Review Article

Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery

Author(s): Akash Chauhan, Md. Aftab Alam, Awaneet Kaur and Rishabha Malviya*

Volume 24, Issue 1, 2023

Published on: 27 October, 2022

Page: [13 - 40] Pages: 28

DOI: 10.2174/1389450123666221011100235

Price: $65

Abstract

The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.

Keywords: Scaffolds, bioavailability, drug development, regenerative medicines, tissue engineering, 3D nanostructuring.

Graphical Abstract
[1]
Pina S, Ribeiro VP, Marques CF, et al. Saffolding stragies for tissue engineering and regenerative medicine applications. Materials 2019; 12(11): 1-42.
[http://dx.doi.org/10.3390/ma12111824] [PMID: 31195642]
[2]
Lannace S, Sorrentino L, Di Maio E. Biodegradable biomedical foam scaffolds. In: Netti PA, Ed. Biomedical Foams for Tissue Engineering Applications. Cambridge: Woodhead Publishing Limited 2014; pp. 163-87.
[http://dx.doi.org/10.1533/9780857097033.1.163]
[3]
Tarun G, Ajay B, Bhawna K, et al. Sacffold: Tissue engineering and regenerative medicine. Int Res J Pharm 2011; 2(12): 37-42.
[4]
Ambekar R, Kandasubramanian B. Progress in the advancement of porous biopolymer scaffold: Tissue engineering application. Ind Eng Chem 2019; 58(16): 6163-94.
[http://dx.doi.org/10.1021/acs.iecr.8b05334]
[5]
Kretlow JD, Mikos AG. From material to tissue: Biomaterial development, scaffold fabrication, and tissue engineering. AIChE J 2008; 54(12): 3048-67.
[http://dx.doi.org/10.1002/aic.11610] [PMID: 19756176]
[6]
Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine 2006; 31(18): 2151-61.
[http://dx.doi.org/10.1097/01.brs.0000231761.73859.2c] [PMID: 16915105]
[7]
Nair LS, Bhattacharya S, Laurencin Cato T. Nanotechnology and tissue engineering: The scaffold based approach. Nanotechnologies for the life sciences. Wiley Online Library 2006; 9: pp. 1-65.
[http://dx.doi.org/10.1002/9783527610419.ntls0095]
[8]
Dutta RC, Dey M, Dutta AK, Basu B. Competent processing techniques for scaffolds in tissue engineering. Biotechnol Adv 2017; 35(2): 240-50.
[http://dx.doi.org/10.1016/j.biotechadv.2017.01.001]
[9]
Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ. Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 2007; 59(4-5): 187-206.
[http://dx.doi.org/10.1016/j.addr.2007.04.001] [PMID: 17540473]
[10]
Soundarya PS, Sanjay V, Haritha Menon A, Dhivya S, Selvamurugan N. Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. Int J Biol Macromol 2018; 110: 74-87.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.014] [PMID: 28893682]
[11]
Alini M, Roughley PJ, Antoniou J, Stoll T, Aebi M. A biological approach to treating disc degeneration: Not for today, but maybe for tomorrow. Eur Spine J 2002; 11 (Suppl. 2): S215-20.
[http://dx.doi.org/10.1007/s00586-002-0485-8] [PMID: 12384747]
[12]
Drury JL, Mooney DJ. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003; 24(24): 4337-51.
[http://dx.doi.org/10.1016/S0142-9612(03)00340-5] [PMID: 12922147]
[13]
Lyons F, Partap S, O’Brien FJ. Part 1: Scaffolds and surfaces. Technol Health Care 2008; 16(4): 305-17.
[http://dx.doi.org/10.3233/THC-2008-16409] [PMID: 18776607]
[14]
Eltom A, Zhong G, Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: A review. Adv Mater Sci Eng 2019; 2019(4): 1-13.
[http://dx.doi.org/10.1155/2019/3429527]
[15]
Chung HJ, Park TG. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Deliv Rev 2007; 59(4-5): 249-62.
[http://dx.doi.org/10.1016/j.addr.2007.03.015] [PMID: 17482310]
[16]
Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and synthetic polymers for bone scaffolds optimization. Polymers 2020; 12(4): 1-27.
[http://dx.doi.org/10.3390/polym12040905] [PMID: 32295115]
[17]
Khang G, Lee SJ, Kim MS, Lee HB. Biomaterials: Tissue engineering and scaffold. In: Webster J, Ed. Encyclopedia of Medical Devices and Instrumentation. (2nd ed.). England: John Wiley & Sons 2006; Vol. 6: pp. 366-83.
[http://dx.doi.org/10.1002/0471732877.emd029]
[18]
Mandal BB, Kundu SC. Non-bioengineered high strength three-dimensional gland fibroin scaffolds from tropical non-mulberry silkworm for potential tissue engineering applications. Macromol Biosci 2008; 8: 807-18.
[http://dx.doi.org/10.1002/mabi.200800113] [PMID: 18702171]
[19]
Mandal BB, Kundu SC. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials 2009; 30(15): 2956-65.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.006] [PMID: 19249094]
[20]
Mandal BB, Kundu SC. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds. Biomaterials 2009; 30(28): 5019-30.
[http://dx.doi.org/10.1016/j.biomaterials.2009.05.064] [PMID: 19577292]
[21]
Widmer MS, Mikos AG. Fabrication of biodegradable polymer scaffolds. In: Patrick CW, Jr, Mikos AG, McIntire LV, Eds. Frontiers in Tissue Engineering. Elsevier: 1998; pp. 107-20.
[http://dx.doi.org/10.1016/B978-008042689-1/50008-X]
[22]
Allan KS, Pilliar RM, Wang J, Grynpas MD, Kandel RA. Formation of biphasic constructs containing cartilage with a calcified zone interface. Tissue Eng 2007; 13(1): 167-77.
[http://dx.doi.org/10.1089/ten.2006.0081] [PMID: 17518590]
[23]
Abdelaal OA, Darwish SM. Review of rapid prototyping techniques for tissue engineering scaffolds fabrication. In: Öchsner A, Silva LFM, Altenbach H, Eds. Characterization and Development of Biosystems and Biomaterials. (1st ed.). Berlin: Springer 2013; pp. 33-54.
[http://dx.doi.org/10.1007/978-3-642-31470-4_3]
[24]
Karande ST, Agrawal MC. Functions and requirement of synthetic scaffolds in tissue engineering. In: Laurencin CT, Nair LS, Eds. Nanotechnology and Tissue Engineering: The Scaffolds. (1st ed.). Boca Raton: CRC press 2008; pp. 53-86.
[25]
Roseti L, Parisi V, Petretta M, et al. Scaffolds for bone tissue engineering: State of the art and new perspectives. Mater Sci Eng C 2017; 78: 1246-62.
[http://dx.doi.org/10.1016/j.msec.2017.05.017] [PMID: 28575964]
[26]
Yang Y, Ritchie AC, Everitt NM. Comparison of glutaraldehyde and procyanidin cross-linked scaffolds for soft tissue engineering. Mater Sci Eng C 2017; 80: 263-73.
[http://dx.doi.org/10.1016/j.msec.2017.05.141] [PMID: 28866164]
[27]
Abdelkader H, Alany RG. Controlled and continuous release ocular drug delivery systems: Pros and cons. Curr Drug Deliv 2012; 9(4): 421-30.
[http://dx.doi.org/10.2174/156720112801323125] [PMID: 22640036]
[28]
Mondal K, Ali MA, Agrawal VV, Malhotra BD, Sharma A. Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing. ACS Appl Mater Interfaces 2014; 6(4): 2516-27.
[http://dx.doi.org/10.1021/am404931f] [PMID: 24447123]
[29]
Garg T, Singh O, Arora S, Murthy R. Scaffold: A novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst 2012; 29(1): 1-63.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v29.i1.10] [PMID: 22356721]
[30]
Garg T, Goyal AK, Arora S, Murthy R. Development, optimization & evaluation of porous chitosan scaffold formulation of gliclazide for the treatment of Type-2 diabetes mellitus. Drug Deliv Lett 2012; 2: 251-61.
[http://dx.doi.org/10.2174/2210304x11202040003]
[31]
Braghirolli DI, Steffens D, Quintiliano K. The effect of sterilization methods on electronspun poly(lactide-co-glycolide) and subsequent adhesion efficiency of mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 2014; 102(4): 700-8.
[http://dx.doi.org/10.1002/jbm.b.33049] [PMID: 24259451]
[32]
Goyal G, Garg T, Malik B, Chauhan G, Rath G, Goyal AK. Development and characterization of niosomal gel for topical delivery of benzoyl peroxide. Drug Deliv 2015; 22(8): 1027-42.
[PMID: 24251352]
[33]
Han D, Filocamo S, Kirby R, Steckl AJ. Deactivating chemical agents using enzyme-coated nanofibers formed by electrospinning. ACS Appl Mater Interfaces 2011; 3(12): 4633-9.
[http://dx.doi.org/10.1021/am201064b] [PMID: 22087536]
[34]
Goyal G, Garg T, Rath G, Goyal AK. Current nanotechnological strategies for an effective delivery of drugs in treatment of periodontal disease. Crit Rev Ther Drug Carrier Syst 2014; 31(2): 89-119.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2014008117] [PMID: 24940625]
[35]
Shang M, Wang W, Sun S, et al. The design and realization of a large-area flexible nanofiber-based mat for pollutant degradation: An application in photocatalysis. Nanoscale 2013; 5(11): 5036-42.
[http://dx.doi.org/10.1039/c3nr00503h] [PMID: 23640283]
[36]
Maira F, Catania A, Candido S, et al. Molecular targeted therapy in melanoma: A way to reverse resistance to conventional drugs. Curr Drug Deliv 2012; 9(1): 17-29.
[http://dx.doi.org/10.2174/156720112798376032] [PMID: 22023213]
[37]
Liu J, Liu J, Xu H, et al. Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery. Int J Nanomedicine 2014; 9: 197-207.
[PMID: 24399876]
[38]
Liu R, Xu X, Zhuang X, Cheng B. Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydr Polym 2014; 101: 1116-21.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.056] [PMID: 24299882]
[39]
Girlich C, Scholmerich J. Topical delivery of steroids in inflammatory bowel disease. Curr Drug Deliv 2012; 9(4): 345-9.
[http://dx.doi.org/10.2174/156720112801323071] [PMID: 22762277]
[40]
Fang L, Liang B, Yang G, Hu Y, Zhu Q, Ye X. Study of glucose biosensor lifetime improvement in 37°C serum based on PANI enzyme immobilization and PLGA biodegradable membrane. Biosens Bioelectron 2014; 56: 91-6.
[http://dx.doi.org/10.1016/j.bios.2014.01.017] [PMID: 24480128]
[41]
Johal HS, Garg T, Rath G, Goyal AK. Advanced topical drug delivery system for the management of vaginal candidiasis. Drug Deliv 2016; 23(2): 550-63.
[PMID: 24959937]
[42]
Janković B, Pelipenko J, Škarabot M, Muševič I, Kristl J. The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers. Int J Pharm 2013; 455(1-2): 338-47.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.083] [PMID: 23906751]
[43]
Huang S, Fu X. Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Control Release 2010; 142(2): 149-59.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.018] [PMID: 19850093]
[44]
Nasiri B, Mashayekhan S. Fabrication of porous scaffolds with decellularized cartilage matrix for tissue engineering application. Biologicals 2017; 48: 39-46.
[http://dx.doi.org/10.1016/j.biologicals.2017.05.008] [PMID: 28602577]
[45]
Anderson DG, Risbud MV, Shapiro IM, Vaccaro AR, Albert TJ. Cell-based therapy for disc repair. Spine J 2005; 5(6): 297S-303S.
[http://dx.doi.org/10.1016/j.spinee.2005.02.019] [PMID: 16291126]
[46]
Chih-Hao C, Chih-Yang L, Fwu-Hsing L. 3D printing bioceramic porous scaffolds with good mechanical property and cell affinity. PLoS One 2015; 10(11): e0143713.
[http://dx.doi.org/10.1371/journal.pone.0143713] [PMID: 26618362]
[47]
Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci 2006; 6(8): 623-33.
[http://dx.doi.org/10.1002/mabi.200600069] [PMID: 16881042]
[48]
Celikkin N, Rinoldi C, Costantini M, Trombetta M, Rainer A, Święszkowski W. Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications. Mater Sci Eng C 2017; 78: 1277-99.
[http://dx.doi.org/10.1016/j.msec.2017.04.016] [PMID: 28575966]
[49]
Park KH, Yun K. Immobilization of Arg-Gly-Asp (RGD) sequence in a thermosensitive hydrogel for cell delivery using pheochromocytoma cells (PC12). J Biosci Bioeng 2004; 97(6): 374-7.
[http://dx.doi.org/10.1016/S1389-1723(04)70221-2] [PMID: 16233645]
[50]
Yoon JJ, Chung H, Park TG. Photo-crosslinkable and biodegradable Pluronic/heparin hydrogels for local and sustained delivery of angiogenic growth factor. J Biomed Mater Res 2006; 79: 934-42.
[http://dx.doi.org/10.1002/jbm.a.30843] [PMID: 16941589]
[51]
Bryant SJ, Anseth KS. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J Biomed Mater Res A 2003; 64(1): 70-9.
[http://dx.doi.org/10.1002/jbm.a.10319] [PMID: 12483698]
[52]
Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 2002; 23(22): 4315-23.
[http://dx.doi.org/10.1016/S0142-9612(02)00176-X] [PMID: 12219821]
[53]
Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng 2003; 9(4): 679-88.
[http://dx.doi.org/10.1089/107632703768247377] [PMID: 13678446]
[54]
Aldana AA, Abraham GA. Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int J Pharm 2017; 523(2): 441-53.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.044] [PMID: 27640245]
[55]
Gregor A, Filová E, Novák M, et al. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J Biol Eng 2017; 11(1): 31.
[http://dx.doi.org/10.1186/s13036-017-0074-3] [PMID: 29046717]
[56]
Ansaloni L, Cambrini P, Catena F, et al. Immune response to small intestinal submucosa (surgisis) implant in humans: Preliminary observations. J Invest Surg 2007; 20(4): 237-41.
[http://dx.doi.org/10.1080/08941930701481296] [PMID: 17710604]
[57]
Guex AG, Puetzer JL, Armgarth A, et al. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. Acta Biomater 2017; 62: 91-101.
[http://dx.doi.org/10.1016/j.actbio.2017.08.045] [PMID: 28865991]
[58]
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55(3): 329-47.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[59]
Park CJ, Clark SG, Lichtensteiger CA, Jamison RD, Johnson AJ. Accelerated wound closure of pressure ulcers in aged mice by chitosan scaffolds with and without bFGF. Acta Biomater 2009; 5(6): 1926-36.
[http://dx.doi.org/10.1016/j.actbio.2009.03.002] [PMID: 19342320]
[60]
Clark RAF, Singer AJ. Wound repair: Basic biology to tissue engineering. In: Lanza RP, Langer R, Vacant J, Eds. Principles of Tissue Engineering. (2nd ed.). London: Academic Press 2000; pp. 857-78.
[61]
Zhou G, Liu S, Ma Y, et al. Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation. Int J Nanomedicine 2017; 12: 7577-88.
[http://dx.doi.org/10.2147/IJN.S146679] [PMID: 29075116]
[62]
Lee JE, Park JC, Lee KH, Oh SH, Suh H. Laminin modified infection-preventing collagen membrane containing silver sulfadiazine-hyaluronan microparticles. Artif Organs 2002; 26(6): 521-8.
[http://dx.doi.org/10.1046/j.1525-1594.2002.06890.x] [PMID: 12072108]
[63]
Landers R. Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer‐assisted design combined with computer‐guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng 2015; 282(1): 17-21.
[64]
Wang M, Favi P, Cheng X, et al. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta Biomater 2016; 46: 256-65.
[http://dx.doi.org/10.1016/j.actbio.2016.09.030] [PMID: 27667017]
[65]
Cabañas MV, Peña J, Román J, Vallet-Regí M. Tailoring vancomycin release from beta-TCP/agarose scaffolds. Eur J Pharm Sci 2009; 37(3-4): 249-56.
[http://dx.doi.org/10.1016/j.ejps.2009.02.011] [PMID: 19491012]
[66]
Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci 2007; 32(8-9): 991-1007.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.013] [PMID: 19543442]
[67]
Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials 2003; 24(3): 401-16.
[http://dx.doi.org/10.1016/S0142-9612(02)00353-8] [PMID: 12423595]
[68]
Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 1993; 14(5): 323-30.
[http://dx.doi.org/10.1016/0142-9612(93)90049-8] [PMID: 8507774]
[69]
Boland ED, Espy PG, Bowlin GL. Tissue engineering scaffolds. In: Wenk GE, Bowlin GL, Eds. Encyclopaedia of Biomaterials and Biomedical Engineering. (2nd ed.). London: Informa Healthcare 2004; pp. 1633-5.
[70]
Ansaloni L, Catena F, Gagliardi S, Gazzotti F, D’Alessandro L, Pinna AD. Hernia repair with porcine small-intestinal submucosa. Hernia 2007; 11(4): 321-6.
[http://dx.doi.org/10.1007/s10029-007-0225-4] [PMID: 17443270]
[71]
Ghalei S, Li J, Douglass M, Garren M, Handa H. Synergistic approach to develop antibacterial electrospun scaffolds using honey and S-Nitroso-N-acetyl penicillamine. ACS Biomater Sci Eng 2021; 7(2): 517-26.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01411] [PMID: 33397083]
[72]
Oh SH, Kang SG, Kim ES, Cho SH, Lee JH. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 2003; 24(22): 4011-21.
[http://dx.doi.org/10.1016/S0142-9612(03)00284-9] [PMID: 12834596]
[73]
Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 2004; 12(3-4): 367-77.
[http://dx.doi.org/10.1016/j.trim.2003.12.016] [PMID: 15157928]
[74]
Kao CT, Lin CC, Chen YW, Yeh CH, Fang HY, Shie MY. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2015; 56: 165-73.
[http://dx.doi.org/10.1016/j.msec.2015.06.028] [PMID: 26249577]
[75]
Zhong G, Vaezi M, Liu P, Lin P, Yang S. Characterization approach on the extrusion process of bioceramics for the 3D printing of bone tissue engineering scaffolds. Ceram Int 2017; 43(16): 13860-8.
[http://dx.doi.org/10.1016/j.ceramint.2017.07.109]
[76]
Yue H, Zhang L, Wang Y, et al. Proliferation and differentiation into endothelial cells of human bone marrow mesenchymal stem cells (MSCs) on poly DL-lactic-co-glycolic acid (PLGA) films. Chin Sci Bull 2006; 51: 1328-33.
[http://dx.doi.org/10.1007/s11434-006-1328-5]
[77]
Leibmann-Vinson A, Hemperly JJ, Guarino RD, Spargo CA, Heidaran MA. Bioactive extracellular matrices: Biological and biochemical evaluation. In: Lewandrowski K-U, Wise DL, Trantolo DJ, Gresser JD, Yaszemski MJ, Altobelli DE, Eds. Tissue Engineering and Biodegradable Equivalents: Scientific and Clinical Applications. Boca Raton: CRC Press 2002; pp. 709-64.
[78]
Plikk P, Målberg S, Albertsson AC. Design of resorbable porous tubular copolyester scaffolds for use in nerve regeneration. Biomacromolecules 2009; 10(5): 1259-64.
[http://dx.doi.org/10.1021/bm900093r] [PMID: 19331401]
[79]
Buckley CTO, Kelly KU. Regular scaffold fabrication techniques for Investigations in tissue engineering. In: Prendergast PJ, McHugh PE, Eds. Topics in Bio-Mechanical Engineering Trinity Centre for Bioengineering. Dublin: Trinity Centre for Bio-Engineering 2004; pp. 147-67.
[80]
Nam YS, Yoon JJ, Park TG. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res 2000; 53(1): 1-7.
[http://dx.doi.org/10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R] [PMID: 10634946]
[81]
Yoon JJ, Park TG. Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J Biomed Mater Res 2001; 55(3): 401-8.
[http://dx.doi.org/10.1002/1097-4636(20010605)55:3<401::AID-JBM1029>3.0.CO;2-H] [PMID: 11255194]
[82]
Kanczler JM, Barry J, Ginty P, Howdle SM, Shakesheff KM, Oreffo ROC. Supercritical carbon dioxide generated vascular endothelial growth factor encapsulated poly(DL-lactic acid) scaffolds induce angiogenesis in vitro. Biochem Biophys Res Commun 2007; 352(1): 135-41.
[http://dx.doi.org/10.1016/j.bbrc.2006.10.187] [PMID: 17112464]
[83]
Batorsky A, Liao J, Lund AW, Plopper GE, Stegemann JP. Encapsulation of adult human mesenchymal stem cells within collagen-agarose microenvironments. Biotechnol Bioeng 2005; 92(4): 492-500.
[http://dx.doi.org/10.1002/bit.20614] [PMID: 16080186]
[84]
Hatami T, Johner JCF, Castro KCD, et al. New insight into a step-by-step modeling of supercritical CO2 foaming to fabricate poly(ε-caprolactone) scaffold. Ind Eng Chem Res 2020; 59(45): 20033-44.
[http://dx.doi.org/10.1021/acs.iecr.0c04372]
[85]
Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Biomed Mater Res 2002; 60(4): 613-21.
[http://dx.doi.org/10.1002/jbm.10167] [PMID: 11948520]
[86]
Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules 2002; 3(2): 232-8.
[http://dx.doi.org/10.1021/bm015533u] [PMID: 11888306]
[87]
Kim SH, Nam YS, Lee TS, Park WH. Silk fibroin nanofiber: Electrospinning, properties, and structure. Polym J 2003; 35: 185-90.
[http://dx.doi.org/10.1295/polymj.35.185]
[88]
Li WJ, Tuan RS. Fabrication and application of nanofibrous scaffolds in tissue engineering. Curr Protoc Cell Biol 2009; 25: Unit 25.2.
[http://dx.doi.org/10.1002/0471143030.cb2502s42]
[89]
Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 2007; 59(14): 1392-412.
[http://dx.doi.org/10.1016/j.addr.2007.04.021] [PMID: 17884240]
[90]
Leong MF, Rasheed MZ, Lim TC, Chian KS. In-vitro cell infiltration and in vivo cell in filtration and vascularization in fibrous highly porous poly (D,L-Lactic acid) scaffold fabrication by electrospining technique. J Biomed Res A 2008; 91: 231-40.
[91]
Baker BM, Gee AO, Metter RB, et al. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 2008; 29(15): 2348-58.
[http://dx.doi.org/10.1016/j.biomaterials.2008.01.032] [PMID: 18313138]
[92]
Domingues ZR, Cortés ME, Gomes TA, et al. Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with beta-cyclodextrin. Biomaterials 2004; 25(2): 327-33.
[http://dx.doi.org/10.1016/S0142-9612(03)00524-6] [PMID: 14585720]
[93]
Tandon S, Kandasubramanian B, Ibrahim SM. Silk-based composite scaffolds for tissue engineering applications. Ind Eng Chem Res 2020; 59(40): 17593-611.
[http://dx.doi.org/10.1021/acs.iecr.0c02195]
[94]
Di Nunzio S, Vitale-Brovarone C, Spriano S, et al. Silver containing bioactive glasses prepared by molten salt ionexchange. J Eur Ceram Soc 2004; 24: 2935-42.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2003.11.010]
[95]
Owida HA, Al-Nabulsi JI, Alnaimat F, et al. Recent applications of electrospun nanofibrous scaffold in tissue engineering. Appl Bionics Biomech 2022; 2022: 1953861.
[http://dx.doi.org/10.1155/2022/1953861] [PMID: 35186119]
[96]
Zheng Y, Wang L, Bai X, Xiao Y, Che J. Bio-inspired composite by hydroxyapatite mineralization on (bis)phosphonate-modified cellulose-alginate scaffold for bone tissue engineering. Colloids Surf A Physicochem Eng Asp 2022; 635: 127958.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127958]
[97]
Fenderson Bruce A. In: Kumar C, Ed Tissue, Cell and Organ Engineering 1st ed: Weinheim, Germany, 2007; 28(2): pp 254-255
[98]
Kaur P, Garg T, Rath G. Surfactant-based drug delivery systems for treating drug-resistant lung cancer. Drug Deliv 2016; 23: 1912-25.
[http://dx.doi.org/10.3109/10717544.2014.993486] [PMID: 25013959]
[99]
Ma PX, Zhang R. Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 2001; 56(4): 469-77.
[http://dx.doi.org/10.1002/1097-4636(20010915)56:4<469::AID-JBM1118>3.0.CO;2-H] [PMID: 11400124]
[100]
Boccaccini AR, Notingher I, Maquet V, Jérôme R. Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglass particles for tissue engineering applications. J Mater Sci Mater Med 2003; 14(5): 443-50.
[http://dx.doi.org/10.1023/A:1023266902662] [PMID: 15348448]
[101]
Yadav A, Ghosh S, Samanta A, Pal J, Srivastava RK. Emulsion templated scaffolds of poly(ε-caprolactone) - a review. Chem Commun 2022; 58(10): 1468-80.
[http://dx.doi.org/10.1039/D1CC04941K] [PMID: 35014993]
[102]
Shuai C, Peng B, Feng P, Yu L, Lai R, Min A. In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold. J Adv Res 2021; 35: 13-24.
[http://dx.doi.org/10.1016/j.jare.2021.03.009] [PMID: 35024192]
[103]
Wu T-Y, Wu C-Y, Christy J, et al. Vapor‐phase fabrication of cell‐accommodated scaffolds with multicomponent functionalization for neuronal applications. Adv Mater Interfaces 2021; 8(24): 2100929.
[http://dx.doi.org/10.1002/admi.202100929]
[104]
Cima LG, Vacanti JP, Vacanti C, Ingber D, Mooney D, Langer R. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng 1991; 113(2): 143-51.
[http://dx.doi.org/10.1115/1.2891228] [PMID: 1652042]
[105]
Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 1993; 27(2): 183-9.
[http://dx.doi.org/10.1002/jbm.820270207] [PMID: 8382203]
[106]
Eberli D, Filho LF, Atala A, Yoo JJ. Composite scaffolds for the engineering of hollow organs and tissues. Methods 2009; 47(2): 109-15.
[http://dx.doi.org/10.1016/j.ymeth.2008.10.014] [PMID: 18952175]
[107]
Moroni L, Hamann D, Paoluzzi L, Pieper J, de Wijn JR, van Blitterswijk CA. Regenerating articular tissue by converging technologies. PLoS One 2008; 3(8): e3032.
[http://dx.doi.org/10.1371/journal.pone.0003032] [PMID: 18716660]
[108]
Martins AM, Pham QP, Malafaya PB, et al. The role of lipase and alpha-amylase in the degradation of starch/poly(epsilon-caprolactone) fiber meshes and the osteogenic differentiation of cultured marrow stromal cells. Tissue Eng Part A 2009; 15(2): 295-305.
[http://dx.doi.org/10.1089/ten.tea.2008.0025] [PMID: 18721077]
[109]
Ikada Y. Scope of tissue engineering. In: Ikada Y, Ed. Tissue Engineering: Fundamental and Applications Elsevier 2006; 8: pp. 1-89.
[110]
Bakos D, Soldán M, Hernández-Fuentes I. Hydroxyapatite-collagen-hyaluronic acid composite. Biomaterials 1999; 20(2): 191-5.
[http://dx.doi.org/10.1016/S0142-9612(98)00163-X] [PMID: 10022789]
[111]
Chu TMG, Orton DG, Hollister SJ, Feinberg SE, Halloran JW. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 2002; 23(5): 1283-93.
[http://dx.doi.org/10.1016/S0142-9612(01)00243-5] [PMID: 11808536]
[112]
Hollister SJ, Chu TM, Halloran JW, Feinberg SE. Design and manufacture of bone replacement scaffolds. In: Cowen S, Ed. Bone Mechanics. (2nd ed.), Boca Raton: CRC Press 2001.
[113]
Hollister SJ, Maddox RD, Taboas JM. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 2002; 23(20): 4095-103.
[http://dx.doi.org/10.1016/S0142-9612(02)00148-5] [PMID: 12182311]
[114]
Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 2004; 57(1): 19-34.
[http://dx.doi.org/10.1016/S0939-6411(03)00161-9] [PMID: 14729078]
[115]
Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 2002; 8(1): 1-11.
[http://dx.doi.org/10.1089/107632702753503009] [PMID: 11886649]
[116]
Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 2003; 5: 29-39.
[http://dx.doi.org/10.22203/eCM.v005a03] [PMID: 14562270]
[117]
Cheah CM, Chue CK, Leong KF, Chue SW. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification. Comput Sci Eng 2004; 21(4): 291-301.
[118]
Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 2004; 22(7): 354-62.
[http://dx.doi.org/10.1016/j.tibtech.2004.05.005] [PMID: 15245908]
[119]
Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: Computer-aided jet-based 3D tissue engineering. Trends Biotechnol 2003; 21(4): 157-61.
[http://dx.doi.org/10.1016/S0167-7799(03)00033-7] [PMID: 12679063]
[120]
Indra A, Hadi F, Mulyadi IH, Affi J. Gunawarman. A novel fabrication procedure for producing high strength hydroxyapatite ceramic scaffolds with high porosity. Ceram Int 2021; 47(19): 26991-7001.
[http://dx.doi.org/10.1016/j.ceramint.2021.06.112]
[121]
Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000; 21(24): 2529-43.
[http://dx.doi.org/10.1016/S0142-9612(00)00121-6] [PMID: 11071603]
[122]
Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomater Sci Polym Ed 2001; 12(1): 107-24.
[http://dx.doi.org/10.1163/156856201744489] [PMID: 11334185]
[123]
Zanini N, Carneiro E, Menezes L, Barud H, Mulinari H. Palm fibers residues from agro-industries as reinforcement in biopolymer filaments for 3D-printed scaffolds. Fibers Polym 2021; 22(10): 2689-99.
[http://dx.doi.org/10.1007/s12221-021-0936-7]
[124]
George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan-a review. J Control Release 2006; 114(1): 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.017] [PMID: 16828914]
[125]
Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials 2003; 24(13): 2339-49.
[http://dx.doi.org/10.1016/S0142-9612(03)00026-7] [PMID: 12699672]
[126]
Abarrategi A, Lópiz-Morales Y, Ramos V, et al. Chitosan scaffolds for osteochondral tissue regeneration. J Biomed Mater Res A 2010; 95(4): 1132-41.
[http://dx.doi.org/10.1002/jbm.a.32912] [PMID: 20878984]
[127]
Morrison WR, Karkalas J. Starch. In: Dey PM, Harborne JB, Eds. Methods in Plant Biochemistry. London: Elsevier 1989; 2: pp. 323-52.
[128]
Luo Y, Xue F, Liu K, Li B, Fu C, Ding J. Physical and biological engineering of polymer scaffolds to potentiate repair of spinal cord injury. Mater Des 2021; 201: 109484.
[http://dx.doi.org/10.1016/j.matdes.2021.109484]
[129]
Iva P, Paula M, Helena S, Rui L. Highly porous and interconnected starch-based scaffolds: Production, characterization and surface modification. Mater Sci Eng C 2010; 30: 981-9.
[http://dx.doi.org/10.1016/j.msec.2010.04.019]
[130]
Lin YJ, Yen CN, Hu YC, Wu YC, Liao CJ, Chu IM. Chondrocytes culture in three-dimensional porous alginate scaffolds enhanced cell proliferation, matrix synthesis and gene expression. J Biomed Mater Res A 2009; 88(1): 23-33.
[http://dx.doi.org/10.1002/jbm.a.31841] [PMID: 18257085]
[131]
Liao YH, Jones SA, Forbes B, Martin GP, Brown MB. Hyaluronan: Pharmaceutical characterization and drug delivery. Drug Deliv 2005; 12(6): 327-42.
[http://dx.doi.org/10.1080/10717540590952555] [PMID: 16253949]
[132]
Nishinari K, Takahashi R. Interaction in polysaccharide solutions and gels. Curr Opin Colloid Interface Sci 2003; 8: 396-400.
[http://dx.doi.org/10.1016/S1359-0294(03)00099-2]
[133]
Yadav AK, Mishra P, Agrawal GP. An insight on hyaluronic acid in drug targeting and drug delivery. J Drug Target 2008; 16(2): 91-107.
[http://dx.doi.org/10.1080/10611860701794296] [PMID: 18274931]
[134]
Pan L, Ren Y, Cui F, Xu Q. Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold. J Neurosci Res 2009; 87(14): 3207-20.
[http://dx.doi.org/10.1002/jnr.22142] [PMID: 19530168]
[135]
Chung C, Burdick JA. Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng Part A 2009; 15(2): 243-54.
[http://dx.doi.org/10.1089/ten.tea.2008.0067] [PMID: 19193129]
[136]
Chung C, Erickson IE, Mauck RL, Burdick JA. Differential behavior of auricular and articular chondrocytes in hyaluronic acid hydrogels. Tissue Eng Part A 2008; 14(7): 1121-31.
[http://dx.doi.org/10.1089/ten.tea.2007.0291] [PMID: 18407752]
[137]
Lippiello L. Glucosamine and chondroitin sulfate: Biological response modifiers of chondrocytes under simulated conditions of joint stress. Osteoarthritis Cartilage 2003; 11(5): 335-42.
[http://dx.doi.org/10.1016/S1063-4584(03)00026-8] [PMID: 12744939]
[138]
Lee CT, Kung PH, Lee YD. Preparation of poly(vinyl alcohol)- chondroitin sulfate hydrogel as matrices in tissue engineering. Carbohydr Polym 2005; 61: 348-54.
[http://dx.doi.org/10.1016/j.carbpol.2005.06.018]
[139]
Naessens M, Cerdobbel A, Soetaert W, Vandamme EJ. Leuconostoc dextransucrase and dextran: Production, properties and applications. J Chem Technol Biotechnol 2005; 80: 845-60.
[http://dx.doi.org/10.1002/jctb.1322]
[140]
Devi GVY, Anil S, Venkatesan J. Biomaterials and scaffold fabrication techniques for tissue engineering applications. In: Sheikh FA, Eds Engineering Materials for Stem Cell Regeneration Singapore. Springer 2021; pp. 691-706.
[http://dx.doi.org/10.1007/978-981-16-4420-7_24]
[141]
Hoffmann B, Seitz D, Mencke A, Kokott A, Ziegler G. Glutaraldehyde and oxidised dextran as crosslinker reagents for chitosan-based scaffolds for cartilage tissue engineering. J Mater Sci Mater Med 2009; 20(7): 1495-503.
[http://dx.doi.org/10.1007/s10856-009-3707-3] [PMID: 19259790]
[142]
Rees DA. Structure, conformation, and mechanism in the formation of polysaccharide gels and networks. Adv Carbohydr Chem Biochem 1969; 24: 267-332.
[http://dx.doi.org/10.1016/S0065-2318(08)60352-2] [PMID: 4913938]
[143]
Bao L, Yang W, Mao X, Mou S, Tang S. Agar/collagen membrane as skin dressing for wounds. Biomed Mater 2008; 3(4): 044108.
[http://dx.doi.org/10.1088/1748-6041/3/4/044108] [PMID: 19029613]
[144]
Mangione MR, Giacomazza D, Bulone D, Martorana V, Cavallaro D, Biagio PL San. K+ and Na+ effects on the gelation properties of kappa-Carrageenan. Biophys Chem 2005; 113: 129-35.
[http://dx.doi.org/10.1016/j.bpc.2004.08.005] [PMID: 15617819]
[145]
Bartkowiak A, Hunkeler D. Carrageenan-oligochitosan microcapsules: Optimization of the formation process(1). Colloids Surf B Biointerfaces 2001; 21(4): 285-98.
[http://dx.doi.org/10.1016/S0927-7765(00)00211-3] [PMID: 11397631]
[146]
Vishnumaya Varma M, Kandasubramanian B, Ibrahim SM. 3D printed scaffolds for biomedical applications. Mater Chem Phys 2020; 255: 123642.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123642]
[147]
Tapia C, Corbalán V, Costa E, Gai MN, Yazdani-Pedram M. Study of the release mechanism of diltiazem hydrochloride from matrices based on chitosan-alginate and chitosan-carrageenan mixtures. Biomacromolecules 2005; 6(5): 2389-95.
[http://dx.doi.org/10.1021/bm050227s] [PMID: 16153073]
[148]
Vlieghe P, Clerc T, Pannecouque C, et al. Synthesis of new covalently bound kappa-carrageenan-AZT conjugates with improved anti-HIV activities. J Med Chem 2002; 45(6): 1275-83.
[http://dx.doi.org/10.1021/jm010969d] [PMID: 11881996]
[149]
Santo VE, Frias AM, Carida M, et al. Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules 2009; 10(6): 1392-401.
[http://dx.doi.org/10.1021/bm8014973] [PMID: 19385660]
[150]
Brown RM. Cellulose structure and biosynthesis: What is in store for the 21st century? J Polym Sci A Polym Chem 2004; 42: 487-95.
[http://dx.doi.org/10.1002/pola.10877]
[151]
Somerville C. Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 2006; 22: 53-78.
[http://dx.doi.org/10.1146/annurev.cellbio.22.022206.160206] [PMID: 16824006]
[152]
Xing Q, Zhao F, Chen S, McNamara J, Decoster MA, Lvov YM. Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture. Acta Biomater 2010; 6(6): 2132-9.
[http://dx.doi.org/10.1016/j.actbio.2009.12.036] [PMID: 20035906]
[153]
Hong SR, Lee YM, Akaike T. Evaluation of a galactose-carrying gelatin sponge for hepatocytes culture and transplantation. J Biomed Mater Res A 2003; 67(3): 733-41.
[http://dx.doi.org/10.1002/jbm.a.10138] [PMID: 14613220]
[154]
Mouriño V, Boccaccini AR. Bone tissue engineering therapeutics: Controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 2010; 7(43): 209-27.
[http://dx.doi.org/10.1098/rsif.2009.0379] [PMID: 19864265]
[155]
Bhang SH, Lim JS, Choi CY, Kwon YK, Kim BS. The behavior of neural stem cells on biodegradable synthetic polymers. J Biomater Sci Polym Ed 2007; 18(2): 223-39.
[http://dx.doi.org/10.1163/156856207779116711] [PMID: 17323855]
[156]
Chen F, Mao T, Tao K, Chen S, Ding G, Gu X. Injectable bone. Br J Oral Maxillofac Surg 2003; 41(4): 240-3.
[http://dx.doi.org/10.1016/S0266-4356(03)00084-6] [PMID: 12946666]
[157]
Benoit DS, Durney AR, Anseth KS. The effect of heparin-functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation. Biomaterials 2007; 28(1): 66-77.
[http://dx.doi.org/10.1016/j.biomaterials.2006.08.033] [PMID: 16963119]
[158]
Chen GP, Ushida T, Tateishi T. Development of biodegradable porous scaffolds for tissue engineering. Mater Sci Eng C Biom Supram Syst 2001; 17: 63-9.
[http://dx.doi.org/10.1016/S0928-4931(01)00338-1]
[159]
Malviya R, Sharma PK, Dubey SK. Modification of polysaccharides: Pharmaceutical and tissue engineering applications with commercial utility (patents). Mater Sci Eng C 2016; 68: 929-38.
[http://dx.doi.org/10.1016/j.msec.2016.06.093] [PMID: 27524095]
[160]
Zhu Y, Chan-Park MB, Chian SK. The growth improvement of porcine esophageal smooth muscle cells on collagen-grafted poly(DL-lactide-co-glycolide) membrane. J Biomed Mater Res B Appl Biomater 2005; 75(1): 193-9.
[http://dx.doi.org/10.1002/jbm.b.30305] [PMID: 16025463]
[161]
He S, Timmer M, Yaszemski MJ, Yasko AW, Engel PS, Mikos AG. Synthesis of biodegradable poly(propylene fumarate) networks with poly (propylene fumarate)-diacrylate macromers as crosslinking agents and characterization of their degradation products. Polymer 2000; 42(3): 1251-60.
[http://dx.doi.org/10.1016/S0032-3861(00)00479-1]
[162]
He S, Yaszemski MJ, Yasko AW, Engel PS, Mikos AG. Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate. Biomaterials 2000; 21(23): 2389-94.
[http://dx.doi.org/10.1016/S0142-9612(00)00106-X] [PMID: 11055286]
[163]
Vanblitterswijk GA, Vanderbrink J, Leenders H, Bakker D. The effect of Peo ratio on degradation, calcification and bone bonding of Peo/Pbt copolymer (polyactive). Cell Mater 1993; 3: 23-36.
[164]
Zhao P, Wang J, Li Y, Wang X, Chen C, Liu G. Microfluidic technology for the production of well-ordered porous polymer scaffolds. Polymers 2020; 12(9): 1863.
[http://dx.doi.org/10.3390/polym12091863] [PMID: 32825098]
[165]
Köse GT, Korkusuz F, Korkusuz P, Purali N, Ozkul A, Hasirci V. Bone generation on PHBV matrices: An in vitro study. Biomaterials 2003; 24(27): 4999-5007.
[http://dx.doi.org/10.1016/S0142-9612(03)00417-4] [PMID: 14559013]
[166]
Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005; 26(33): 6565-78.
[http://dx.doi.org/10.1016/j.biomaterials.2005.04.036] [PMID: 15946738]
[167]
Ye Q, Zhang Y, Dai K, et al. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis. J Mater Sci Mater Med 2020; 31(9): 77.
[http://dx.doi.org/10.1007/s10856-020-06413-6] [PMID: 32816067]
[168]
Motamedian SR, Hosseinpour S, Ahsaie MG, Khojasteh A. Smart scaffolds in bone tissue engineering: A systematic review of literature. World J Stem Cells 2015; 7(3): 657-68.
[http://dx.doi.org/10.4252/wjsc.v7.i3.657] [PMID: 25914772]
[169]
Sun JY, Li HY, Chang J. Macroporous poly(3-hydroxybutyrateco-3 hydroxyvalerate) matrices for cartilage tissue engineering. Eur Polym J 2005; 541: 2443-9.
[http://dx.doi.org/10.1016/j.eurpolymj.2005.04.039]
[170]
Gao J, Crapo PM, Wang Y. Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Eng 2006; 12(4): 917-25.
[http://dx.doi.org/10.1089/ten.2006.12.917] [PMID: 16674303]
[171]
Radisic M, Park H, Chen F, et al. Biomimetic approach to cardiac tissue engineering: Oxygen carriers and channelled scaffolds. Tissue Eng 2006; 12: 2077-91.
[http://dx.doi.org/10.1089/ten.2006.12.2077] [PMID: 16968150]
[172]
Sundback CA, Shyu JY, Wang Y, et al. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials 2005; 26(27): 5454-64.
[http://dx.doi.org/10.1016/j.biomaterials.2005.02.004] [PMID: 15860202]
[173]
Ferruti P, Bianchi S, Ranucci E, Chiellini F, Caruso V. Novel poly(amido-amine)-based hydrogels as scaffolds for tissue engineering. Macromol Biosci 2005; 5(7): 613-22.
[http://dx.doi.org/10.1002/mabi.200500020] [PMID: 16010695]
[174]
Hacker M, Tessmar J, Neubauer M, et al. Towards biomimetic scaffolds: Anhydrous scaffold fabrication from biodegradable amine-reactive diblock copolymers. Biomaterials 2003; 24(24): 4459-73.
[http://dx.doi.org/10.1016/S0142-9612(03)00346-6] [PMID: 12922156]
[175]
Quirk RA, Chan WC, Davies MC, Tendler SJB, Shakesheff KM. Poly(L-lysine)-GRGDS as a biomimetic surface modifier for poly(lactic acid). Biomaterials 2001; 22(8): 865-72.
[http://dx.doi.org/10.1016/S0142-9612(00)00250-7] [PMID: 11246955]
[176]
Kim YB, Kim GH. PCL/alginate composite scaffolds for hard tissue engineering: Fabrication, characterization, and cellular activities. ACS Comb Sci 2015; 17(2): 87-99.
[http://dx.doi.org/10.1021/co500033h] [PMID: 25541639]
[177]
Hsieh Y-H, Hsieh M-F, Fang C-H, Jiang C-P, Lin B, Lee H-M. Osteochondral regeneration induced by TGF-β loaded photo cross-linked hyaluronic acid hydrogel infiltrated in fused deposition-manufactured composite scaffold of hydroxyapatite and Poly (Ethylene Glycol)-Block-Poly(ε-Caprolactone). Polymers 2017; 9(5): 182.
[http://dx.doi.org/10.3390/polym9050182] [PMID: 30970861]
[178]
Guan J, Fujimoto KL, Sacks MS, Wagner WR. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 2005; 26(18): 3961-71.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.018] [PMID: 15626443]
[179]
Pattison MA, Webster TJ, Haberstroh KM. Select bladder smooth muscle cell functions were enhanced on three-dimensional, nano-structured poly(ether urethane) scaffolds. J Biomater Sci Polym Ed 2006; 17(11): 1317-32.
[http://dx.doi.org/10.1163/156856206778667460] [PMID: 17176752]
[180]
Bonzani IC, Adhikari R, Houshyar S, Mayadunne R, Gunatillake P, Stevens MM. Synthesis of two-component injectable polyurethanes for bone tissue engineering. Biomaterials 2007; 28(3): 423-33.
[http://dx.doi.org/10.1016/j.biomaterials.2006.08.026] [PMID: 16979756]
[181]
Guan J, Stankus JJ, Wagner WR. Development of composite porous scaffolds based on collagen and biodegradable poly(ester urethane)urea. Cell Transplant 2006; 15 (Suppl. 1): S17-27.
[http://dx.doi.org/10.3727/000000006783982412] [PMID: 16826792]
[182]
Bibby SR, Jones DA, Lee RB, Yu J. The pathophysiology of the intervertebral disc. Joint Bone Spine 2001; 68(6): 537-42.
[http://dx.doi.org/10.1016/S1297-319X(01)00332-3] [PMID: 11808995]
[183]
Bolaina-Lorenzo E, Martínez-Ramos C, Monleón-Pradas M, Herrera-Kao W, Cauich-Rodríguez JV, Cervantes-Uc JM. Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: Physicochemical characterization and Schwann cell biocompatibility. Biomed Mater 2016; 12(1): 015008.
[http://dx.doi.org/10.1088/1748-605X/12/1/015008] [PMID: 27934786]
[184]
Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 2003; 5: 1-16.
[http://dx.doi.org/10.22203/eCM.v005a01] [PMID: 14562275]
[185]
Martina M, Hutmacher DW. Biodegradable polymers applied in tissue engineering research: A review. Polym Int 2007; 57: 145-57.
[http://dx.doi.org/10.1002/pi.2108]
[186]
Ambrosio AM, Sahota JS, Runge C, et al. Novel polyphosphazene-hydroxyapatite composites as biomaterials. IEEE Eng Med Biol Mag 2003; 22(5): 18-26.
[http://dx.doi.org/10.1109/MEMB.2003.1256268] [PMID: 14699932]
[187]
Lu Z, Yuan WZ, Yang Y, Tang XZ, Huang XB. Preparation and characterization of novel poly [cyclotriphosphazene-co-(4,4′-sulfonyldiphenol)] nanofiber matrices. Polym Int 2006; 55: 1357-60.
[http://dx.doi.org/10.1002/pi.2105]
[188]
Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 2006; 12: 301-47.
[http://dx.doi.org/10.1016/S1387-2656(06)12009-8] [PMID: 17045198]
[189]
BaoLin G, Ma PX. Synthetic biodegradable functional polymers for tissue engineering: A brief review. Sci China Chem 2014; 57(4): 490-500.
[http://dx.doi.org/10.1007/s11426-014-5086-y] [PMID: 25729390]
[190]
George PM, Lyckman AW, LaVan DA, et al. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 2005; 26(17): 3511-9.
[http://dx.doi.org/10.1016/j.biomaterials.2004.09.037] [PMID: 15621241]
[191]
Richardson RT, Thompson B, Moulton S, et al. The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons. Biomaterials 2007; 28(3): 513-23.
[http://dx.doi.org/10.1016/j.biomaterials.2006.09.008] [PMID: 17007922]
[192]
Cho SH, Oh SH, Lee JH. Fabrication and characterization of porous alginate/polyvinyl alcohol hybrid scaffolds for 3D cell culture. J Biomater Sci Polym Ed 2005; 16(8): 933-47.
[http://dx.doi.org/10.1163/1568562054414658] [PMID: 16128229]
[193]
Fitzpatrick SD, Jafar Mazumder MA, Lasowski F, Fitzpatrick LE, Sheardown H, Sheardown H. PNIPAAm-grafted-collagen as an injectable, in situ gelling, bioactive cell delivery scaffold. Biomacromolecules 2010; 11(9): 2261-7.
[http://dx.doi.org/10.1021/bm100299j] [PMID: 20695495]
[194]
Yao Q, Cosme JGL, Xu T, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 2017; 115: 115-27.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.018] [PMID: 27886552]
[195]
Hing KA. Bioceramic bone graft substitutes: Influence of porosity and chemistry. Int J Appl Ceram Technol 2005; 2: 184-99.
[http://dx.doi.org/10.1111/j.1744-7402.2005.02020.x]
[196]
Marino G, Rosso F, Cafiero G, et al. Beta-tricalcium phosphate 3D scaffold promote alone osteogenic differentiation of human adipose stem cells: in vitro study. J Mater Sci Mater Med 2010; 21(1): 353-63.
[http://dx.doi.org/10.1007/s10856-009-3840-z] [PMID: 19655233]
[197]
Seidlits SK, Lee JY, Schmidt CE. Nanostructured scaffolds for neural applications. Nanomedicine 2008; 3(2): 183-99.
[http://dx.doi.org/10.2217/17435889.3.2.183] [PMID: 18373425]
[198]
Smith DB, Grandie AD. The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol 2015; 11(4): 213-22.
[http://dx.doi.org/10.1038/nrrheum.2015.27]
[199]
Negut I, Dorcioman G, Grumezescu V. Scaffolds for wound healing applications. Polymers 2020; 12(9): 2010.
[http://dx.doi.org/10.3390/polym12092010] [PMID: 32899245]
[200]
Janoušková O. Synthetic polymer scaffolds for soft tissue engineering. Physiol Res 2018; 67 (Suppl. 2): S335-48.
[http://dx.doi.org/10.33549/physiolres.933983] [PMID: 30379554]
[201]
Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices 2005; 2(3): 303-17.
[http://dx.doi.org/10.1586/17434440.2.3.303] [PMID: 16288594]
[202]
Griffith LG, Naughton G. Tissue engineering-current challenges and expanding opportunities. Science 2002; 295(5557): 1009-14.
[http://dx.doi.org/10.1126/science.1069210] [PMID: 11834815]
[203]
Borschel GH, Huang YC, Calve S, et al. Tissue engineering of recellularized small-diameter vascular grafts. Tissue Eng 2005; 11(5-6): 778-86.
[http://dx.doi.org/10.1089/ten.2005.11.778] [PMID: 15998218]
[204]
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26(27): 5474-91.
[http://dx.doi.org/10.1016/j.biomaterials.2005.02.002] [PMID: 15860204]
[205]
Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005; 4(7): 518-24.
[http://dx.doi.org/10.1038/nmat1421] [PMID: 16003400]
[206]
Mroz T, Yamashita T, MrLiebermanoz I. The on- and off-label use of rhBMP-2 (INFUSE) in Medicare and non-Medicare patients. Spine J 2008; 8: 41S-2S.
[http://dx.doi.org/10.1016/j.spinee.2008.06.096]
[207]
Brodie JC, Goldie E, Connel G, Merry J, Grant MH. Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen. J Biomed Mater Res A 2005; 73(4): 409-21.
[http://dx.doi.org/10.1002/jbm.a.30279] [PMID: 15892144]
[208]
Park SH, Park SA, Kang YG, et al. PCL/β-TCP composite scaffolds exhibit positive osteogenic differentiation with mechanical stimulation. Tissue Eng Regen Med 2017; 14(4): 349-58.
[http://dx.doi.org/10.1007/s13770-017-0022-9] [PMID: 30603491]
[209]
Shastri VP, Martin I, Langer R. Macroporous polymer foams by hydrocarbon templating. Proc Natl Acad Sci USA 2000; 97(5): 1970-5.
[http://dx.doi.org/10.1073/pnas.97.5.1970] [PMID: 10696111]
[210]
Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 2001; 7(6): 679-89.
[http://dx.doi.org/10.1089/107632701753337645] [PMID: 11749726]
[211]
Hofmann M, Wollert KC, Meyer GP, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005; 111(17): 2198-202.
[http://dx.doi.org/10.1161/01.CIR.0000163546.27639.AA] [PMID: 15851598]
[212]
Skuk D, Caron NJ, Goulet M, Roy B, Tremblay JP. Resetting the problem of cell death following muscle-derived cell transplantation: Detection, dynamics and mechanisms. J Neuropathol Exp Neurol 2003; 62(9): 951-67.
[http://dx.doi.org/10.1093/jnen/62.9.951] [PMID: 14533784]
[213]
Evans SM, Mummery C, Doevendans PA. Progenitor cells for cardiac repair. Semin Cell Dev Biol 2007; 18(1): 153-60.
[http://dx.doi.org/10.1016/j.semcdb.2006.12.009] [PMID: 17321172]
[214]
Thuret S, Moon LDF, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006; 7(8): 628-43.
[http://dx.doi.org/10.1038/nrn1955] [PMID: 16858391]
[215]
Auger FA, Berthod F, Moulin V, Pouliot R, Germain L. Tissue-engineered skin substitutes: From in vitro constructs to in vivo applications. Biotechnol Appl Biochem 2004; 39(Pt 3): 263-75.
[PMID: 15154837]
[216]
Nerem RM. Cell-based therapies: From basic biology to replacement, repair, and regeneration. Biomaterials 2007; 28(34): 5074-7.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.032] [PMID: 17689607]
[217]
Mooney DJ, Vandenburgh H. Cell delivery mechanisms for tissue repair. Cell Stem Cell 2008; 2(3): 205-13.
[http://dx.doi.org/10.1016/j.stem.2008.02.005] [PMID: 18371446]
[218]
Żylińska B, Stodolak-Zych E, Sobczyńska-Rak A, et al. Osteochondral repair using porous three-dimensional nanocomposite scaffolds in a rabbit model. Vivo 2017; 31(5): 895-903.
[PMID: 28882956]
[219]
Saghebasl S, Davaran S, Rahbarghazi R, Montaseri A, Salehi R, Ramazani A. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. J Biomater Sci Polym Ed 2018; 29(10): 1185-206.
[http://dx.doi.org/10.1080/09205063.2018.1447627] [PMID: 29490569]
[220]
Murphy C, Kolan K. 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering Int J Bioprint 2017; 3(1): 005.
[http://dx.doi.org/10.18063/IJB.2017.01.005] [PMID: 33094180]
[221]
Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv Mater 2006; 18: 1345-60.
[http://dx.doi.org/10.1002/adma.200501612]
[222]
Rindone AN, Nyberg E, Grayson WL. 3D-Printing composite polycaprolactone-decellularized bone matrix scaffolds for bone tissue engineering applications. Methods Mol Biol 2018; 1577: 209-26.
[http://dx.doi.org/10.1007/7651_2017_37] [PMID: 28493213]
[223]
Bala Balakrishnan P, Gardella L, Forouharshad M, Pellegrino T, Monticelli O. Star poly(ε-caprolactone)-based electrospun fibers as biocompatible scaffold for doxorubicin with prolonged drug release activity. Colloids Surf B Biointerfaces 2018; 161: 488-96.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.014] [PMID: 29128835]
[224]
Wood KC, Zacharia NS, Schmidt DJ, Wrightman SN, Andaya BJ, Hammond PT. Electroactive controlled release thin films. Proc Natl Acad Sci USA 2008; 105(7): 2280-5.
[http://dx.doi.org/10.1073/pnas.0706994105] [PMID: 18272499]
[225]
Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat Mater 2009; 8(1): 15-23.
[http://dx.doi.org/10.1038/nmat2344] [PMID: 19096389]
[226]
Zheng P, Yao Q, Mao F, et al. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots. Mol Med Rep 2017; 16(4): 5078-84.
[http://dx.doi.org/10.3892/mmr.2017.7266] [PMID: 28849142]
[227]
Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002; 54(5): 631-51.
[http://dx.doi.org/10.1016/S0169-409X(02)00044-3] [PMID: 12204596]
[228]
Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew Chem Int Ed 2007; 46(8): 1222-44.
[http://dx.doi.org/10.1002/anie.200602866] [PMID: 17278160]
[229]
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26(18): 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012] [PMID: 15626447]
[230]
Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003; 36: R167-81.
[http://dx.doi.org/10.1088/0022-3727/36/13/201]
[231]
Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 2004; 14: 2161-75.
[http://dx.doi.org/10.1039/b402025a]
[232]
Lu Z, Prouty MD, Guo Z, Golub VO, Kumar CS, Lvov YM. Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. Langmuir 2005; 21(5): 2042-50.
[http://dx.doi.org/10.1021/la047629q] [PMID: 15723509]
[233]
Hu SH, Liu TY, Liu DM, Chen SY. Controlled pulsatile drug release from a ferrogel by a high-frequency magnetic field. Macromolecules 2007; 40: 6786-8.
[http://dx.doi.org/10.1021/ma0707584]
[234]
Hu SH, Chen SY, Liu DM, Hsiao CS. Core/single-crystal-shell nanospheres for controlled drug release via a magnetically triggered rupturing mechanism. Adv Mater 2008; 20(14): 2690-5.
[http://dx.doi.org/10.1002/adma.200800193] [PMID: 25213891]
[235]
Liu TY, Hu SH, Liu TY, Liu DM, Chen SY. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir 2006; 22(14): 5974-8.
[http://dx.doi.org/10.1021/la060371e] [PMID: 16800645]
[236]
Hu SH, Liu TY, Liu DM, Chen SY. Nano-ferrosponges for controlled drug release. J Control Release 2007; 121(3): 181-9.
[http://dx.doi.org/10.1016/j.jconrel.2007.06.002] [PMID: 17644206]
[237]
Resendiz-Hernandez PJ, Rodriguez-Fernandez OS, Garcia-Cerda LA. Synthesis of poly(vinyl alcohol)-magnetite ferrogel obtained by freezing-thawing technique. J Magn Mater 2008; 320: E373-6.
[http://dx.doi.org/10.1016/j.jmmm.2008.02.073]
[238]
Chatterjee J, Haik Y, Chen CJ. Biodegradable magnetic gel: Synthesis and characterization. Colloid Polym Sci 2003; 281: 892-6.
[http://dx.doi.org/10.1007/s00396-003-0916-z]
[239]
Qin J. Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs. Adv Mater 2009; 21: 1354-7.
[http://dx.doi.org/10.1002/adma.200800764]
[240]
Lavik E, Langer R. Tissue engineering: Current state and perspectives. Appl Microbiol Biotechnol 2004; 65(1): 1-8.
[http://dx.doi.org/10.1007/s00253-004-1580-z] [PMID: 15221227]
[241]
Scaffaro R, Lopresti F, Catania V, Santisi S, Cappello S, Botta L. Polycaprolactone-based scaffold for oil-selective sorption and improvement of bacteria activity for bioremediation of polluted water: Porous PCL system obtained by leaching melt mixed PCL/PEG/NaCl composites: Oil uptake performance and bioremediation effi. Eur Polym J 2017; 91: 260-73.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.04.015]
[242]
Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater 2015; 14(1): 23-36.
[http://dx.doi.org/10.1038/nmat4089] [PMID: 25344782]
[243]
Leterrier C, Potier J, Caillol G, Debarnot C, Rueda Boroni F, Dargent B. Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold. Cell Rep 2015; 13(12): 2781-93.
[http://dx.doi.org/10.1016/j.celrep.2015.11.051] [PMID: 26711344]
[244]
Nourissat G, Berenbaum F, Duprez D. Tendon injury: From biology to tendon repair. Nat Rev Rheumatol 2015; 11(4): 223-33.
[http://dx.doi.org/10.1038/nrrheum.2015.26] [PMID: 25734975]
[245]
Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001; 294(5547): 1684-8.
[http://dx.doi.org/10.1126/science.1063187] [PMID: 11721046]
[246]
Hamley I. Self-assembly of amphiphilic peptides. Soft Matter 2011; 7(9): 4122-38.
[http://dx.doi.org/10.1039/c0sm01218a]
[247]
Zarith NZ, Sultana N. Polycaprolactone(PCL)/chitosan(Cs)-based scaffold by freeze drying technique for tissue engineering and drug delivery application. Appl Mech Mater 2015; 695: 203-6.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.695.203]
[248]
Liu J, Song H, Zhang L, Xu H, Zhao X. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro. Macromol Biosci 2010; 10(10): 1164-70.
[http://dx.doi.org/10.1002/mabi.200900450] [PMID: 20552605]
[249]
Holmes TC. Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol 2002; 20(1): 16-21.
[http://dx.doi.org/10.1016/S0167-7799(01)01840-6] [PMID: 11742673]
[250]
Umeyama T, Imahori H. Photofunctional hybrid nanocarbon materials. J Phys Chem C 2013; 117(7): 3195-209.
[http://dx.doi.org/10.1021/jp309149s]
[251]
Stupp SI. Self-assembly and biomaterials. Nano Lett 2010; 10(12): 4783-6.
[http://dx.doi.org/10.1021/nl103567y] [PMID: 21028843]
[252]
Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA 2002; 99(8): 5133-8.
[http://dx.doi.org/10.1073/pnas.072699999] [PMID: 11929981]
[253]
Eivazzadeh-Keihan R, Maleki A, de la Guardia M, et al. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J Adv Res 2019; 18: 185-201.
[http://dx.doi.org/10.1016/j.jare.2019.03.011] [PMID: 31032119]
[254]
Geetha Bai R, Ninan N, Muthoosamy K, Manickam S. Graphene: A versatile platform for nanotheranostics and tissue engineering. Prog Mater Sci 2018; 91: 24-69.
[http://dx.doi.org/10.1016/j.pmatsci.2017.08.004]
[255]
Mousavi SM, Hashemi SA, Arjmand M, Amani AM, Sharif F, Jahandideh S. Octadecyl amine functionalized graphene oxide towards hydrophobic chemical resistant epoxy nanocomposites. ChemistrySelect 2018; 3(25): 7200-7.
[http://dx.doi.org/10.1002/slct.201800996]
[256]
Omidi M, Yadegari A, Tayebi L. Wound dressing application of pH-sensitive carbon dots/chitosan hydrogel. RSC Advances 2017; 7(18): 10638-49.
[http://dx.doi.org/10.1039/C6RA25340G]
[257]
Qiu J, Li D, Mou X, et al. Effects of graphene quantum dots on the self-renewal and differentiation of mesenchymal stem cells. Adv Healthc Mater 2016; 5(6): 702-10.
[http://dx.doi.org/10.1002/adhm.201500770] [PMID: 26833812]
[258]
Geetha BR, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: Fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine 2019; 14: 5753-83.
[http://dx.doi.org/10.2147/IJN.S192779] [PMID: 31413573]
[259]
Smart S, Cassady AI, Lu GQ, Martin DJ. The biocompatibility of carbon nanotubes. Carbon 2006; 44(6): 1034-47.
[http://dx.doi.org/10.1016/j.carbon.2005.10.011]
[260]
Price RL, Waid MC, Haberstroh KM, Webster TJ. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 2003; 24(11): 1877-87.
[http://dx.doi.org/10.1016/S0142-9612(02)00609-9] [PMID: 12615478]
[261]
Sitharaman B, Shi X, Walboomers XF, et al. In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 2008; 43(2): 362-70.
[http://dx.doi.org/10.1016/j.bone.2008.04.013] [PMID: 18541467]
[262]
Hirata E, Uo M, Nodasaka Y, et al. 3D collagen scaffolds coated with multiwalled carbon nanotubes: Initial cell attachment to internal surface. J Biomed Mater Res B Appl Biomater 2010; 93(2): 544-50.
[http://dx.doi.org/10.1002/jbm.b.31613] [PMID: 20186828]
[263]
Grebowski J, Kazmierska P, Krokosz A. Fullerenols as a new therapeutic approach in nanomedicine. Biomed Res Int. 2013; 2013: p. 751913.
[http://dx.doi.org/10.1155/2013/751913] [PMID: 24222914]
[264]
Fereshteh Z, Fathi M, Bagri A, Boccaccini AR. Preparation and characterization of aligned porous PCL/zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method. Mater Sci Eng C 2016; 68: 613-22.
[http://dx.doi.org/10.1016/j.msec.2016.06.009] [PMID: 27524061]
[265]
Bacakova L, Grausova L, Vacik J, et al. Improved adhesion and growth of human osteoblast-like MG 63 cells on biomaterials modified with carbon nanoparticles. Diam Relat Mater 2007; 16(12): 2133-40.
[http://dx.doi.org/10.1016/j.diamond.2007.07.015]
[266]
Sadeghi K, Ed. Document details Proceedings First International Conference on Concrete and Development C and D. Iran. 2001.
[267]
Krishnan V, Kasuya Y, Ji Q, et al. Vortex-aligned fullerene nanowhiskers as a scaffold for orienting cell growth. ACS Appl Mater Interfaces 2015; 7(28): 15667-73.
[http://dx.doi.org/10.1021/acsami.5b04811] [PMID: 26115554]
[268]
Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nat Protoc 2016; 11(10): 1775-81.
[http://dx.doi.org/10.1038/nprot.2016.123] [PMID: 27583639]
[269]
Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review. Biomacromolecules 2011; 12(5): 1387-408.
[http://dx.doi.org/10.1021/bm200083n] [PMID: 21388145]
[270]
Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: A review in bone biomimetics and drug delivery strategies. Biotechnol Prog 2009; 25(6): 1539-60.
[http://dx.doi.org/10.1002/btpr.246] [PMID: 19824042]
[271]
Alford AI, Kozloff KM, Hankenson KD. Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol 2015; 65: 20-31.
[http://dx.doi.org/10.1016/j.biocel.2015.05.008] [PMID: 25997875]
[272]
Gu M, Liu Y, Chen T, et al. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering? Tissue Eng Part B Rev 2014; 20(5): 477-91.
[http://dx.doi.org/10.1089/ten.teb.2013.0638] [PMID: 24447041]
[273]
Crowder SW, Prasai D, Rath R, et al. Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 2013; 5(10): 4171-6.
[http://dx.doi.org/10.1039/c3nr00803g] [PMID: 23592029]
[274]
Xie H, Cao T, Gomes JV, Castro Neto AH, Rosa V. Two and three-dimensional graphene substrates to magnify osteogenic differentiation of periodontal ligament stem cells. Carbon 2015; 93: 266-75.
[http://dx.doi.org/10.1016/j.carbon.2015.05.071]
[275]
Han L, Sun H, Tang P, et al. Mussel-inspired graphene oxide nanosheet-enwrapped Ti scaffolds with drug-encapsulated gelatin microspheres for bone regeneration. Biomater Sci 2018; 6(3): 538-49.
[http://dx.doi.org/10.1039/C7BM01060E] [PMID: 29376156]
[276]
Peng S, Feng P, Wu P, et al. Graphene oxide as an interface phase between polyetheretherketone and hydroxyapatite for tissue engineering scaffolds. Sci Rep 2017; 7(1): 46604.
[http://dx.doi.org/10.1038/srep46604] [PMID: 28425470]
[277]
Hong HS, Lee J, Lee E, et al. A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nat Med 2009; 15(4): 425-35.
[http://dx.doi.org/10.1038/nm.1909] [PMID: 19270709]
[278]
Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010; 4(10): 5731-6.
[http://dx.doi.org/10.1021/nn101390x] [PMID: 20925398]
[279]
Canfora Gerardo, Penta Massimiliano Di. New frontiers of reverse engineering. In: Future of Software Engineering (FOSE'07). Minneapolis, MN, USA 2007.
[280]
Natarajan J, Madras G, Chatterjee K. Development of graphene oxide-/galactitol polyester-based biodegradable composites for biomedical applications. ACS Omega 2017; 2(9): 5545-56.
[http://dx.doi.org/10.1021/acsomega.7b01139] [PMID: 30023749]
[281]
Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater 2013; 9(9): 8037-45.
[http://dx.doi.org/10.1016/j.actbio.2013.06.014] [PMID: 23791671]
[282]
Mahmoudi N, Simchi A. On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide. Mater Sci Eng C 2017; 70(Pt 1): 121-31.
[http://dx.doi.org/10.1016/j.msec.2016.08.063] [PMID: 27770871]
[283]
Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cells 2011; 31(4): 295-302.
[http://dx.doi.org/10.1007/s10059-011-0051-5] [PMID: 21360197]
[284]
Raza F, Zafar H, Zhu Y, et al. A review on recent advances in stabilizing peptides/proteins upon fabrication in hydrogels from biodegradable polymers. Pharmaceutics 2018; 10(1): 16.
[http://dx.doi.org/10.3390/pharmaceutics10010016] [PMID: 29346275]
[285]
Raza F, Zafar H, You X, Khan A, Wu J, Ge L. Cancer nanomedicine: Focus on recent developments and self-assembled peptide nanocarriers. J Mater Chem B Mater Biol Med 2019; 7(48): 7639-55.
[http://dx.doi.org/10.1039/C9TB01842E] [PMID: 31746934]
[286]
Tang C, Smith AM, Collins RF, Ulijn RV, Saiani A. Fmoc-diphenylalanine self-assembly mechanism induces apparent pKa shifts. Langmuir 2009; 25(16): 9447-53.
[http://dx.doi.org/10.1021/la900653q] [PMID: 19537819]
[287]
Li Y, Wen T, Zhao R, et al. Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy. ACS Nano 2014; 8(11): 11529-42.
[http://dx.doi.org/10.1021/nn5047647] [PMID: 25375193]
[288]
Mao L, Wang H, Tan M, Ou L, Kong D, Yang Z. Conjugation of two complementary anti-cancer drugs confers molecular hydrogels as a co-delivery system. Chem Commun 2012; 48(3): 395-7.
[http://dx.doi.org/10.1039/C1CC16250K] [PMID: 22080052]
[289]
Johnson EK, Adams DJ, Cameron PJ. Peptide based low molecular weight gelators. J Mater Chem 2011; 21(7): 2024-7.
[http://dx.doi.org/10.1039/C0JM03099F]
[290]
Tian B, Wang C, Zhang S, Feng L, Liu Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 2011; 5(9): 7000-9.
[http://dx.doi.org/10.1021/nn201560b] [PMID: 21815655]
[291]
Gonçalves G, Vila M, Portolés MT, Vallet-Regi M, Gracio J, Marques PAAP. Nano-graphene oxide: A potential multifunctional platform for cancer therapy. Adv Healthc Mater 2013; 2(8): 1072-90.
[http://dx.doi.org/10.1002/adhm.201300023] [PMID: 23526812]
[292]
Fiorillo M, Verre AF, Iliut M, et al. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”. Oncotarget 2015; 6(6): 3553-62.
[http://dx.doi.org/10.18632/oncotarget.3348] [PMID: 25708684]
[293]
Masoumzade R, Behbudi G, Mazraedoost S. A medical encyclopedia with new approach graphene quantum dots for anti-breast cancer applications: Mini review. Adv Appl NanoBio-Technol 2020; 1(4): 84-90.
[294]
Al Faraj A, Shaik AS, Ratemi E, Halwani R. Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J Control Release 2016; 225: 240-51.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.053] [PMID: 26827662]
[295]
Shao W, Paul A, Zhao B, Lee C, Rodes L, Prakash S. Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model. Biomaterials 2013; 34(38): 10109-19.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.007] [PMID: 24060420]
[296]
Wu H, Shi H, Zhang H, et al. Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials 2014; 35(20): 5369-80.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.038] [PMID: 24709520]
[297]
Burke AR, Singh RN, Carroll DL, et al. The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials 2012; 33(10): 2961-70.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.052] [PMID: 22245557]
[298]
Yao HJ, Zhang YG, Sun L, Liu Y. The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials 2014; 35(33): 9208-23.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.033] [PMID: 25115788]
[299]
Liu K-K, Wang CC, Cheng CL, Chao JI. Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials 2009; 30(26): 4249-59.
[http://dx.doi.org/10.1016/j.biomaterials.2009.04.056] [PMID: 19500835]
[300]
Zhang Y, Cui Z, Kong H, et al. One-shot immunomodulatory nanodiamond agents for cancer immunotherapy. Adv Mater 2016; 28(14): 2699-708.
[http://dx.doi.org/10.1002/adma.201506232] [PMID: 26833992]
[301]
Zhao L, Xu YH, Akasaka T, et al. Polyglycerol-coated nanodiamond as a macrophage-evading platform for selective drug delivery in cancer cells. Biomaterials 2014; 35(20): 5393-406.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.041] [PMID: 24720879]
[302]
Gaspar V, de Melo-Diogo D, Costa E, et al. Minicircle DNA vectors for gene therapy: Advances and applications. Expert Opin Biol Ther 2015; 15(3): 353-79.
[http://dx.doi.org/10.1517/14712598.2015.996544] [PMID: 25539147]
[303]
Luo K, He B, Wu Y, Shen Y, Gu Z. Functional and biodegradable dendritic macromolecules with controlled architectures as nontoxic and efficient nanoscale gene vectors. Biotechnol Adv 2014; 32(4): 818-30.
[http://dx.doi.org/10.1016/j.biotechadv.2013.12.008] [PMID: 24389086]
[304]
Imani R, Mohabatpour F, Mostafavi F. Graphenebased nano-carrier modifications for gene delivery applications. Carbon 2018; 140: 569-91.
[http://dx.doi.org/10.1016/j.carbon.2018.09.019]
[305]
Behbudi G. Mini review of graphene oxide for medical detection and applications. Advances in Applied NanoBioTechnologies 2020; 1(3): 63-6.
[306]
Kim H, Namgung R, Singha K, Oh IK, Kim WJ. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug Chem 2011; 22(12): 2558-67.
[http://dx.doi.org/10.1021/bc200397j] [PMID: 22034966]
[307]
Druesne-Pecollo N, Keita Y, Touvier M, et al. Alcohol drinking and second primary cancer risk in patients with upper aerodigestive tract cancers: A systematic review and meta-analysis of observational studies. Cancer Epidemiol Biomarkers Prev 2014; 23(2): 324-31.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-0779] [PMID: 24307268]
[308]
Tonelli FM, Goulart VAM, Gomes KN, et al. Graphene-based nanomaterials: Biological and medical applications and toxicity. Nanomedicine 2015; 10(15): 2423-50.
[http://dx.doi.org/10.2217/nnm.15.65] [PMID: 26244905]
[309]
Zhang Y, Nayak TR, Hong H, Cai W. Graphene: A versatile nanoplatform for biomedical applications. Nanoscale 2012; 4(13): 3833-42.
[http://dx.doi.org/10.1039/c2nr31040f] [PMID: 22653227]
[310]
Wu D, Zhang F, Liu P, Feng X. Two-dimensional nanocomposites based on chemically modified graphene. Chemistry 2011; 17(39): 10804-12.
[http://dx.doi.org/10.1002/chem.201101333] [PMID: 21853487]
[311]
Lei H, Mi L, Zhou X, et al. Adsorption of double-stranded DNA to graphene oxide preventing enzymatic digestion. Nanoscale 2011; 3(9): 3888-92.
[http://dx.doi.org/10.1039/c1nr10617a] [PMID: 21829836]
[312]
Feng L, Liu Z. Graphene in biomedicine: Opportunities and challenges. Nanomedicine 2011; 6(2): 317-24.
[http://dx.doi.org/10.2217/nnm.10.158] [PMID: 21385134]
[313]
Chen B, Liu M, Zhang L, Huang J, Yao J, Zhang Z. Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J Mater Chem 2011; 21(21): 7736-41.
[http://dx.doi.org/10.1039/c1jm10341e]
[314]
Zhou X, Laroche F, Lamers GEM. Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos. Nano Res 2012; 5(10): 703-9.
[http://dx.doi.org/10.1007/s12274-012-0254-x]
[315]
Xu C, Yang D, Mei L, et al. Encapsulating gold nanoparticles or nanorods in graphene oxide shells as a novel gene vector. ACS Appl Mater Interfaces 2013; 5(7): 2715-24.
[http://dx.doi.org/10.1021/am400212j] [PMID: 23477862]
[316]
Bao H, Pan Y, Ping Y, et al. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 2011; 7(11): 1569-78.
[http://dx.doi.org/10.1002/smll.201100191] [PMID: 21538871]
[317]
Feng L, Yang X, Shi X, et al. Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small 2013; 9(11): 1989-97.
[http://dx.doi.org/10.1002/smll.201202538] [PMID: 23292791]
[318]
Kim H, Kim WJ. Photothermally controlled gene delivery by reduced graphene oxide-polyethylenimine nanocomposite. Small 2014; 10(1): 117-26.
[http://dx.doi.org/10.1002/smll.201202636] [PMID: 23696272]
[319]
Yang Y, Zhang YM, Chen Y, Zhao D, Chen JT, Liu Y. Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chemistry 2012; 18(14): 4208-15.
[http://dx.doi.org/10.1002/chem.201103445] [PMID: 22374621]
[320]
Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int J Nanomedicine 2019; 14: 1633-57.
[http://dx.doi.org/10.2147/IJN.S184723]
[321]
Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett 2010; 10(9): 3223-30.
[http://dx.doi.org/10.1021/nl102184c] [PMID: 20726522]
[322]
Zhu S, Zhang J, Qiao C, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun (Camb) 2011; 47(24): 6858-60.
[http://dx.doi.org/10.1039/c1cc11122a] [PMID: 21584323]
[323]
Garayemi S, Raeisi F. Graphene oxide as a docking station for modern drug delivery system. by Ulva lactuca species study its antimicrobial, anti-fungal and anti-blood cancer activity. Adv Appl NanoBio-Technol 2020; 1(2): 53-62.
[324]
Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostructure Chem 2018; 8(2): 123-37.
[http://dx.doi.org/10.1007/s40097-018-0265-6]
[325]
Jäger M, Schubert S, Ochrimenko S, Fischer D, Schubert US. Branched and linear poly(ethylene imine)-based conjugates: Synthetic modification, characterization, and application. Chem Soc Rev 2012; 41(13): 4755-67.
[http://dx.doi.org/10.1039/c2cs35146c] [PMID: 22648524]
[326]
Gurunathan S, Han WJ, Kim E, Kwon DN, Park JK, Kim JH. Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene. J Nanobiotechnology 2014; 12(1): 41.
[http://dx.doi.org/10.1186/s12951-014-0041-9] [PMID: 25273520]
[327]
Li N, Zhang Q, Gao S, et al. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep 2013; 3(1): 1604.
[http://dx.doi.org/10.1038/srep01604] [PMID: 23549373]
[328]
Yang X, Zhang X, Liu Z, Ma Y, Huang Y, Chen Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C 2008; 112(45): 17554-8.
[http://dx.doi.org/10.1021/jp806751k]
[329]
Zhang J, Sun Y, Xu B, et al. A novel surface plasmon resonance biosensor based on graphene oxide decorated with gold nanorod-antibody conjugates for determination of transferrin. Biosens Bioelectron 2013; 45: 230-6.
[http://dx.doi.org/10.1016/j.bios.2013.02.008] [PMID: 23500369]
[330]
Acik M, Mattevi C, Gong C, et al. The role of intercalated water in multilayered graphene oxide. ACS Nano 2010; 4(10): 5861-8.
[http://dx.doi.org/10.1021/nn101844t] [PMID: 20886867]
[331]
Zhang M, Yin BC, Wang XF, Ye BC. Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity. Chem Commun 2011; 47(8): 2399-401.
[http://dx.doi.org/10.1039/C0CC04887A] [PMID: 21305066]
[332]
Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer 2008; 49(8): 1993-2007.
[http://dx.doi.org/10.1016/j.polymer.2008.01.027]
[333]
Seroski DT, Hudalla GA. Self-assembled peptide and protein nanofibers for biomedical applications. In: Sarmento B, Das Neves J, Eds. Biomedical Applications of Functionalized Nanomaterials. Elsevier 2018; pp. 569-98.
[http://dx.doi.org/10.1016/B978-0-323-50878-0.00019-7]
[334]
Fang J-Y, Chen JP, Leu YL, Wang HY. Characterization and evaluation of silk protein hydrogels for drug delivery. Chem Pharm Bull 2006; 54(2): 156-62.
[http://dx.doi.org/10.1248/cpb.54.156] [PMID: 16462057]
[335]
Nagai Y, Unsworth LD, Koutsopoulos S, Zhang S. Slow release of molecules in self-assembling peptide nanofiber scaffold. J Control Release 2006; 115(1): 18-25.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.031] [PMID: 16962196]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy