Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

General Review Article

Nanotechnology a Boon for Colorectal Cancer Treatment

Author(s): Priyanka Kriplani* and Kumar Guarve

Volume 18, Issue 3, 2023

Published on: 25 October, 2022

Page: [379 - 396] Pages: 18

DOI: 10.2174/1574892817666221011094619

Price: $65

Abstract

Background: Colorectal cancer (CRC) is the third most widely spread tumor among the human population. It is usually adenocarcinomatous and develops as a polyp on the inner wall of the colon or rectum which may become malignant with time. Though its treatment is limited, its early diagnosis and prevention play a better role, thereby decreasing mortality rates.

Objective: The molecular markers in CRC-affected tissues may play an important role to develop novel strategies to cure the disease. Nanotechnology consists of both an innovative diagnostic and therapeutic array of nanomaterials that may be used to target CRC like dendrimers, carbon nanotubes, nanoparticles, nano-emulsions, etc.

Methods: Current patents and research covering the nanotechnology used to target and diagnose CRC is included in the review.

Results: Nanotechnology is playing a wonderful role in both the treatment and diagnosis of CRC.

Conclusion: The present review may cover the recent advancements in nanotechnology in the treatment and diagnosis of CRC.

Keywords: Colorectal cancer, nanotechnology, nanoparticles, carbon tubes, dendrimers, nanoemulsion.

[1]
da Paz MC, Santos Mde F, Santos CM. et al. Anti-CEA loaded maghemite nanoparticles as a theragnostic device for colorectal cancer. Int J Nanomedicine 2012; 7: 5271-82.
[PMID: 23055733]
[2]
Mazmanian TK, Mazmanian SK, Kay S. et al. Probiotic prevention and treatment of colon cancer. J.P. Patent 2019142884A, 2019.
[3]
Huyghe N, Baldin P, Van den Eynde M. Immunotherapy with immune checkpoint inhibitors in colorectal cancer: What is the future be-yond deficient mismatch-repair tumours? Gastroenterol Rep 2020; 8(1): 11-24.
[http://dx.doi.org/10.1093/gastro/goz061 ] [PMID: 32104582]
[4]
Arvelo F, Sojo F, Cotte C. Biology of colorectal cancer. Ecancermedicalscience 2015; 9: 520.
[http://dx.doi.org/10.3332/ecancer.2015.520 ] [PMID: 25932044]
[5]
Brand M, Gaylard P, Ramos J. Colorectal cancer in South Africa: An assessment of disease presentation, treatment pathways and 5-year survival. S Afr Med J 2018; 108(2): 118-22.
[http://dx.doi.org/10.7196/SAMJ.2018.v108i2.12338 ] [PMID: 29429443]
[6]
Bours MJ, Beijer S, Winkels RM. et al. Dietary changes and dietary supplement use, and underlying motives for these habits reported by colorectal cancer survivors of the Patient Reported Outcomes Following Initial Treatment and Long-Term Evaluation of Survivorship (PROFILES) registry. Br J Nutr 2015; 114(2): 286-96.
[http://dx.doi.org/10.1017/S0007114515001798 ] [PMID: 26079602]
[7]
Gulbake A, Jain A, Jain SK. Insight to drug delivery aspects for colorectal cancer. World J Gastroenterol 2016; 22(2): 582-99.
[http://dx.doi.org/10.3748/wjg.v22.i2.582 ] [PMID: 26811609]
[8]
Kheirelseid EAH, Miller N, Kerin MJ. Molecular biology of colorectal cancer: Review of the literature. Am J Mol Biol 2013; 3(2): 72-80.
[http://dx.doi.org/10.4236/ajmb.2013.32010]
[9]
Hutchinson RA, Adams RA, McArt DG, Salto-Tellez M, Jasani B, Hamilton PW. Epidermal growth factor receptor immunohistochemistry: New opportunities in metastatic colorectal cancer. J Transl Med 2015; 13(1): 217.
[http://dx.doi.org/10.1186/s12967-015-0531-z ] [PMID: 26149458]
[10]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492 ] [PMID: 30207593]
[11]
Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 2013; 65(1): 71-9.
[http://dx.doi.org/10.1016/j.addr.2012.10.002 ] [PMID: 23088862]
[12]
Lambe UPM, Brar B. et al. Nanodiagnostics: A new frontier for veterinary and medical sciences. J Exp Biol Agric Sci 2016; 4(3S): 307-20.
[http://dx.doi.org/10.18006/2016.4(3S).307.320]
[13]
Minakshi P, Kumar R, Ghosh M, Brar B, Barnela M, Lakhani P. Application of polymeric nano-materials in management of inflammatory bowel disease. Curr Top Med Chem 2020; 20(11): 982-1008.
[http://dx.doi.org/10.2174/1568026620666200320113322 ] [PMID: 32196449]
[14]
Minakshi P, Lambe U, Ranjan K, Patil S, Brar B, Devi B. et al. An insight in biomarkers for colorectal cancer. Gastroenterol Liver Dis 2018; 3(1): 1-15.
[15]
Prasad M, Lambe UP, Brar B. et al. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 2018; 97: 1521-37.
[http://dx.doi.org/10.1016/j.biopha.2017.11.026 ] [PMID: 29793315]
[16]
Haggar F, Boushey R. Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg 2009; 22(4): 191-7.
[http://dx.doi.org/10.1055/s-0029-1242458 ] [PMID: 21037809]
[17]
Xynos ID, Kavantzas N, Tsaousi S. et al. Factors influencing survival in stage iv colorectal cancer: The influence of DNA ploidy. ISRN Gastroenterol 2013; 2013: 1-6.
[http://dx.doi.org/10.1155/2013/490578 ] [PMID: 23840958]
[18]
Lai Y, Wang C, Civan JM. et al. Effects of cancer stage and treatment differences on racial disparities in survival from colon cancer: A united states population-based study. Gastroenterology 2016; 150(5): 1135-46.
[http://dx.doi.org/10.1053/j.gastro.2016.01.030 ] [PMID: 26836586]
[19]
Pesta M, Kulda V, Narsanska A, Fichtl J, Topolcan O. May CTC technologies promote better cancer management? EPMA J 2015; 6(1): 1.
[http://dx.doi.org/10.1186/s13167-014-0023-x ] [PMID: 25628770]
[20]
Young PE, Womeldorph CM, Johnson EK. et al. Early detection of colorectal cancer recurrence in patients undergoing surgery with curative intent: Current status and challenges. J Cancer 2014; 5(4): 262-71.
[http://dx.doi.org/10.7150/jca.7988 ] [PMID: 24790654]
[21]
Sun Y, Liu Y, Cogdell D. et al. Examining plasma microRNA markers for colorectal cancer at different stages. Oncotarget 2016; 7(10): 11434-49.
[http://dx.doi.org/10.18632/oncotarget.7196 ] [PMID: 26863633]
[22]
Neufeld G, Akiri G, Vadasz Z, Gengrinovitch S. Pharmaceutical compositions and methods useful for modulating angiogenesis, inhibiting metastasis and tumor fibrosis, and assessing the malignancy of colon cancer tumors. U.S. Patent 20190040470A1, 2019.
[23]
Imperiale TF, Ransohoff DF, Itzkowitz SH, Turnbull BA, Ross ME. Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N Engl J Med 2004; 351(26): 2704-14.
[http://dx.doi.org/10.1056/NEJMoa033403 ] [PMID: 15616205]
[24]
Burch JA, Soares-Weiser K, St John DJB. et al. Diagnostic accuracy of faecal occult blood tests used in screening for colorectal cancer: A systematic review. J Med Screen 2007; 14(3): 132-7.
[http://dx.doi.org/10.1258/096914107782066220 ] [PMID: 17925085]
[25]
Ansa B, Coughlin S, Alema-Mensah E, Smith S. Evaluation of colorectal cancer incidence trends in the United States (2000–2014). J Clin Med 2018; 7(2): 22.
[http://dx.doi.org/10.3390/jcm7020022 ] [PMID: 29385768]
[26]
Qaseem A, Crandall CJ, Mustafa RA. et al. Screening for colorectal cancer in asymptomatic average-risk adults: A guidance statement from the American college of physicians. Ann Intern Med 2019; 171(9): 643-54.
[http://dx.doi.org/10.7326/M19-0642 ] [PMID: 31683290]
[27]
Olén O, Erichsen R, Sachs MC. et al. Colorectal cancer in Crohn's disease: a Scandinavian population-based cohort study. Lancet Gastroenterol Hepatol 2020; 5(5): 475-84.
[28]
Kahi CJ, Boland RC, Dominitz JA. et al. Colonoscopy surveillance after colorectal cancer resection: Recommendations of the US multi-society task force on colorectal cancer. Am J Gastroenterol 2016; 111(3): 337-46.
[http://dx.doi.org/10.1038/ajg.2016.22 ] [PMID: 26871541]
[29]
Brenner H, Stock C, Hoffmeister M. Effect of screening sigmoidoscopy and screening colonoscopy on colorectal cancer incidence and mortality: Systematic review and meta-analysis of randomised controlled trials and observational studies,. BMJ 2014; 348(apr09 1): g2467.
[http://dx.doi.org/10.1136/bmj.g2467] [PMID: 24922745]
[30]
Pickhardt PJ. Missed lesions at CT colonography: Lessons learned. Abdom Imaging 2013; 38(1): 82-97.
[http://dx.doi.org/10.1007/s00261-012-9897-z ] [PMID: 22539045]
[31]
Kuipers EJ, Spaander MCW. Colorectal cancer screening by colonoscopy, ct-colonography, or fecal immunochemical test. J Natl Cancer Inst 2016; 108(2): djv383.
[http://dx.doi.org/10.1093/jnci/djv383 ] [PMID: 26719226]
[32]
Lohsiriwat V, Prapasrivorakul S, Suthikeeree W. Colorectal cancer screening by double contrast barium enema in Thai people. Asian Pac J Cancer Prev 2012; 13(4): 1273-6.
[http://dx.doi.org/10.7314/APJCP.2012.13.4.1273 ] [PMID: 22799317]
[33]
Guo C, Liu Q, Dai M. Colorectal cancer screening: Situation and prospect. Chin J Prev Med 2015; 49(5): 377-80.
[PMID: 26081698]
[34]
Atkin WS, Edwards R, Kralj-Hans I. et al. Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: A multicentre randomised controlled trial. Lancet 2010; 375(9726): 1624-33.
[http://dx.doi.org/10.1016/S0140-6736(10)60551-X ] [PMID: 20430429]
[35]
Segnan N, Armaroli P, Bonelli L. et al. Once-only sigmoidoscopy in colorectal cancer screening: Follow-up findings of the italian randomized controlled trial--SCORE. J Natl Cancer Inst 2011; 103(17): 1310-22.
[http://dx.doi.org/10.1093/jnci/djr284 ] [PMID: 21852264]
[36]
Elmunzer BJ, Hayward RA, Schoenfeld PS, Saini SD, Deshpande A, Waljee AK. Effect of flexible sigmoidoscopy-based screening on incidence and mortality of colorectal cancer: A systematic review and meta-analysis of randomized controlled trials. PLoS Med 2012; 9(12): e1001352.
[http://dx.doi.org/10.1371/journal.pmed.1001352 ] [PMID: 23226108]
[37]
Schoen RE, Pinsky PF, Weissfeld JL. et al. Colorectal-cancer incidence and mortality with screening flexible sigmoidoscopy. N Engl J Med 2012; 366(25): 2345-57.
[http://dx.doi.org/10.1056/NEJMoa1114635 ] [PMID: 22612596]
[38]
Holme Ø, Løberg M, Kalager M. et al. Effect of flexible sigmoidoscopy screening on colorectal cancer incidence and mortality: A randomized clinical trial. JAMA 2014; 312(6): 606-15.
[http://dx.doi.org/10.1001/jama.2014.8266 ] [PMID: 25117129]
[39]
Allen JE, Saroya BS, Kunkel M. et al. Apoptotic Circulating Tumor Cells (CTCs) in the peripheral blood of metastatic colorectal cancer patients are associated with liver metastasis but not CTCs. Oncotarget 2014; 5(7): 1753-60.
[http://dx.doi.org/10.18632/oncotarget.1524 ] [PMID: 24334302]
[40]
Mostert B, Sieuwerts AM, Bolt-de Vries J. et al. mRNA expression profiles in circulating tumor cells of metastatic colorectal cancer patients. Mol Oncol 2015; 9(4): 920-32.
[http://dx.doi.org/10.1016/j.molonc.2015.01.001 ] [PMID: 25655581]
[41]
Kozono S, Hitoshi N, Tetsuji K, Sudo Y, Kawauchi J, Kojima J. Colon cancer detection kit or device, and detection method. Patent JP2020171299A, 2020.
[42]
Siddique S, Chow JCL. Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterials 2020; 10(9): 1700.
[http://dx.doi.org/10.3390/nano10091700 ] [PMID: 32872399]
[43]
Rosado-de-Castro PH, Morales MP, Pimentel-Coelho PM, Mendez-Otero R, Herranz F. Development and application of nanoparticles in biomedical imaging. Contrast Media Mol Imaging 2018; 2018: 1-2.
[http://dx.doi.org/10.1155/2018/1403826 ] [PMID: 29805332]
[44]
Lécuyer T, Teston E, Ramirez-Garcia G. et al. Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics 2016; 6(13): 2488-523.
[http://dx.doi.org/10.7150/thno.16589 ] [PMID: 27877248]
[45]
Liu J, Lécuyer T, Seguin J. et al. Imaging and therapeutic applications of persistent luminescence nanomaterials. Adv Drug Deliv Rev 2019; 138: 193-210.
[http://dx.doi.org/10.1016/j.addr.2018.10.015 ] [PMID: 30414492]
[46]
Siddique S, Chow JCL. Gold nanoparticles for drug delivery and cancer therapy. Appl Sci 2020; 10(11): 3824.
[http://dx.doi.org/10.3390/app10113824]
[47]
Kim J, Lee N, Hyeon T. Recent development of nanoparticles for molecular imaging. Math Phys Eng Sci 2017; 375(2107): 20170022.
[http://dx.doi.org/10.1098/rsta.2017.0022 ] [PMID: 29038377]
[48]
Lee S. Laparoscopic procedures for colon and rectal cancer surgery. Clin Colon Rectal Surg 2009; 22(4): 218-24.
[http://dx.doi.org/10.1055/s-0029-1242461 ] [PMID: 21037812]
[49]
Chu E. An update on the current and emerging targeted agents in metastatic colorectal cancer. Clin Colorectal Cancer 2012; 11(1): 1-13.
[http://dx.doi.org/10.1016/j.clcc.2011.05.005 ] [PMID: 21752724]
[50]
Joye I, Haustermans K. Early and late toxicity of radiotherapy for rectal cancer.In: Otto F, Lutz MP, Eds Early gastrointestinal cancers II: Rectal Cancer Switzerland: Springer International Publishing. 2014; pp. 189-201.
[http://dx.doi.org/10.1007/978-3-319-08060-4_13]]
[51]
Jayakumar J, Mohammed ZH, Jayaprakash BU, Ramzi MM, Bhat AA. Recent developments in nanomedicine; Treatment options for colorectal cancer. In: Macha MA, Ed Modern technology: Present and future of cancer San Mateo, CA: OMICS Group eBooks. 2015.
[52]
Wu SY, Huang YJ, Tzeng YM. et al. Destruxin B suppresses drug-resistant colon tumorigenesis and stemness is associated with the up-regulation of miR-214 and downregulation of mTOR/β-catenin pathway. Cancers 2018; 10(10): 353.
[http://dx.doi.org/10.3390/cancers10100353 ] [PMID: 30257507]
[53]
Dienstmann R, Salazar R, Tabernero J. Overcoming resistance to anti-egfr therapy in colorectal cancer. Am Soc Clin Oncol Educ Book 2015; 35(35): e149-56.
[http://dx.doi.org/10.14694/EdBook_AM.2015.35.e149 ] [PMID: 25993166]
[54]
DeNardo GL, DeNardo SJ. Concepts, consequences, and implications of theranosis. Semin Nucl Med 2012; 42(3): 147-50.
[http://dx.doi.org/10.1053/j.semnuclmed.2011.12.003 ] [PMID: 22475423]
[55]
Jensen NF, Stenvang J, Beck MK. et al. Establishment and characterization of models of chemotherapy resistance in colorectal cancer: Towards a predictive signature of chemoresistance. Mol Oncol 2015; 9(6): 1169-85.
[http://dx.doi.org/10.1016/j.molonc.2015.02.008 ] [PMID: 25759163]
[56]
Fortina P, Kricka LJ, Graves DJ. et al. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol 2007; 25(4): 145-52.
[http://dx.doi.org/10.1016/j.tibtech.2007.02.005 ] [PMID: 17316852]
[57]
Bose S, Panda AK, Mukherjee S, Sa G. Curcumin and tumor immune-editing: Resurrecting the immune system. Cell Div 2015; 10(1): 6.
[http://dx.doi.org/10.1186/s13008-015-0012-z ] [PMID: 26464579]
[58]
Yallapu MM, Nagesh PKB, Jaggi M, Chauhan SC. Therapeutic applications of curcumin nanoformulations. AAPS J 2015; 17(6): 1341-56.
[http://dx.doi.org/10.1208/s12248-015-9811-z ] [PMID: 26335307]
[59]
Laroui H, Rakhya P, Xiao B, Viennois E, Merlin D. Nanotechnology in diagnostics and therapeutics for gastrointestinal disorders. Dig Liver Dis 2013; 45(12): 995-1002.
[http://dx.doi.org/10.1016/j.dld.2013.03.019 ] [PMID: 23660079]
[60]
Dong Z, Cui MY, Peng Z. et al. Nanoparticles for colorectal cancer targeted drug delivery and MR imaging: Current situation and perspectives. Curr Cancer Drug Targets 2016; 16(6): 536-50.
[http://dx.doi.org/10.2174/1568009616666151130214442 ] [PMID: 26632434]
[61]
Fang M, Peng CW, Pang DW, Li Y. Quantum dots for cancer research: Current status, remaining issues, and future perspectives. Cancer Biol Med 2012; 9(3): 151-63.
[PMID: 23691472]
[62]
Pericleous P, Gazouli M, Lyberopoulou A, Rizos S, Nikiteas N, Efstathopoulos EP. Quantum dots hold promise for early cancer imaging and detection. Int J Cancer 2012; 131(3): 519-28.
[http://dx.doi.org/10.1002/ijc.27528 ] [PMID: 22411309]
[63]
Zeng WJ, Peng CW, Yuan JP, Cui R, Li Y. Quantum dot-based multiplexed imaging in malignant ascites: A new model for malignant ascites classification. Int J Nanomedicine 2015; 10: 1759-68.
[PMID: 25784803]
[64]
Wang S, Li W, Yuan D, Song J, Fang J. Quantitative detection of the tumor-associated antigen large external antigen in colorectal cancer tissues and cells using quantum dot probe. Int J Nanomedicine 2016; 11: 235-47.
[PMID: 26834472]
[65]
Gazouli M, Bouziotis P, Lyberopoulou A. et al. Quantum dotsbevacizumab complexes for in vivo imaging of tumors. In Vivo 2014; 28(6): 1091-5.
[PMID: 25398804]
[66]
Wang Y, Li Y, Wang T, Gu J, Zhao J, Pan Z. Detection of AKR1B10 in peripheral blood by anti-akr1b10-conjugated CdTe/CdS quantum dots. Clin Lab 2015; 61(09/2015): 1267-74.
[http://dx.doi.org/10.7754/Clin.Lab.2015.150203] [PMID: 26554246]
[67]
Liu R, Zheng S, Yang C. et al. Prognostic value of aldo-keto reductase family 1 member B10 (AKR1B10) in digestive system cancers. Medicine 2021; 100(14): e25454.
[http://dx.doi.org/10.1097/MD.0000000000025454 ] [PMID: 33832153]
[68]
Carbary-Ganz JL, Welge WA, Barton JK, Utzinger U. In vivo molecular imaging of colorectal cancer using quantum dots targeted to vascular endothelial growth factor receptor 2 and optical coherence tomography/laser-induced fluorescence dual-modality imaging. J Biomed Opt 2015; 20(9): 096015.
[http://dx.doi.org/10.1117/1.JBO.20.9.096015 ] [PMID: 26397238]
[69]
Xing X, Zhang B, Wang X, Liu F, Shi D, Cheng Y. An “imagingbiopsy” strategy for colorectal tumor reconfirmation by multipurpose paramagnetic quantum dots. Biomaterials 2015; 48: 16-25.
[http://dx.doi.org/10.1016/j.biomaterials.2015.01.011 ] [PMID: 25701028]
[70]
Hashemkhani M, Demirci G, Bayir A. et al. Cetuximab-Ag 2 S quantum dots for fluorescence imaging and highly effective combination of ALA-based photodynamic/chemo-therapy of colorectal cancer cells. Nanoscale 2021; 13(35): 14879-99.
[http://dx.doi.org/10.1039/D1NR03507J ] [PMID: 34533177]
[71]
Niu Q, Yu X, Yuan Q, Hu W, Yu D, Zhang Q. Quantum dots based near-infrared fluorescent probe for the detection of PepT1 expression in colorectal cancer. Chem Phys Lett 2020; 739: 136977.
[http://dx.doi.org/10.1016/j.cplett.2019.136977]
[72]
Habiba K, Aziz K, Sanders K. et al. Enhancing colorectal cancer radiation therapy efficacy using silver nanoprisms decorated with graphene as radiosensitizers. Sci Rep 2019; 9(1): 17120.
[http://dx.doi.org/10.1038/s41598-019-53706-0 ] [PMID: 31745177]
[73]
Espinosa A, Di Corato R, Kolosnjaj-Tabi J, Flaud P, Pellegrino T, Wilhelm C. Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 2016; 10(2): 2436-46.
[http://dx.doi.org/10.1021/acsnano.5b07249 ] [PMID: 26766814]
[74]
Esmaelbeygi E, Khoei S, Khoee S, Eynali S. Role of iron oxide core of polymeric nanoparticles in the thermosensitivity of colon cancer cell line HT-29. Int J Hyperthermia 2015; 31(5): 489-97.
[http://dx.doi.org/10.3109/02656736.2015.1035766 ] [PMID: 25960148]
[75]
Kuo CY, Liu TY, Chan TY. et al. Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy. Colloids Surf B Biointerfaces 2016; 140: 567-73.
[http://dx.doi.org/10.1016/j.colsurfb.2015.11.008 ] [PMID: 26705859]
[76]
Feng ST, Li J, Luo Y. et al. pH-sensitive nanomicelles for controlled and efficient drug delivery to human colorectal carcinoma LoVo cells. PLoS One 2014; 9(6): e100732.
[http://dx.doi.org/10.1371/journal.pone.0100732 ] [PMID: 24964012]
[77]
He X, Liu F, Liu L, Duan T, Zhang H, Wang Z. Lectin-conjugated Fe2O3@Au core@Shell nanoparticles as dual mode contrast agents for in vivo detection of tumor. Mol Pharm 2014; 11(3): 738-45.
[http://dx.doi.org/10.1021/mp400456j ] [PMID: 24472046]
[78]
Lu S, Li X, Zhang J, Peng C, Shen M, Shi X. Dendrimer-stabilized gold nanoflowers embedded with ultrasmall iron oxide nanoparticles for multimode imaging–guided combination therapy of tumors. Adv Sci 2018; 5(12): 1801612.
[http://dx.doi.org/10.1002/advs.201801612 ] [PMID: 30581720]
[79]
Li X, Lu S, Xiong Z. et al. Light-addressable nanoclusters of ultrasmall iron oxide nanoparticles for enhanced and dynamic magnetic res-onance imaging of arthritis. Adv Sci 2019; 6(19): 1901800.
[http://dx.doi.org/10.1002/advs.201901800 ] [PMID: 31592427]
[80]
Sah H. Desu, Sah, Wood, Thoma. Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int J Nanomedicine 2013; 8: 747-65.
[http://dx.doi.org/10.2147/IJN.S40579 ] [PMID: 23459088]
[81]
Akl M A, Kartal-Hodzic A, Oksanen T, Ismael H R, Afouna M M, Yliperttula M. et al. Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery. J Drug Deliv Sci Tech 2016; 32(A): : 10-20.
[82]
Essa S, Daoud J, Lafleur M, Martel S, Tabrizian M. SN-38 active loading in poly(lactic-co-glycolic acid) nanoparticles and assessment of their anticancer properties on COLO-205 human colon adenocarcinoma cells. J Microencapsul 2015; 32(8): 784-93.
[http://dx.doi.org/10.3109/02652048.2015.1081416 ] [PMID: 26381056]
[83]
Wu P, Zhou Q, Zhu H. et al. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon. BMC Cancer 2020; 20(1): 354.
[84]
Oliveira AL C de SL. , Araújo Júnior RF, Gomes de Carvalho TB, et al. Effect of oxaliplatin-loaded poly (d,l-lactide-co-glycolic acid) (PLGA) nanoparticles combined with retinoic acid and cholesterol on apoptosis, drug resistance, and metastasis factors of colorectal can-cer. Pharmaceutics 2020; 12(2): 193.
[http://dx.doi.org/10.3390/pharmaceutics12020193]
[85]
Handali S, Moghimipour E, Rezaei M, Ramezani Z, Dorkoosh FA. PHBV/PLGA nanoparticles for enhanced delivery of 5-fluorouracil as promising treatment of colon cancer. Pharm Dev Technol 2020; 25(2): 206-18.
[http://dx.doi.org/10.1080/10837450.2019.1684945 ] [PMID: 31648589]
[86]
Rastogi V, Yadav P, Bhattacharya SS. et al. Carbon nanotubes: An emerging drug carrier for targeting cancer cells. J Drug Deliv 2014; 2014: 1-23.
[http://dx.doi.org/10.1155/2014/670815 ] [PMID: 24872894]
[87]
Hampel S, Kunze D, Haase D. et al. Carbon nanotubes filled with a chemotherapeutic agent: A nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 2008; 3(2): 175-82.
[http://dx.doi.org/10.2217/17435889.3.2.175 ] [PMID: 18373424]
[88]
Lee Y, Geckeler KE. Cellular interactions of a water-soluble supramolecular polymer complex of carbon nanotubes with human epithelial colorectal adenocarcinoma cells. Macromol Biosci 2012; 12(8): 1060-7.
[http://dx.doi.org/10.1002/mabi.201200085 ] [PMID: 22707328]
[89]
Wu L, Ficker M, Christensen JB, Trohopoulos PN, Moghimi SM. Dendrimers in medicine: Therapeutic concepts and pharmaceutical challenges. Bioconjug Chem 2015; 26(7): 1198-211.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00031 ] [PMID: 25654320]
[90]
Zhou HS, Sasahara H, Honma I, Komiyama H, Haus JW. Coated semiconductor nanoparticles: The CdS/PbS system’s photoluminescence properties. Chem Mater 1994; 6(9): 1534-41.
[http://dx.doi.org/10.1021/cm00045a010]
[91]
Zakaria AB, Picaud F, Rattier T. et al. Nanovectorization of TRAIL with single wall carbon nanotubes enhances tumor cell killing. Nano Lett 2015; 15(2): 891-5.
[http://dx.doi.org/10.1021/nl503565t ] [PMID: 25584433]
[92]
Jin H, Gao S, Song D, Liu Y, Chen X. Intratumorally CpG immunotherapy with carbon nanotubes inhibits local tumor growth and liver metastasis by suppressing the epithelial–mesenchymal transition of colon cancer cells. Anticancer Drugs 2021; 32(3): 278-85.
[http://dx.doi.org/10.1097/CAD.0000000000001000 ] [PMID: 32976213]
[93]
González-Domínguez JM, Grasa L, Frontiñán-Rubio J. et al. Intrinsic and selective activity of functionalized carbon nanotube/nanocellulose platforms against colon cancer cells. Colloids Surf B Biointerfaces 2022; 212: 112363.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112363 ] [PMID: 35123194]
[94]
Abbasi E, Aval SF, Akbarzadeh A. et al. Dendrimers: Synthesis, applications, and properties. Nanoscale Res Lett 2014; 9(1): 247.
[http://dx.doi.org/10.1186/1556-276X-9-247 ] [PMID: 24994950]
[95]
Huang W, Wang X, Shi C. et al. Fine-tuning vitamin E-containing telodendrimers for efficient delivery of gambogic acid in colon cancer treatment. Mol Pharm 2015; 12(4): 1216-29.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00051 ] [PMID: 25692376]
[96]
Singh J, Jain K, Mehra NK, Jain NK. Dendrimers in anticancer drug delivery: Mechanism of interaction of drug and dendrimers. Artif Cells Nanomed Biotechnol 2016; 44(7): 1626-34.
[http://dx.doi.org/10.3109/21691401.2015.1129625 ] [PMID: 26747336]
[97]
Xie J, Gao Y, Zhao R. et al. Ex vivo and in vivo capture and deactivation of circulating tumor cells by dual-antibody-coated nanomaterials. J Control Release 2015; 209: 159-69.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.036 ] [PMID: 25933713]
[98]
Xie J, Wang J, Chen H. et al. Multivalent conjugation of antibody to dendrimers for the enhanced capture and regulation on colon cancer cells. Sci Rep 2015; 5(1): 9445.
[http://dx.doi.org/10.1038/srep09445 ] [PMID: 25819426]
[99]
Nabavizadeh F, Fanaei H, Imani A. et al. Evaluation of nanocarrier targeted drug delivery of capecitabine-PAMAM dendrimer complex in a mice colorectal cancer model. Acta Med Iran 2016; 54(8): 485-93.
[PMID: 27701718]
[100]
Alibolandi M, Hoseini F, Mohammadi M. et al. Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. Int J Pharm 2018; 549(1-2): 67-75.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.052 ] [PMID: 30048777]
[101]
Alibolandi M, Taghdisi SM, Ramezani P. et al. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int J Pharm 2017; 519(1-2): 352-64.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.044 ] [PMID: 28126548]
[102]
Fan X, Sun L, Wu Y, Zhang L, Yang Z. Bioactivity of 2′-deoxyinosine-incorporated aptamer AS1411. Sci Rep 2016; 6(1): 25799.
[http://dx.doi.org/10.1038/srep25799 ] [PMID: 27194215]
[103]
England RM, Hare JI, Barnes J. et al. Tumour regression and improved gastrointestinal tolerability from controlled release of SN-38 from novel polyoxazoline-modified dendrimers. J Control Release 2017; 247: 73-85.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.034 ] [PMID: 28043863]
[104]
Narmani A, Kamali M, Amini B, Salimi A, Panahi Y. Targeting delivery of oxaliplatin with smart PEG-modified PAMAM G4 to colorectal cell line: in vitro studies. Process Biochem 2018; 69: 178-87.
[http://dx.doi.org/10.1016/j.procbio.2018.01.014]
[105]
Castro R, Forero-Doria O, Guzmán L. Perspectives of dendrimer-based nanoparticles in cancer therapy. An Acad Bras Cienc 2018; 90(2): 2331-46.
[http://dx.doi.org/10.1590/0001-3765201820170387 ] [PMID: 30066746]
[106]
Fox ME, Guillaudeu S, Fréchet JMJ, Jerger K, Macaraeg N, Szoka FC. Synthesis and in vivo antitumor efficacy of PEGylated poly(llysine) dendrimer-camptothecin conjugates. Mol Pharm 2009; 6(5): 1562-72.
[http://dx.doi.org/10.1021/mp9001206 ] [PMID: 19588994]
[107]
Cook BE, Membreno R, Zeglis BM. Dendrimer scaffold for the amplification of in vivo pre-targeting ligations. Bioconjug Chem 2018; 29(8): 2734-40.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00385 ] [PMID: 29969558]
[108]
Carvalho MR, Reis RL, Oliveira JM. Dendrimer nanoparticles for colorectal cancer applications. J Mater Chem B Mater Biol Med 2020; 8(6): 1128-38.
[http://dx.doi.org/10.1039/C9TB02289A ] [PMID: 31971528]
[109]
Wang Z, Lu Y, Zhang J, Kenis PJA, Wong NY. Nucleic acidmediated shape control of nanoparticles for biomedical applications. U.S. Patent 20120107242A1, 2012.
[110]
Baker JR, Cheng X, Thomas PT, Huang BM. Dendrimer conjugates. U.S. Patent 8445528B2, 2013.
[111]
Li X, Xiong Zuogang, Xu Xiaoying. et al. (99m)Tc-labeled multifunctional low-generation dendrimer-entrapped gold nanoparticles for targeted SPECT/CT dual-mode imaging of tumors. ACS Appl Mater Interfac 2016; 31: 19883-91.
[112]
Li X, Ouyang Z, Li H. et al. Dendrimer-decorated nanogels: Efficient nanocarriers for biodistribution in vivo and chemotherapy of ovarian carcinoma. Bioact Mater 2021; 6(10): 3244-53.
[http://dx.doi.org/10.1016/j.bioactmat.2021.02.031 ] [PMID: 33778202]
[113]
Suntres ZE. Liposomal antioxidants for protection against oxidantinduced damage. J Toxicol 2011; 2011: 1-16.
[http://dx.doi.org/10.1155/2011/152474 ] [PMID: 21876690]
[114]
Patil YP, Jadhav S. Novel methods for liposome preparation. Chem Phys Lipids 2014; 177: 8-18.
[http://dx.doi.org/10.1016/j.chemphyslip.2013.10.011 ] [PMID: 24220497]
[115]
Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13(1): 238-IN27.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6 ] [PMID: 5859039]
[116]
Li W, Chen H, Yu M, Fang J. Targeted delivery of doxorubicin using a colorectal cancer-specific ssDNA aptamer. Anat Rec 2014; 297(12): 2280-8.
[http://dx.doi.org/10.1002/ar.22990 ] [PMID: 25044297]
[117]
Stang J, Haynes M, Carson P, Moghaddam M. A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Trans Biomed Eng 2012; 59(9): 2431-8.
[http://dx.doi.org/10.1109/TBME.2012.2199492 ] [PMID: 22614518]
[118]
Ryu JY, Choi YJ, Won EJ. et al. Gene editing particle system as a therapeutic approach for drug-resistant colorectal cancer. Nano Res 2020; 13(6): 1576-85.
[http://dx.doi.org/10.1007/s12274-020-2773-1]
[119]
Zhao Y, Xu J, Le VM. et al. EpCAM aptamer-functionalized cationic liposome-based nanoparticles loaded with miR-139-5p for targeted therapy in colorectal cancer. Mol Pharm 2019; 16(11): 4696-710.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00867 ] [PMID: 31589818]
[120]
Wang LL, Feng CL, Zheng WS. et al. Tumor-selective lipopolyplex encapsulated small active RNA hampers colorectal cancer growth in vitro and in orthotopic murine. Biomaterials 2017; 141(141): 13-28.
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.029 ] [PMID: 28666099]
[121]
Canaparo R, Foglietta F, Giuntini F, Della Pepa C, Dosio F, Serpe L. Recent developments in antibacterial therapy: Focus on stimuliresponsive drug-delivery systems and therapeutic nanoparticles. Molecules 2019; 24(10): 1991.
[http://dx.doi.org/10.3390/molecules24101991 ] [PMID: 31137622]
[122]
Thomas E, Menon JU, Owen J. et al. Ultrasound-mediated cavitation enhances the delivery of an EGFR-targeting liposomal formulation designed for chemo-radionuclide therapy. Theranostics 2019; 9(19): 5595-609.
[http://dx.doi.org/10.7150/thno.34669 ] [PMID: 31534505]
[123]
Lajoinie G, Luan Y, Gelderblom E. et al. Non-spherical oscillations drive the ultrasound-mediated release from targeted microbubbles. Commun Phys 2018; 1(1): 22.
[http://dx.doi.org/10.1038/s42005-018-0020-9]
[124]
Wang Y, Hu Y, Su N, Luo X, Zhang Q, Li X. Han. Polydopamine-coated liposomes as as pH-sensitive anticancer drug carriers. J Microencapsul 2016; 33(3): 1-6.
[125]
Buricas P. Cancer tretments. K.R. Patent 20090023548A, 2009.
[126]
Amato G. Silica-encapsulated efficient and stable si quantum dots with high biocompatibility. Nanoscale Res Lett 2010; 5(7): 1156-60.
[http://dx.doi.org/10.1007/s11671-010-9619-9 ] [PMID: 20596494]
[127]
Wei L, Hu N, Zhang Y. Synthesis of polymer mesoporous silica nanocomposites. Materials 2010; 3(7): 4066-79.
[http://dx.doi.org/10.3390/ma3074066 ] [PMID: 28883321]
[128]
Bharti C, Gulati N, Nagaich U, Pal AK. Mesoporous silica nanoparticles in target drug delivery system: A review. Int J Pharm Investig 2015; 5(3): 124-33.
[http://dx.doi.org/10.4103/2230-973X.160844 ] [PMID: 26258053]
[129]
Radhakrishnan K, Gupta S, Gnanadhas DP, Ramamurthy PC, Chakravortty D, Raichur AM. Protamine-capped mesoporous silica nanoparticles for biologically triggered drug release. Part Part Syst Charact 2014; 31(4): 449-58.
[http://dx.doi.org/10.1002/ppsc.201300219]
[130]
Hanafi-Bojd MY, Jaafari MR, Ramezanian N. et al. Surface functionalized mesoporous silica nanoparticles as an effective carrier for epi-rubicin delivery to cancer cells. Eur J Pharm Biopharm 2015; 89: 248-58.
[http://dx.doi.org/10.1016/j.ejpb.2014.12.009 ] [PMID: 25511563]
[131]
Nanotechnology to improve early detection and treatment of colorectal cancer. 2016. In: Advances in colorectal cancer research. Available from: https://www.nih.gov/research-training/nanotechnologyimproveearly-detection-treatment-colorectal-cancer
[132]
Narayan R, Gadag S, Cheruku SP. et al. Chitosan-glucuronic acid conjugate coated mesoporous silica nanoparticles: A smart pHresponsive and receptor-targeted system for colorectal cancer therapy. Carbohydr Polym 2021; 261: 117893.
[http://dx.doi.org/10.1016/j.carbpol.2021.117893 ] [PMID: 33766378]
[133]
Wijewantha N, Eikanger MM, Antony RM, Potts RA, Rezvani K, Sereda G. Targeting colon cancer cells with enzyme-triggered casein-gated release of cargo from mesoporous silica-based nanoparticles. Bioconjug Chem 2021; 32(11): 2353-65.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00416 ] [PMID: 34672618]
[134]
Li X, Xing L, Zheng K. et al. Formation of gold nanostar-coated hollow mesoporous silica for tumor multimodality imaging and photothermal therapy. ACS Appl Mater Interfaces 2017; 9(7): 5817-27.
[http://dx.doi.org/10.1021/acsami.6b15185 ] [PMID: 28118704]
[135]
Li X, Xing L, Hu Y. et al. An RGD-modified hollow silica@Au core/shell nanoplatform for tumor combination therapy. Acta Biomater 2017; 62: 273-83.
[http://dx.doi.org/10.1016/j.actbio.2017.08.024 ] [PMID: 28823719]
[136]
Xing L, Li X, Xing Z. et al. Silica/gold nanoplatform combined with a thermosensitive gel for imaging-guided interventional therapy in PDX of pancreatic cancer. Chem Eng J 2020; 382: 122949.
[http://dx.doi.org/10.1016/j.cej.2019.122949]
[137]
Ramalingam V, Rajaram R, PremKumar C. et al. Biosynthesis of silver nanoparticles from deep sea bacterium Pseudomonas aeruginosa JQ989348 for antimicrobial, antibiofilm, and cytotoxic activity. J Basic Microbiol 2014; 54(9): 928-36.
[http://dx.doi.org/10.1002/jobm.201300514 ] [PMID: 24136453]
[138]
Li S, Zhang L, Wang T, Li L, Wang C, Su Z. The facile synthesis of hollow Au nanoflowers for synergistic chemo-photothermal cancer therapy. Chem Commun 2015; 51(76): 14338-41.
[http://dx.doi.org/10.1039/C5CC05676D ] [PMID: 26299901]
[139]
Xiao T, Huang J, Wang D, Meng T, Yang X. Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications. Talanta 2020; 206: 120210.
[http://dx.doi.org/10.1016/j.talanta.2019.120210 ] [PMID: 31514855]
[140]
Zhao X, Pan J, Li W, Yang W, Qin L, Pan Y. Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels. Int J Nanomedicine 2018; 13: 6207-21.
[http://dx.doi.org/10.2147/IJN.S176928 ] [PMID: 30349245]
[141]
Graczyk A, Pawlowska R, Jedrzejczyk D, Chworos A. Gold nanoparticles in conjunction with nucleic acids as a modern molecularsystem for cellular delivery. Molecules 2020; 25(1): 204.
[http://dx.doi.org/10.3390/molecules25010204 ] [PMID: 31947834]
[142]
Pissuwan D, Gazzana C, Mongkolsuk S, Cortie MB. Single and multiple detections of foodborne pathogens by gold nanoparticle assays. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12(1): e1584.
[http://dx.doi.org/10.1002/wnan.1584 ] [PMID: 31532914]
[143]
Singhana B, Slattery P, Melancon MP. Targeted gold nanoshells, in applications of nanoscience in photomedicine Oxfordshire, United Kingdom. Woodhead Publishing Limited Chandos Publishing 2015; pp. 267-90.
[144]
Go G, Lee CS, Yoon YM, Lim JH, Kim TH, Lee SH. PrPC aptamer conjugated–gold nanoparticles for targeted delivery of doxorubicin to colorectal cancer cells. Int J Mol Sci 2021; 22(4): 1976.
[http://dx.doi.org/10.3390/ijms22041976 ] [PMID: 33671292]
[145]
Arab-Bafrani Z, Shahbazi-Gahrouei D, Abbasian M. Rapid delivery of gold nanoparticles into colon cancer ht-29 cells by electroporation: InVitro study. J Biomed Phys Eng 2020; 10(2): 161-6.
[PMID: 32337183]
[146]
Patel N, Ghali L, Roitt I, Munoz LP, Bayford R. Exploiting the efficacy of Tyro3 and folate receptors to enhance the delivery of gold nanoparticles into colorectal cancer cells in vitro. Nanoscale Adv 2021; 3(18): 5373-86.
[http://dx.doi.org/10.1039/D1NA00318F]
[147]
Luque-Badillo A, Hernandez-Tapia G, Ramirez-Castillo D. et al. Gold nanoparticles enhance microRNA 31 detection in colon cancer cells after inhibition with chlorogenic acid. Oncol Lett 2021; 22(4): 742.
[http://dx.doi.org/10.3892/ol.2021.13003 ] [PMID: 34466154]
[148]
El Hallal R, Lyu N, Wang Y. Effect of cetuximab-conjugated gold nanoparticles on the cytotoxicity and phenotypic evolution of colorectal cancer cells. Molecules 2021; 26(3): 567.
[http://dx.doi.org/10.3390/molecules26030567 ] [PMID: 33499047]
[149]
Bilensoy E, Sarisozen C, Esendağlı G. et al. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. Int J Pharm 2009; 371(1-2): 170-6.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.015 ] [PMID: 19135514]
[150]
Huang RF, Wei YJ, Inbaraj BS, Chen BH. Inhibition of colon cancer cell growth by nanoemulsion carrying gold nanoparticles and lycopene. Int J Nanomedicine 2015; 10(1): 2823-46.
[PMID: 25914533]
[151]
Pangeni R, Choi SW, Jeon OC, Byun Y, Park JW. Multiple nanoemulsion system for an oral combinational delivery of oxaliplatin and 5-fluorouracil: Preparation and in vivo evaluation. Int J Nanomedicine 2016; 11: 6379-99.
[http://dx.doi.org/10.2147/IJN.S121114 ] [PMID: 27942212]
[152]
Lee A, Meng N, Liu X. Mesoporous silica nanoparticles with a lipid bilayer coating for cargo delivery. K.R. Patent 20180094112A, 2018.
[153]
Jiao L, Wang Y, Jiang HL, Xu Q. Metal-organic frameworks as platforms for catalytic applications. Adv Mater 2018; 30(37): 1703663.
[http://dx.doi.org/10.1002/adma.201703663 ] [PMID: 29178384]
[154]
Zhang Z, Ji H, Song Y. et al. Fe(III)-based metal–organic framework-derived core–shell nanostructure: Sensitive electrochemical platform for high trace determination of heavy metal ions. Biosens Bioelectron 2017; 94: 358-64.
[http://dx.doi.org/10.1016/j.bios.2017.03.014 ] [PMID: 28319903]
[155]
Gu C, Guo C, Li Z. et al. Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: Ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells. Biosens Bioelectron 2019; 134: 8-15.
[http://dx.doi.org/10.1016/j.bios.2019.03.043 ] [PMID: 30952013]
[156]
Jayanthi VSPKSA, Das AB, Saxena U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens Bioelectron 2017; 91: 15-23.
[http://dx.doi.org/10.1016/j.bios.2016.12.014 ] [PMID: 27984706]
[157]
Huang R, He N, Li Z. Recent progresses in DNA nanostructurebased biosensors for detection of tumor markers. Biosens Bioelectron 2018; 109: 27-34.
[http://dx.doi.org/10.1016/j.bios.2018.02.053 ] [PMID: 29524914]
[158]
Zhang W, Wang C, Guan L, Peng M, Li K, Lin Y. A nonenzymatic electrochemical biosensor based on Au@PBA(Ni–Fe):MoS2 nanocubes for stable and sensitive detection of hydrogen peroxide released from living cells. J Mater Chem B Mater Biol Med 2019; 7(48): 7704-12.
[http://dx.doi.org/10.1039/C9TB02059D ] [PMID: 31754682]
[159]
Li Y, Hu M, Huang X, Wang M, He L, Song Y. et al. Multicomponent zirconium-based metal-organic frameworks for impedimetric aptasensing of living cancer cells. Sens Actuat Biol Chem 2020; 306: 127608.
[160]
Peng J, Han S, Chen Z. et al. Chaperone-mediated autophagy regulates apoptosis and the proliferation of colon carcinoma cells. Biochem Biophys Res Commun 2020; 522(2): 348-54.
[http://dx.doi.org/10.1016/j.bbrc.2019.11.081 ] [PMID: 31761324]
[161]
Duan F, Hu M, Guo C. et al. Chromium-based metal-organic framework embedded with cobalt phthalocyanine for the sensitively impedimetric cytosensing of colorectal cancer (CT26) cells and cell imaging. Chem Eng J 2020; 398: 125452.
[http://dx.doi.org/10.1016/j.cej.2020.125452]
[162]
Lu K, He C, Lin W. A chlorin-based nanoscale metal–organic framework for photodynamic therapy of colon cancers. J Am Chem Soc 2015; 137(24): 7600-3.
[http://dx.doi.org/10.1021/jacs.5b04069 ] [PMID: 26068094]
[163]
Chun NY, Kim SN, Choi YS, Choy YB. PCN-223 as a drug carrier for potential treatment of colorectal cancer. J Ind Eng Chem 2020; 84: 290-6.
[http://dx.doi.org/10.1016/j.jiec.2020.01.010]
[164]
Lin W, He C, Kuangda LU. Nanoparticles for photodynamic therapy, x-ray induced photodynamic therapy, radiotherapy, chemotherapy, immunotherapy, and any combination thereof. U.S. Patent 20190209460A1, 2020.
[165]
Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov Today 2015; 20(5): 595-601.
[http://dx.doi.org/10.1016/j.drudis.2014.11.014 ] [PMID: 25543008]
[166]
Abdellatif HAA, Mahmood A, Alsharidah M. et al. Bioactivities of the green synthesized silver nanoparticles reduced using Allium cepa L aqueous extracts induced apoptosis in colorectal cancer cell lines. J Nanomater 2022; 1-13.
[http://dx.doi.org/10.1155/2022/1746817]
[167]
Rozalen M, Sánchez-Polo M, Fernández-Perales M, Widmann TJ, Rivera-Utrilla J. Synthesis of controlled-size silver nanoparticles for the administration of methotrexate drug and its activity in colon and lung cancer cells. RSC Advances 2020; 10(18): 10646-60.
[http://dx.doi.org/10.1039/C9RA08657A ] [PMID: 35492913]
[168]
Gurunathan S, Qasim M, Park C, Yoo H, Kim JH, Hong K. Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. Int J Mol Sci 2018; 19(8): 2269.
[http://dx.doi.org/10.3390/ijms19082269 ] [PMID: 30072642]
[169]
Xiao H, Chen Y, Alnaggar M. Silver nanoparticles induce cell death of colon cancer cells through impairing cytoskeleton and membrane nanostructure. Micron 2019; 126: 102750.
[http://dx.doi.org/10.1016/j.micron.2019.102750]
[170]
Zhenyu L, Jianhua C, Xuemei Q. Anti-colon cancer silver nanoparticles and preparation method thereof. CN111097921B, 2021.
[171]
Javed B, Mashwani ZR. Synergistic effects of physicochemical parameters on bio-fabrication of mint silver nanoparticles: Structural evaluation and action against HCT116 colon cancer cells. Int J Nanomedicine 2020; 15: 3621-37.
[http://dx.doi.org/10.2147/IJN.S254402 ] [PMID: 32547018]
[172]
Maya S, Sarmento B, Lakshmanan VK, Menon D, Jayakumar R. Actively targeted cetuximab conjugated gamma-poly(glutamic acid)-docetaxel nanomedicines for epidermal growth factor receptor over expressing colon cancer cells. J Biomed Nanotechnol 2014; 10(8): 1416-28.
[http://dx.doi.org/10.1166/jbn.2014.1841 ] [PMID: 25016642]
[173]
Anitha A, Maya S, Sivaram AJ, Mony U, Jayakumar R. Combinatorial nanomedicines for colon cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(1): 151-9.
[http://dx.doi.org/10.1002/wnan.1353 ] [PMID: 26061225]
[174]
Anitha A, Sreeranganathan M, Chennazhi KP, Lakshmanan VK, Jayakumar R. In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. Eur J Pharm Biopharm 2014; 88(1): 238-51.
[http://dx.doi.org/10.1016/j.ejpb.2014.04.017 ] [PMID: 24815764]
[175]
Anitha A, Deepa N, Chennazhi KP, Lakshmanan VK, Jayakumar R. Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim Biophys Acta, Gen Subj 2014; 1840(9): 2730-43.
[http://dx.doi.org/10.1016/j.bbagen.2014.06.004 ] [PMID: 24946270]
[176]
Malarvizhi GL, Retnakumari AP, Nair S, Koyakutty M. Transferrin targeted core-shell nanomedicine for combinatorial delivery of doxo-rubicin and sorafenib against hepatocellular carcinoma. Nanomedicine 2014; 10(8): 1649-59.
[http://dx.doi.org/10.1016/j.nano.2014.05.011 ] [PMID: 24905399]
[177]
Linton SS, Sherwood SG, Drews KC, Kester M. Targeting cancer cells in the tumor microenvironment: Opportunities and challenges in combinatorial nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(2): 208-22.
[http://dx.doi.org/10.1002/wnan.1358 ] [PMID: 26153136]
[178]
Alizadeh AM, Khaniki M, Azizian S, Mohaghgheghi MA, Sadeghizadeh M, Najafi F. Chemoprevention of azoxymethane-initiated colon cancer in rat by using a novel polymeric nanocarrier–curcumin. Eur J Pharmacol 2012; 689(1-3): 226-32.
[http://dx.doi.org/10.1016/j.ejphar.2012.06.016 ] [PMID: 22709992]
[179]
Drew DA, Cao Y, Chan AT. Aspirin and colorectal cancer: The promise of precision chemoprevention. Nat Rev Cancer 2016; 16(3): 173-86.
[http://dx.doi.org/10.1038/nrc.2016.4 ] [PMID: 26868177]
[180]
U.S. Preventive Services Task Force. Aspirin use to prevent cardiovascular disease and colorectal cancer: Preventive medication. 2016. Available from: https://www.uspreventiveservicestaskforce.org/Page/Document/RecommendationStatementFinal/aspirin-to-preventcardiovascular-disease-and-cancer ]
[181]
Pan P, Huang YW, Oshima K. et al. Could aspirin and diets high in fiber act synergistically to reduce the risk of colon cancer in humans? Int J Mol Sci 2018; 19(1): 166.
[http://dx.doi.org/10.3390/ijms19010166 ] [PMID: 29316620]
[182]
Umezawa S, Higurashi T, Komiya Y. et al. Chemoprevention of colorectal cancer: Past, present, and future. Cancer Sci 2019; 110(10): 3018-26.
[http://dx.doi.org/10.1111/cas.14149 ] [PMID: 31361372]
[183]
Dehmer SP, Maciosek MV, Flottemesch TJUS. preventive services task force evidence syntheses, formerly systematic evidence reviews, in Aspirin use to prevent cardiovascular disease and colorectal cancer: A decision analysis: Technical report. rockville, md: Agency for healthcare research and quality (US). 2015.
[184]
Prabhu S, Kanthamneni N, Wang J. Synergistic chemoprevention of colorectal cancer using colon-targeted polymer nanoparticles. Cancer Res 2007; 67: 1.
[185]
Chaudhary A, Sutaria D, Huang Y, Wang J, Prabhu S. Chemoprevention of colon cancer in a rat carcinogenesis model using a novel nano-technology-based combined treatment system. Cancer Prev Res 2011; 4(10): 1655-64.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0129 ] [PMID: 21914855]
[186]
Solomon SD, McMurray JJV, Pfeffer MA. et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 2005; 352(11): 1071-80.
[http://dx.doi.org/10.1056/NEJMoa050405 ] [PMID: 15713944]
[187]
Margulis-Goshen K, Weitman M, Major DT, Magdassi S. Inhibition of crystallization and growth of celecoxib nanoparticles formed from volatile microemulsions. J Pharm Sci 2011; 100(10): 4390-400.
[http://dx.doi.org/10.1002/jps.22623 ] [PMID: 21630277]
[188]
Tan A, Davey AK, Prestidge CA. Silica-lipid hybrid (SLH) versus non-lipid formulations for optimising the dose-dependent oral absorp-tion of celecoxib. Pharm Res 2011; 28(9): 2273-87.
[http://dx.doi.org/10.1007/s11095-011-0458-x ] [PMID: 21560021]
[189]
Thomasset SC, Berry DP, Garcea G, Marczylo T, Steward WP, Gescher AJ. Dietary polyphenolic phytochemicals—promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer 2007; 120(3): 451-8.
[http://dx.doi.org/10.1002/ijc.22419 ] [PMID: 17131309]
[190]
Zubair H, Azim S, Ahmad A. et al. Cancer chemoprevention by phytochemicals: Nature’s healing touch. Molecules 2017; 22(3): 395.
[http://dx.doi.org/10.3390/molecules22030395 ] [PMID: 28273819]
[191]
Jayaprakasha GK, Chidambara Murthy KN, Patil BS. Enhanced colon cancer chemoprevention of curcumin by nanoencapsulation with whey protein. Eur J Pharmacol 2016; 789: 291-300.
[http://dx.doi.org/10.1016/j.ejphar.2016.07.017 ] [PMID: 27404761]
[192]
Xu F, Zhu J, Lin L. et al. Multifunctional PVCL nanogels with redox-responsiveness enable enhanced MR imaging and ultrasound-promoted tumor chemotherapy. Theranostics 2020; 10(10): 4349-58.
[http://dx.doi.org/10.7150/thno.43402 ] [PMID: 32292499]
[193]
Li X, Li H, Zhang C, Pich A, Xing L, Shi X. Intelligent nanogels with self-adaptive responsiveness for improved tumor drug delivery and augmented chemotherapy. Bioact Mater 2021; 6(10): 3473-84.
[http://dx.doi.org/10.1016/j.bioactmat.2021.03.021 ] [PMID: 33869898]
[194]
Kemp JA, Kwon YJ. Cancer nanotechnology: Current status and perspectives. Nano Converg 2021; 8(1): 34.
[http://dx.doi.org/10.1186/s40580-021-00282-7 ] [PMID: 34727233]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy