1 and 2. Am J Pathol 2013; 183(3): 735-44.
[http://dx.doi.org/10.1016/j.ajpath.2013.05.023] [PMID: 23867797]
[137]
Wang Q, Liu S, Zhai A, Zhang B, Tian G. AMPK-mediated regulation of lipid metabolism by phosphorylation. Biol Pharm Bull 2018; 41(7): 985-93.
[http://dx.doi.org/10.1248/bpb.b17-00724] [PMID: 29709897]
[138]
Guo K, Lu J, Huang Y, et al. Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling. PLoS One 2015; 10(4): e0125176.
[http://dx.doi.org/10.1371/journal.pone.0125176] [PMID: 25853493]
[139]
Wei PZ, Szeto CC. Mitochondrial dysfunction in diabetic kidney disease. Clin Chim Acta 2019; 496: 108-16.
[http://dx.doi.org/10.1016/j.cca.2019.07.005] [PMID: 31276635]
[140]
Liu S, Soong Y, Seshan SV, Szeto HH. Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis. Am J Physiol Renal Physiol 2014; 306(9): F970-80.
[http://dx.doi.org/10.1152/ajprenal.00697.2013] [PMID: 24553434]
[141]
Jang HS, Noh MR, Kim J, Padanilam BJ. Defective mitochondrial fatty acid oxidation and lipotoxicity in kidney diseases. Front Med 2020; 7: 65.
[http://dx.doi.org/10.3389/fmed.2020.00065] [PMID: 32226789]
[142]
Attman PO, Samuelsson O. Dyslipidemia of kidney disease. Curr Opin Lipidol 2009; 20(4): 293-9.
[http://dx.doi.org/10.1097/MOL.0b013e32832dd832] [PMID: 19512921]
[143]
Fornoni A, Sageshima J, Wei C, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 2011; 3(85): 85ra46.
[http://dx.doi.org/10.1126/scitranslmed.3002231] [PMID: 21632984]
[144]
Merscher S, Fornoni A. Podocyte pathology and nephropathy - sphingolipids in glomerular diseases. Front Endocrinol 2014; 5: 127.
[http://dx.doi.org/10.3389/fendo.2014.00127] [PMID: 25126087]
[145]
Mitrofanova A, Mallela SK, Ducasa GM, et al. SMPDL3b modulates insulin receptor signaling in diabetic kidney disease. Nat Commun 2019; 10(1): 2692.
[http://dx.doi.org/10.1038/s41467-019-10584-4] [PMID: 31217420]
[146]
Yoo TH, Pedigo CE, Guzman J, et al. Sphingomyelinase-like phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease. J Am Soc Nephrol 2015; 26(1): 133-47.
[http://dx.doi.org/10.1681/ASN.2013111213] [PMID: 24925721]
[147]
Fornoni A, Merscher S, Kopp JB. Lipid biology of the podocyte—new perspectives offer new opportunities. Nat Rev Nephrol 2014; 10(7): 379-88.
[http://dx.doi.org/10.1038/nrneph.2014.87] [PMID: 24861084]
[148]
Li X, Zhang T, Geng J, et al. Advanced oxidation protein products promote lipotoxicity and tubulointerstitial fibrosis via CD36/β-catenin pathway in diabetic nephropathy. Antioxid Redox Signal 2019; 31(7): 521-38.
[http://dx.doi.org/10.1089/ars.2018.7634] [PMID: 31084358]
[149]
Yang J, Zhang D, Li J, Zhang X, Fan F, Guan Y. Role of PPARγ in renoprotection in Type 2 diabetes: Molecular mechanisms and therapeutic potential. Clin Sci 2009; 116(1): 17-26.
[http://dx.doi.org/10.1042/CS20070462] [PMID: 19037881]
[150]
Okada-Iwabu M, Yamauchi T, Iwabu M, et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 2013; 503(7477): 493-9.
[http://dx.doi.org/10.1038/nature12656] [PMID: 24172895]
[151]
Saxena NK, Anania FA. Adipocytokines and hepatic fibrosis. Trends Endocrinol Metab 2015; 26(3): 153-61.
[http://dx.doi.org/10.1016/j.tem.2015.01.002] [PMID: 25656826]
[152]
Wang XX, Levi J, Luo Y, et al. SGLT2 protein expression is increased in human diabetic nephropathy SGLT2 protein inhibition decreases renal lipid accumulation, inflammation, and the development of nephropathy in diabetic mice. J Biol Chem 2017; 292(13): 5335-48.
[http://dx.doi.org/10.1074/jbc.M117.779520] [PMID: 28196866]
[153]
Hagberg CE, Falkevall A, Wang X, et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 2010; 464(7290): 917-21.
[http://dx.doi.org/10.1038/nature08945] [PMID: 20228789]
[154]
Hagberg C, Mehlem A, Falkevall A, Muhl L, Eriksson U. Endothelial fatty acid transport: role of vascular endothelial growth factor B. Physiology 2013; 28(2): 125-34.
[http://dx.doi.org/10.1152/physiol.00042.2012] [PMID: 23455771]
[155]
Schlondorff D. Cellular mechanisms of lipid injury in the glomerulus. Am J Kidney Dis 1993; 22(1): 72-82.
[http://dx.doi.org/10.1016/S0272-6386(12)70171-3] [PMID: 8322798]
[156]
Guijarro C, Kasiske BL, Kim Y, O’Donnell MP, Keane WF, Keane WF. Early glomerular changes in rats with dietary-induced hypercholesterolemia. Am J Kidney Dis 1995; 26(1): 152-61.
[http://dx.doi.org/10.1016/0272-6386(95)90169-8] [PMID: 7611247]
[157]
Gröne HJ, Walli AK, Gröne EF. The role of oxidatively modified lipoproteins in lipid nephropathy. Contrib Nephrol 1997; 120: 160-75.
[http://dx.doi.org/10.1159/000059835] [PMID: 9257059]
[158]
Bank N, Aynedjian HS. Role of thromboxane in impaired renal vasodilatation response to acetylcholine in hypercholesterolemic rats. J Clin Invest 1992; 89(5): 1636-42.
[http://dx.doi.org/10.1172/JCI115760] [PMID: 1569203]
[159]
Hj G, Hohbach J, Ef G. Modulation of glomerulosclerosis and interstitial fibrosis by native and modified lipoprotein. Kidney Int 1996; 49: S18-22.
[160]
Remuzzi G, Ruggenenti P, Benigni A. Understanding the nature of renal disease progression. Kidney Int 1997; 51(1): 2-15.
[http://dx.doi.org/10.1038/ki.1997.2] [PMID: 8995712]
[161]
Sun L, Halaihel N, Zhang W, Rogers T, Levi M. Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus. J Biol Chem 2002; 277(21): 18919-27.
[http://dx.doi.org/10.1074/jbc.M110650200] [PMID: 11875060]
[162]
Papaharalambus CA, Griendling KK. Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med 2007; 17(2): 48-54.
[http://dx.doi.org/10.1016/j.tcm.2006.11.005] [PMID: 17292046]
[163]
Shahreza FD. Vascular protection by herbal antioxidants; recent views and new concepts. J Prev Epidemiol 2016; 1(1): e05.
[164]
Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008; 57(6): 1446-54.
[http://dx.doi.org/10.2337/db08-0057] [PMID: 18511445]
[165]
Kashihara N, Haruna Y, Kondeti VK, Kanwar YS. Oxidative stress in diabetic nephropathy. Curr Med Chem 2010; 17(34): 4256-69.
[http://dx.doi.org/10.2174/092986710793348581] [PMID: 20939814]
[166]
Duni A, Liakopoulos V, Roumeliotis S, Peschos D, Dounousi E. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: Untangling Ariadne’s thread. Int J Mol Sci 2019; 20(15): 3711.
[http://dx.doi.org/10.3390/ijms20153711] [PMID: 31362427]
[167]
Kerkeni M, Saïdi A, Bouzidi H, Letaief A, Ben Yahia S, Hammami M. Pentosidine as a biomarker for microvascular complications in type 2 diabetic patients. Diab Vasc Dis Res 2013; 10(3): 239-45.
[http://dx.doi.org/10.1177/1479164112460253] [PMID: 23091285]
[168]
Xu GW, Yao QH, Weng QF, Su BL, Zhang X, Xiong JH. Study of urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in diabetic nephropathy patients. J Pharm Biomed Anal 2004; 36(1): 101-4.
[http://dx.doi.org/10.1016/j.jpba.2004.04.016] [PMID: 15351053]
[169]
Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc Natl Acad Sci 1981; 78(11): 6858-62.
[http://dx.doi.org/10.1073/pnas.78.11.6858] [PMID: 6947260]
[170]
Corry DB, Eslami P, Yamamoto K, Nyby MD, Makino H, Tuck ML. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens 2008; 26(2): 269-75.
[http://dx.doi.org/10.1097/HJH.0b013e3282f240bf] [PMID: 18192841]
[171]
Wu Y, Wu G, Qi X, et al. Protein kinase C β inhibitor LY333531 attenuates intercellular adhesion molecule-1 and monocyte chemotactic protein-1 expression in the kidney in diabetic rats. J Pharmacol Sci 2006; 101(4): 335-43.
[http://dx.doi.org/10.1254/jphs.FP0050896] [PMID: 16891764]
[172]
Sun L, Yuan Q, Xu T, et al. Pioglitazone, a peroxisome proliferator-activated receptor γ agonist, ameliorates chronic kidney disease by enhancing antioxidative capacity and attenuating angiogenesis in the kidney of a 5/6 nephrectomized rat model. Cell Physiol Biochem 2016; 38(5): 1831-40.
[http://dx.doi.org/10.1159/000443121] [PMID: 27160248]
[173]
Fukami K, Yamagishi S, Ueda S, Okuda S. Role of AGEs in diabetic nephropathy. Curr Pharm Des 2008; 14(10): 946-52.
[http://dx.doi.org/10.2174/138161208784139710] [PMID: 18473844]
[174]
Yamagishi S, Imaizumi T. Diabetic vascular complications: Pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des 2005; 11(18): 2279-99.
[http://dx.doi.org/10.2174/1381612054367300] [PMID: 16022668]
[175]
Sutariya B, Jhonsa D, Saraf MN. TGF-β the connecting link between nephropathy and fibrosis. Immunopharmacol Immunotoxicol 2016; 38(1): 39-49.
[http://dx.doi.org/10.3109/08923973.2015.1127382] [PMID: 26849902]
[176]
Lal MA, Brismar H, Eklöf AC, Aperia A. Role of oxidative stress in advanced glycation end product-induced mesangial cell activation. Kidney Int 2002; 61(6): 2006-14.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00367.x] [PMID: 12028441]
[177]
Machhan N, Joshi JC, Sharma S, Budhiraja RD. Possible role of sodium cromoglycate, a mast cell stabilizer in halting gentamicin nephrotoxicity in rats. Asian J Pharm Res Dev 2017; 5(1): 1-09.
[178]
Pastwińska J, Agier J, Dastych J, Brzezińska-Błaszczyk E. Mast cells as the strength of the inflammatory process. Pol J Pathol 2017; 68(3): 187-96.
[http://dx.doi.org/10.5114/pjp.2017.71526] [PMID: 29363910]
[179]
Orr S, Bridges C. Chronic kidney disease and exposure to nephrotoxic metals. Int J Mol Sci 2017; 18(5): 1039.
[http://dx.doi.org/10.3390/ijms18051039] [PMID: 28498320]
[180]
Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol 2010; 21(11): 1819-34.
[http://dx.doi.org/10.1681/ASN.2010080793] [PMID: 20864689]
[181]
Summers SA, Gan P, Dewage L, et al. Mast cell activation and degranulation promotes renal fibrosis in experimental unilateral ureteric obstruction. Kidney Int 2012; 82(6): 676-85.
[http://dx.doi.org/10.1038/ki.2012.211] [PMID: 22673890]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy