Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Superior Anticancer Potential of Nano-Paclitaxel Combined Bevacizumab Treatment in Ovarian Cancer

Author(s): Na Qu*, Chunyan Wang, Yiming Meng and Yuhua Gao*

Volume 24, Issue 9, 2023

Published on: 21 October, 2022

Page: [1204 - 1212] Pages: 9

DOI: 10.2174/1389201023666221011115301

Price: $65

Abstract

Background: Ovarian cancer is the second most common cancer to cause large death among gynecological tumors. Paclitaxel is important to the standard treatment for epithelial ovarian cancer. Due to its low solubility and permeability, nano-paclitaxel came into public view.

Objective: To evaluate the effect of nano-paclitaxel in ovarian cancer.

Methods: Considering the importance of bevacizumab in clinical treatment, we set four groups for research: control, paclitaxel, paclitaxel + bevacizumab, and nano-paclitaxel + bevacizumab. CCK-8, apoptosis, and cell cycle assays were used to detect the cell survival condition. qRT-PCR and western blot were used to detect the gene mRNA and protein expression level. Tumor xenograft in nude mice was used to detect the effect in vivo.

Results: The nano-paclitaxel combined with bevacizumab had the best curative effect. Moreover, the downstream indicators, such as caspases, BAX, FAS, OGFr, PD-L1 and VEGF, changed in four groups, which suggested that the therapy worked by affecting the cell apoptosis, cell cycle, angiogenesis, and immune reaction.

Conclusion: In conclusion, the study helped us better commandof nano-paclitaxel for ovarian cancer treatment and thus could play a role in OC therapy.

Keywords: Paclitaxel, nano-paclitaxel, bevacizumab, ovarian cancer, anticancer, superior.

« Previous
Graphical Abstract
[1]
Narod, S. Can advanced-stage ovarian cancer be cured? Nat. Rev. Clin. Oncol., 2016, 13(4), 255-261.
[http://dx.doi.org/10.1038/nrclinonc.2015.224] [PMID: 26787282]
[2]
Malvezzi, M.; Carioli, G.; Rodriguez, T.; Negri, E.; La Vecchia, C. Global trends and predictions in ovarian cancer mortality. Ann. Oncol., 2016, 27(11), 2017-2025.
[http://dx.doi.org/10.1093/annonc/mdw306] [PMID: 27597548]
[3]
Matulonis, U.A.; Sood, A.K.; Fallowfield, L.; Howitt, B.E.; Sehouli, J.; Karlan, B.Y. Ovarian cancer. Nat. Rev. Dis. Primers, 2016, 2(1), 16061.
[http://dx.doi.org/10.1038/nrdp.2016.61] [PMID: 27558151]
[4]
Eisenhauer, E.A. Real-world evidence in the treatment of ovarian cancer. Ann Oncol., 2017, 28(S8), viii61-viii5.
[http://dx.doi.org/10.1093/annonc/mdx443]
[5]
Lheureux, S.; Braunstein, M.; Oza, A.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J. Clin., 2019, 69(4), caac.21559.
[http://dx.doi.org/10.3322/caac.21559] [PMID: 31099893]
[6]
Menon, U.; Karpinskyj, C.; Gentry-Maharaj, A. Ovarian cancer prevention and screening. Obstet. Gynecol., 2018, 131(5), 909-927.
[http://dx.doi.org/10.1097/AOG.0000000000002580] [PMID: 29630008]
[7]
Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian cancer: An integrated review. Semin. Oncol. Nurs., 2019, 35(2), 151-156.
[http://dx.doi.org/10.1016/j.soncn.2019.02.001] [PMID: 30867104]
[8]
Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 3-14.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006] [PMID: 27743768]
[9]
Westhoff, C. Ovarian cancer. Annu. Rev. Public Health, 1996, 17(1), 85-96.
[http://dx.doi.org/10.1146/annurev.pu.17.050196.000505] [PMID: 8724217]
[10]
Marchetti, C.; De Felice, F.; Di Pinto, A.; D’Oria, O.; Aleksa, N.; Musella, A.; Palaia, I.; Muzii, L.; Tombolini, V.; Benedetti Panici, P. Dose-dense weekly chemotherapy in advanced ovarian cancer: An updated meta-analysis of randomized controlled trials. Crit. Rev. Oncol. Hematol., 2018, 125, 30-34.
[http://dx.doi.org/10.1016/j.critrevonc.2018.02.016] [PMID: 29650273]
[11]
Perren, T.J.; Swart, A.M.; Pfisterer, J.; Ledermann, J.A.; Pujade-Lauraine, E.; Kristensen, G.; Carey, M.S.; Beale, P.; Cervantes, A.; Kurzeder, C.; Bois, A.; Sehouli, J.; Kimmig, R.; Stähle, A.; Collinson, F.; Essapen, S.; Gourley, C.; Lortholary, A.; Selle, F.; Mirza, M.R.; Leminen, A.; Plante, M.; Stark, D.; Qian, W.; Parmar, M.K.B.; Oza, A.M. A phase 3 trial of bevacizumab in ovarian cancer. N. Engl. J. Med., 2011, 365(26), 2484-2496.
[http://dx.doi.org/10.1056/NEJMoa1103799] [PMID: 22204725]
[12]
Burger, R.A.; Brady, M.F.; Bookman, M.A.; Fleming, G.F.; Monk, B.J.; Huang, H.; Mannel, R.S.; Homesley, H.D.; Fowler, J.; Greer, B.E.; Boente, M.; Birrer, M.J.; Liang, S.X. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N. Engl. J. Med., 2011, 365(26), 2473-2483.
[http://dx.doi.org/10.1056/NEJMoa1104390] [PMID: 22204724]
[13]
Abu Samaan, T.M.; Samec, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules, 2019, 9(12), 789.
[http://dx.doi.org/10.3390/biom9120789] [PMID: 31783552]
[14]
Fader, A.N.; Roque, D.M.; Siegel, E.; Buza, N.; Hui, P.; Abdelghany, O.; Chambers, S.K.; Secord, A.A.; Havrilesky, L.; O’Malley, D.M.; Backes, F.; Nevadunsky, N.; Edraki, B.; Pikaart, D.; Lowery, W.; ElSahwi, K.S.; Celano, P.; Bellone, S.; Azodi, M.; Litkouhi, B.; Ratner, E.; Silasi, D.A.; Schwartz, P.E.; Santin, A.D. Randomized phase II trial of carboplatin-paclitaxel versus carboplatin-paclitaxel-trastuzumab in uterine serous carcinomas that overexpress human epidermal growth factor receptor 2/neu. J. Clin. Oncol., 2018, 36(20), 2044-2051.
[http://dx.doi.org/10.1200/JCO.2017.76.5966] [PMID: 29584549]
[15]
Kampan, N.C.; Madondo, M.T.; McNally, O.M.; Quinn, M.; Plebanski, M. Paclitaxel and its evolving role in the management of ovarian cancer. BioMed Res. Int., 2015, 2015, 1-21.
[http://dx.doi.org/10.1155/2015/413076] [PMID: 26137480]
[16]
Kitagawa, R.; Katsumata, N.; Shibata, T.; Kamura, T.; Kasamatsu, T.; Nakanishi, T.; Nishimura, S.; Ushijima, K.; Takano, M.; Satoh, T.; Yoshikawa, H. Paclitaxel plus carboplatin versus paclitaxel plus cisplatin in metastatic or recurrent cervical cancer: The open-label randomized phase III trial JCOG0505. J. Clin. Oncol., 2015, 33(19), 2129-2135.
[http://dx.doi.org/10.1200/JCO.2014.58.4391] [PMID: 25732161]
[17]
Parisi, A.; Palluzzi, E.; Cortellini, A.; Sidoni, T.; Cocciolone, V.; Lanfiuti Baldi, P.; Porzio, G.; Ficorella, C.; Cannita, K. First-line carboplatin/nab-paclitaxel in advanced ovarian cancer patients, after hypersensitivity reaction to solvent-based taxanes: A single-institution experience. Clin. Transl. Oncol., 2020, 22(1), 158-162.
[http://dx.doi.org/10.1007/s12094-019-02122-x] [PMID: 31041717]
[18]
Picard, M. Management of hypersensitivity reactions to taxanes. Immunol. Allergy Clin. North Am., 2017, 37(4), 679-693.
[http://dx.doi.org/10.1016/j.iac.2017.07.004] [PMID: 28965634]
[19]
Gradishar, W.J.; Tjulandin, S.; Davidson, N.; Shaw, H.; Desai, N.; Bhar, P.; Hawkins, M.; O’Shaughnessy, J. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol., 2005, 23(31), 7794-7803.
[http://dx.doi.org/10.1200/JCO.2005.04.937] [PMID: 16172456]
[20]
Li, B.; Tao, W.; Shao-hua, Z.; Ze-rui, Q.; Fu-quan, J.; Fan, L.; Ze-fei, J. Remarkable response with pembrolizumab plus albumin-bound paclitaxel in 2 cases of HER2-positive metastatic breast cancer who have failed to multi-anti-HER2 targeted therapy. Cancer Biol. Ther., 2018, 19(4), 292-295.
[http://dx.doi.org/10.1080/15384047.2017.1414761] [PMID: 29333945]
[21]
Socinski, M.A.; Bondarenko, I.; Karaseva, N.A.; Makhson, A.M.; Vynnychenko, I.; Okamoto, I.; Hon, J.K.; Hirsh, V.; Bhar, P.; Zhang, H.; Iglesias, J.L.; Renschler, M.F. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: Final results of a phase III trial. J. Clin. Oncol., 2012, 30(17), 2055-2062.
[http://dx.doi.org/10.1200/JCO.2011.39.5848] [PMID: 22547591]
[22]
Qu, N.; Sun, Y.; Li, Y.; Hao, F.; Qiu, P.; Teng, L.; Xie, J.; Gao, Y. Docetaxel-loaded Human Serum Albumin (HSA) nanoparticles: Synthesis, characterization, and evaluation. Biomed. Eng. Online, 2019, 18(1), 11.
[http://dx.doi.org/10.1186/s12938-019-0624-7] [PMID: 30704488]
[23]
Qu, N.; Wang, R.; Meng, Y.; Liu, N.; Zhai, J.; Shan, F. Methionine enkephalin inhibited cervical carcinoma via apoptosis promotion and reduction of myeloid derived suppressor cell infiltrated in tumor. Int. Immunopharmacol., 2022, 110, 108933.
[http://dx.doi.org/10.1016/j.intimp.2022.108933] [PMID: 35738090]
[24]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[25]
Das, T.; Anand, U.; Pandey, S.K.; Ashby, C.R., Jr; Assaraf, Y.G.; Chen, Z.S.; Dey, A. Therapeutic strategies to overcome taxane resistance in cancer. Drug Resist. Updat., 2021, 55, 100754.
[http://dx.doi.org/10.1016/j.drup.2021.100754] [PMID: 33691261]
[26]
Mikuła-Pietrasik, J.; Witucka, A.; Pakuła, M.; Uruski, P.; Begier-Krasińska, B.; Niklas, A.; Tykarski, A.; Książek, K. Comprehensive review on how platinum- and taxane-based chemotherapy of ovarian cancer affects biology of normal cells. Cell. Mol. Life Sci., 2019, 76(4), 681-697.
[http://dx.doi.org/10.1007/s00018-018-2954-1] [PMID: 30382284]
[27]
Mosca, L.; Ilari, A.; Fazi, F.; Assaraf, Y.G.; Colotti, G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist. Updat., 2021, 54, 100742.
[http://dx.doi.org/10.1016/j.drup.2020.100742] [PMID: 33429249]
[28]
Awasthi, N.; Zhang, C.; Schwarz, A.M.; Hinz, S.; Wang, C.; Williams, N.S.; Schwarz, M.A.; Schwarz, R.E. Comparative benefits of Nab-paclitaxel over gemcitabine or polysorbate-based docetaxel in experimental pancreatic cancer. Carcinogenesis, 2013, 34(10), 2361-2369.
[http://dx.doi.org/10.1093/carcin/bgt227] [PMID: 23803690]
[29]
Chirgwin, J.; Chua, S.L. Management of breast cancer with nanoparticle albumin-bound (nab)-paclitaxel combination regimens: A clinical review. Breast, 2011, 20(5), 394-406.
[http://dx.doi.org/10.1016/j.breast.2011.06.004] [PMID: 21839635]
[30]
Lluch, A.; Álvarez, I.; Muñoz, M.; Seguí, M.Á.; Tusquets, I.; García-Estévez, L. Treatment innovations for metastatic breast cancer: Nanoparticle Albumin-Bound (NAB) technology targeted to tumors. Crit. Rev. Oncol. Hematol., 2014, 89(1), 62-72.
[http://dx.doi.org/10.1016/j.critrevonc.2013.08.001] [PMID: 24071503]
[31]
Garcia, J.; Hurwitz, H.I.; Sandler, A.B.; Miles, D.; Coleman, R.L.; Deurloo, R.; Chinot, O.L. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat. Rev., 2020, 86, 102017.
[http://dx.doi.org/10.1016/j.ctrv.2020.102017] [PMID: 32335505]
[32]
Itatani, Y.; Kawada, K.; Yamamoto, T.; Sakai, Y. Resistance to anti-angiogenic therapy in cancer—alterations to Anti-VEGF pathway. Int. J. Mol. Sci., 2018, 19(4), 1232.
[http://dx.doi.org/10.3390/ijms19041232] [PMID: 29670046]
[33]
Schmitt, E.; Sané, A.T.; Steyaert, A.; Cimoli, G.; Bertrand, R. The Bcl-xL and Bax-alpha control points: Modulation of apoptosis induced by cancer chemotherapy and relation to TPCK-sensitive protease and caspase activation. Biochem. Cell Biol., 1997, 75(4), 301-314.
[PMID: 9493953]
[34]
Liu, Z.; Ding, Y.; Ye, N.; Wild, C.; Chen, H.; Zhou, J. Direct activation of bax protein for cancer therapy. Med. Res. Rev., 2016, 36(2), 313-341.
[http://dx.doi.org/10.1002/med.21379] [PMID: 26395559]
[35]
Mollinedo, F.; Gajate, C. Fas/CD95 death receptor and lipid rafts: New targets for apoptosis-directed cancer therapy. Drug Resist. Updat., 2006, 9(1-2), 51-73.
[http://dx.doi.org/10.1016/j.drup.2006.04.002] [PMID: 16687251]
[36]
Kim, R.; Emi, M.; Tanabe, K.; Uchida, Y.; Toge, T. The role of Fas ligand and transforming growth factor beta in tumor progression: Molecular mechanisms of immune privilege via fas-mediated apoptosis and potential targets for cancer therapy. Cancer, 2004, 100(11), 2281-2291.
[http://dx.doi.org/10.1002/cncr.20270] [PMID: 15160330]
[37]
Cheng, F.; McLaughlin, P.J.; Verderame, M.F.; Zagon, I.S. The OGF-OGFr axis utilizes the p21 pathway to restrict progression of human pancreatic cancer. Mol. Cancer, 2008, 7(1), 5.
[http://dx.doi.org/10.1186/1476-4598-7-5] [PMID: 18190706]
[38]
Zagon, I.S.; Roesener, C.D.; Verderame, M.F.; Ohlsson-Wilhelm, B.M.; Levin, R.J.; McLaughlin, P.J. Opioid growth factor regulates the cell cycle of human neoplasias. Int. J. Oncol., 2000, 17(5), 1053-1061.
[http://dx.doi.org/10.3892/ijo.17.5.1053] [PMID: 11029512]
[39]
Ai, L.; Xu, A.; Xu, J. Roles of PD-1/PD-L1 Pathway: Signaling, cancer, and beyond. Adv. Exp. Med. Biol., 2020, 1248, 33-59.
[http://dx.doi.org/10.1007/978-981-15-3266-5_3] [PMID: 32185706]
[40]
Cha, J.H.; Chan, L.C.; Li, C.W.; Hsu, J.L.; Hung, M.C. Mechanisms controlling PD-L1 expression in cancer. Mol. Cell, 2019, 76(3), 359-370.
[http://dx.doi.org/10.1016/j.molcel.2019.09.030] [PMID: 31668929]
[41]
Daassi, D.; Mahoney, K.M.; Freeman, G.J. The importance of exosomal PDL1 in tumour immune evasion. Nat. Rev. Immunol., 2020, 20(4), 209-215.
[http://dx.doi.org/10.1038/s41577-019-0264-y] [PMID: 31965064]
[42]
Dermani, F.K.; Samadi, P.; Rahmani, G.; Kohlan, A.K.; Najafi, R. PD-1/PD-L1 immune checkpoint: Potential target for cancer therapy. J. Cell. Physiol., 2019, 234(2), 1313-1325.
[http://dx.doi.org/10.1002/jcp.27172] [PMID: 30191996]
[43]
Gou, Q.; Dong, C.; Xu, H.; Khan, B.; Jin, J.; Liu, Q.; Shi, J.; Hou, Y. PD-L1 degradation pathway and immunotherapy for cancer. Cell Death Dis., 2020, 11(11), 955.
[http://dx.doi.org/10.1038/s41419-020-03140-2] [PMID: 33159034]
[44]
Sun, C.; Mezzadra, R.; Schumacher, T.N. Regulation and function of the PD-L1 checkpoint. Immunity, 2018, 48(3), 434-452.
[http://dx.doi.org/10.1016/j.immuni.2018.03.014] [PMID: 29562194]
[45]
Yao, H.; Wang, H.; Li, C.; Fang, J.Y. Xu, J. Cancer cell-intrinsic PD-1 and implications in combinatorial immunotherapy. Front. Immunol., 2018, 9, 1774.
[http://dx.doi.org/10.3389/fimmu.2018.01774] [PMID: 30105035]
[46]
Zhang, J.; Dang, F.; Ren, J.; Wei, W. Biochemical aspects of PD-L1 regulation in cancer immunotherapy. Trends Biochem. Sci., 2018, 43(12), 1014-1032.
[http://dx.doi.org/10.1016/j.tibs.2018.09.004] [PMID: 30287140]
[47]
Wang, Q.; Wu, C.; Li, X.; Yang, D.; Shi, L. Cisplatin and paclitaxel co-delivery nanosystem for ovarian cancer chemotherapy. Regen. Biomater., 2021, 8(3), rbab015.
[http://dx.doi.org/10.1093/rb/rbab015] [PMID: 35707698]
[48]
Wang, X.; Xiong, T.; Cui, M.; Li, N.; Li, Q.; Zhu, L.; Duan, S.; Wang, Y.; Guo, Y. A novel targeted co-delivery nanosystem for enhanced ovarian cancer treatment via multidrug resistance reversion and mTOR-mediated signaling pathway. J. Nanobiotechnol.,, 2021, 19(1), 444.
[http://dx.doi.org/10.1186/s12951-021-01139-1] [PMID: 34949180]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy