Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

A Complex Methodological Approach for the Screening of Efficient and Safe Cobalt Chelators

Author(s): Monika Moravcová, Marcel Hrubša, Zuzana Lomozová, Maria Carmen Catapano, Roberta Argento, Eduard Jirkovský, Radim Kučera, Laura Mercolini and Přemysl Mladěnka*

Volume 19, Issue 5, 2023

Published on: 16 November, 2022

Page: [495 - 507] Pages: 13

DOI: 10.2174/1871530322666221006144449

Price: $65

Abstract

Background: Cobalt is an essential trace element, but it can also rarely cause cobalt toxicity due to its release from cobalt-containing medical devices. Currently, there are no approved selective cobalt chelators, which would represent an optimal treatment modality.

Objective: This study aimed to develop a simple and complex methodological approach for screening potential cobalt chelators and evaluating their potential toxicity.

Methods: Firstly, a simple spectrophotometric assay employing 1-nitroso-2-naphthol-3,6- disulfonic acid disodium salt (NNDSA) for screening cobalt chelation was standardized at a pathophysiologically relevant range of pH 4.5-7.5. Then, the suitability of the method was verified using four known metal chelators (EDTA, 8-hydroxyquinoline, chloroxine and nitroxoline). As cobalt can catalyse the Fenton reaction, the potential toxicity of cobalt-chelator complexes was also determined by employing a novel HPLC method with coulometric detection. The effect on erythrocyte haemolysis was tested as well.

Results: The NNDSA method had high sensitivity enabling the detection of 25-200 nM of cobalt ions depending on pH conditions. Measurements could be carried out in a wide range of wavelengths from 470 to 540 nm. All tested complexes of the selected chelators decreased the rate of the Fenton reaction. Interestingly, chloroxine mixed with cobalt ions caused marked lysis of erythrocytes in contrast to the other compounds.

Conclusion: The described complex methodological approach could serve as a simple yet precise tool for evaluating novel, effective and safe cobalt chelators.

Keywords: Cobalt, metal toxicity, Fenton reaction, hydroxyl radical, antioxidant, HPLC.

« Previous
Graphical Abstract
[1]
Paustenbach, D.J.; Tvermoes, B.E.; Unice, K.M.; Finley, B.L.; Kerger, B.D. A review of the health hazards posed by cobalt. Crit. Rev. Toxicol., 2013, 43(4), 316-362.
[http://dx.doi.org/10.3109/10408444.2013.779633] [PMID: 23656559]
[2]
Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology, 2017, 387, 43-56.
[http://dx.doi.org/10.1016/j.tox.2017.05.015] [PMID: 28572025]
[3]
Packer, M. Cobalt cardiomyopathy. Circ. Heart Fail., 2016, 9(12)e003604
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.116.003604] [PMID: 27852654]
[4]
Fox, K.A.; Phillips, T.M.; Yanta, J.H.; Abesamis, M.G. Fatal cobalt toxicity after total hip arthroplasty revision for fractured ceramic components. Clin. Toxicol., 2016, 54(9), 874-877.
[http://dx.doi.org/10.1080/15563650.2016.1214274] [PMID: 27491800]
[5]
Kovochich, M.; Monnot, A.; Kougias, D.G.; More, S.L.; Wilsey, J.T.; Qiu, Q.Q.; Perkins, L.E.L.; Hasgall, P.; Taneja, M.; Reverdy, E.E.; Sague, J.; Marcello, S.; Connor, K.; Scutti, J.; Christian, W.V.; Coplan, P.; Katz, L.B.; Vreeke, M.; Calistri, Y.M.; Faiola, B.; Unice, K.; Eichenbaum, G. Carcinogenic hazard assessment of cobalt-containing alloys in medical devices: Review of in vivo studies. Regul. Toxicol. Pharmacol., 2021, 122104910
[http://dx.doi.org/10.1016/j.yrtph.2021.104910] [PMID: 33662479]
[6]
Pelclova, D.; Sklensky, M.; Janicek, P.; Lach, K. Severe cobalt intoxication following hip replacement revision: Clinical features and outcome. Clin. Toxicol., 2012, 50(4), 262-265.
[http://dx.doi.org/10.3109/15563650.2012.670244] [PMID: 22455358]
[7]
Finley, B.L.; Unice, K.M.; Kerger, B.D.; Otani, J.M.; Paustenbach, D.J.; Galbraith, D.A.; Tvermoes, B.E. 31-day study of cobalt(II) chloride ingestion in humans: Pharmacokinetics and clinical effects. J. Toxicol. Environ. Health A, 2013, 76(21), 1210-1224.
[http://dx.doi.org/10.1080/15287394.2013.848391] [PMID: 24283372]
[8]
Devlin, J.J.; Pomerleau, A.C.; Brent, J.; Morgan, B.W.; Deitchman, S.; Schwartz, M. Clinical features, testing, and management of patients with suspected prosthetic hip-associated cobalt toxicity: A systematic review of cases. J. Med. Toxicol., 2013, 9(4), 405-415.
[http://dx.doi.org/10.1007/s13181-013-0320-0] [PMID: 24222555]
[9]
Monnot, A.D.; Kovochich, M.; Bandara, S.B.; Wilsey, J.T.; Christian, W.V.; Eichenbaum, G.; Perkins, L.E.L.; Hasgall, P.; Taneja, M.; Connor, K.; Sague, J.; Nasseri, A.B.; Marcello, S.; Vreeke, M.; Katz, L.B.; Reverdy, E.E.; Thelen, H.; Unice, K. A hazard evaluation of the reproductive/developmental toxicity of cobalt in medical devices. Regul. Toxicol. Pharmacol., 2021, 123104932
[http://dx.doi.org/10.1016/j.yrtph.2021.104932] [PMID: 33872739]
[10]
Sánchez, D.B.F.; Spencer, F.; Sánchez, V.L.; Camós, C.A.; Nogué, X.S.; Fernández, V.J.A. Visual impairment induced by prosthetic cobaltism. Arch. Soc. Esp. Oftalmol., 2021, 96(6), 316-320.
[http://dx.doi.org/10.1016/j.oftale.2020.06.025] [PMID: 34092285]
[11]
Sanz Pérez, M.I.; Rico, V.A.M.; Moreno, V.A.; Bartolomé, G.S.; Campo, L.J. Heart transplant secondary to cobalt toxicity after hip arthroplasty revision. Hip Int., 2019, 29(4), NP1-NP5.
[http://dx.doi.org/10.1177/1120700019834793] [PMID: 30938191]
[12]
Umar, M.; Jahangir, N.; Khan, M.F.; Saeed, Z.; Sultan, F.; Sultan, A. Cobalt-related cardiomyopathy: A real concern! A review of published evidence. J. Orthop. Surg., 2020, 28(2)2309499020905993
[http://dx.doi.org/10.1177/2309499020905993] [PMID: 32410523]
[13]
Zheng, F.; Li, Y.; Zhang, F.; Sun, Y.; Zheng, C.; Luo, Z.; Wang, Y.L.; Aschner, M.; Zheng, H.; Lin, L.; Cai, P.; Shao, W.; Guo, Z.; Zheng, M.; Zhou, X.Z.; Lu, K.P.; Wu, S.; Li, H. Cobalt induces neurodegenerative damages through Pin1 inactivation in mice and human neuroglioma cells. J. Hazard. Mater., 2021, 419126378
[http://dx.doi.org/10.1016/j.jhazmat.2021.126378] [PMID: 34175703]
[14]
Green, S.E.; Luczak, M.W.; Morse, J.L.; DeLoughery, Z.; Zhitkovich, A. Uptake, p53 pathway activation, and cytotoxic responses for Co(II) and Ni(II) in human lung cells: implications for carcinogenicity. Toxicol. Sci., 2013, 136(2), 467-477.
[http://dx.doi.org/10.1093/toxsci/kft214] [PMID: 24068677]
[15]
Kasprzak, K.S. Oxidative DNA and protein damage in metal-induced toxicity and carcinogenesis. Free Radic. Biol. Med., 2002, 32(10), 958-967.
[http://dx.doi.org/10.1016/S0891-5849(02)00809-2] [PMID: 12008111]
[16]
Biglia, A.; Morandi, V.; Monti, S.; Delvino, P.; Cavagna, L.; Montecucco, C. Cobalt hip prosthesis intoxication mimicking an autoimmune disease. Joint Bone Spine, 2020, 87(6), 652-654.
[http://dx.doi.org/10.1016/j.jbspin.2020.05.014] [PMID: 32534197]
[17]
Du, X.; Liu, J.; Wang, Y.; Jin, M.; Ye, Q. Cobalt-related interstitial lung disease or hard metal lung disease: A case series of Chinese workers. Toxicol. Ind. Health, 2021, 37(5), 280-288.
[http://dx.doi.org/10.1177/07482337211000989] [PMID: 34078186]
[18]
Hanna, P.M.; Kadiiska, M.B.; Mason, R.P. Oxygen-derived free-radical and active oxygen complex formation from cobalt(II) chelates in vitro. Chem. Res. Toxicol., 1992, 5(1), 109-115.
[http://dx.doi.org/10.1021/tx00025a019] [PMID: 1316186]
[19]
Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology, 2011, 283(2-3), 65-87.
[http://dx.doi.org/10.1016/j.tox.2011.03.001] [PMID: 21414382]
[20]
Lison, D.; Van Den Brûle, S.; Van Maele, F.G. Cobalt and its compounds: Update on genotoxic and carcinogenic activities. Crit. Rev. Toxicol., 2018, 48(7), 522-539.
[http://dx.doi.org/10.1080/10408444.2018.1491023] [PMID: 30203727]
[21]
Tvermoes, B.E.; Finley, B.L.; Unice, K.M.; Otani, J.M.; Paustenbach, D.J.; Galbraith, D.A. Cobalt whole blood concentrations in healthy adult male volunteers following two-weeks of ingesting a cobalt supplement. Food Chem. Toxicol., 2013, 53, 432-439.
[http://dx.doi.org/10.1016/j.fct.2012.11.033] [PMID: 23207477]
[22]
Choi, H.I.; Hong, J.A.; Kim, M.S.; Lee, S.E.; Jung, S.H.; Yoon, P.W.; Song, J.S.; Kim, J.J. Severe cardiomyopathy due to arthroprosthetic cobaltism: Report of two cases with different outcomes. Cardiovasc. Toxicol., 2019, 19(1), 82-89.
[http://dx.doi.org/10.1007/s12012-018-9480-0] [PMID: 30143911]
[23]
Pazzaglia, U.E.; Apostoli, P.; Congiu, T.; Catalani, S.; Marchese, M.; Zarattini, G. Cobalt, chromium and molybdenum ions kinetics in the human body: data gained from a total hip replacement with massive third body wear of the head and neuropathy by cobalt intoxication. Arch. Orthop. Trauma Surg., 2011, 131(9), 1299-1308.
[http://dx.doi.org/10.1007/s00402-011-1268-7] [PMID: 21298277]
[24]
Llobet, J.M.; Domingo, J.L.; Corbella, J. Comparison of antidotal efficacy of chelating agents upon acute toxicity of Co(II) in mice. Res. Commun. Chem. Pathol. Pharmacol., 1985, 50(2), 305-308.
[PMID: 4081320]
[25]
Llobet, J.M.; Domingo, J.L.; Corbella, J. Comparative effects of repeated parenteral administration of several chelators on the distribution and excretion of cobalt. Res. Commun. Chem. Pathol. Pharmacol., 1988, 60(2), 225-233.
[PMID: 2839877]
[26]
Leonard, S.; Gannett, P.M.; Rojanasakul, Y.; Schwegler-Berry, D.; Castranova, V.; Vallyathan, V.; Shi, X. Cobalt-mediated generation of reactive oxygen species and its possible mechanism. J. Inorg. Biochem., 1998, 70(3-4), 239-244.
[http://dx.doi.org/10.1016/S0162-0134(98)10022-3] [PMID: 9720310]
[27]
Luczak, M.W.; Zhitkovich, A. Role of direct reactivity with metals in chemoprotection by N-acetylcysteine against chromium(VI), cadmium(II), and cobalt(II). Free Radic. Biol. Med., 2013, 65, 262-269.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.06.028] [PMID: 23792775]
[28]
Mao, Y.; Liu, K.J.; Jiang, J.J.; Shi, X. Generation of reactive oxygen species by Co(II) from H2O2 in the presence of chelators in relation to DNA damage and 2′-deoxyguanosine hydroxylation. J. Toxicol. Environ. Health, 1996, 47(1), 61-75.
[http://dx.doi.org/10.1080/009841096161933] [PMID: 8568912]
[29]
Li, H.; Lu, Z.; Cheng, G.; Rong, K.; Chen, F.; Chen, R. HEPES-involved hydrothermal synthesis of Fe 3 O 4 nanoparticles and their biological application. RSC Advances, 2015, 5(7), 5059-5067.
[http://dx.doi.org/10.1039/C4RA12536C]
[30]
Job, P. Research on the formation of mineral complexes in solution, and on their stability. Ann. Chim., 1928, 9, 113-134.
[31]
Catapano, M.C.; Protti, M.; Fontana, T.; Mandrioli, R. Mladěnka, P.; Mercolini, L. An original HPLC method with coulometric detection to monitor hydroxyl radical generation via fenton chemistry. Molecules, 2019, 24(17), 3066.
[http://dx.doi.org/10.3390/molecules24173066] [PMID: 31450723]
[32]
Aaseth, J.; Skaug, V.; Alexander, J. Haemolytic activity of copper as influenced by chelating agents, albumine and chromium. Acta Pharmacol. Toxicol., 1984, 54(4), 304-310.
[http://dx.doi.org/10.1111/j.1600-0773.1984.tb01935.x] [PMID: 6730985]
[33]
Chan, F.K.M.; Moriwaki, K.; De Rosa, M.J. Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol. Biol., 2013, 979, 65-70.
[http://dx.doi.org/10.1007/978-1-62703-290-2_7] [PMID: 23397389]
[34]
Mladenka, P. Interaction of 2,6,7-trihydroxy-xanthene-3-ones with iron and copper, and biological effect of the most active derivative on breast cancer cells and erythrocytes. Appl. Sci., 2020, 10(14)225533793
[35]
Mahmood, K.; Wattoo, F.H.; Wattoo, M.H.S.; Imran, M.; Asad, M.J.; Tirmizi, S.A.; Wadood, A. Spectrophotometric estimation of cobalt with ninhydrin. Saudi J. Biol. Sci., 2012, 19(2), 247-250.
[http://dx.doi.org/10.1016/j.sjbs.2012.01.001] [PMID: 23961185]
[36]
Reshetnyak, E.A.; Ivchenko, N.V.; Nikitina, N.A.J.C.E.J.O.C. Photometric determination of aqueous cobalt (II), nickel (II), copper (II) and iron (III) with 1-nitroso-2-naphthol-3,6-disulfonic acid disodium salt in gelatin films. Cent. Eur. J. Chem., 2012, 10(5), 1617-1623.
[37]
Catapano, M.C.; Tvrdý, V. Karlíčková, J.; Mercolini, L.; Mladěnka, P. A simple, cheap but reliable method for evaluation of zinc chelating properties. Bioorg. Chem., 2018, 77, 287-292.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.015] [PMID: 29421704]
[38]
Ivanov, V.M.; Samarina, T.O.; Figurovskaya, V.N. Optical and colorimetric characteristics of a nickel(II) complex with 1-nitroso-2-naphthol-3,6-disulfonic acid. Moscow Univ. Chem. Bull., 2011, 66(4), 235-240.
[http://dx.doi.org/10.3103/S0027131411040043]
[39]
Samarina, T.O.; Ivanov, V.M.; Figurovskaya, V.N. Optical and chromaticity parameters of transition metal complexes with 1-nitroso-2-naphthol-3,6-disulfonic acid in the presence of surfactants. J. Anal. Chem., 2012, 67(4), 321-329.
[http://dx.doi.org/10.1134/S1061934812040053]
[40]
Miller, D.J.; Srivastava, S.C.; Good, M.L. Spectrophotometric determination of ruthenium(III) using 1-nitroso-2-naphthol-3,6-disulfonic acid (disodium salt). Anal. Chem., 1965, 37(6), 739-741.
[http://dx.doi.org/10.1021/ac60225a028]
[41]
Ivanov, V.M.; Samarina, T.O.; Figurovskaya, V.N. Optical and chromaticity characteristics of copper(II) complex with 1-nitroso-2-naphthol-3,6-disulfonic acid. Moscow Univ. Chem. Bull., 2010, 65(4), 249-252.
[http://dx.doi.org/10.3103/S0027131410040085]
[42]
Říha, M.; Karlíčková, J.; Filipský, T.; Macáková, K.; Hrdina, R.; Mladěnka, P. Novel method for rapid copper chelation assessment confirmed low affinity of D-penicillamine for copper in comparison with trientine and 8-hydroxyquinolines. J. Inorg. Biochem., 2013, 123, 80-87.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.02.011] [PMID: 23563391]
[43]
Pierre, J.; Baret, P.; Serratrice, G. Hydroxyquinolines as iron chelators. Curr. Med. Chem., 2003, 10(12), 1077-1084.
[http://dx.doi.org/10.2174/0929867033457584] [PMID: 12678678]
[44]
Prachayasittikul, V.; Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S. 8-Hydroxyquinolines: A review of their metal chelating properties and medicinal applications. Drug Des. Devel. Ther., 2013, 7, 1157-1178.
[http://dx.doi.org/10.2147/DDDT.S49763] [PMID: 24115839]
[45]
Saadeh, H.; Sweidan, K.; Mubarak, M. Recent advances in the synthesis and biological activity of 8-hydroxyquinolines. Molecules, 2020, 25(18), 4321.
[http://dx.doi.org/10.3390/molecules25184321] [PMID: 32967141]
[46]
Oliveri, V.; Vecchio, G. 8-Hydroxyquinolines in medicinal chemistry: A structural perspective. Eur. J. Med. Chem., 2016, 120, 252-274.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.007] [PMID: 27191619]
[47]
Ding, W.Q.; Liu, B.; Vaught, J.L.; Yamauchi, H.; Lind, S.E. Anticancer activity of the antibiotic clioquinol. Cancer Res., 2005, 65(8), 3389-3395.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3577] [PMID: 15833873]
[48]
Jiang, H.; Taggart, J.E.; Zhang, X.; Benbrook, D.M.; Lind, S.E.; Ding, W.Q. Nitroxoline (8-hydroxy-5-nitroquinoline) is more a potent anti-cancer agent than clioquinol (5-chloro-7-iodo-8-quinoline). Cancer Lett., 2011, 312(1), 11-17.
[http://dx.doi.org/10.1016/j.canlet.2011.06.032] [PMID: 21899946]
[49]
Oliveri, V.; Giuffrida, M.L.; Vecchio, G.; Aiello, C.; Viale, M. Gluconjugates of 8-hydroxyquinolines as potential anti-cancer prodrugs. Dalton Trans., 2012, 41(15), 4530-4535.
[http://dx.doi.org/10.1039/c2dt12371a] [PMID: 22354329]
[50]
Shi, X.; Dalal, N.S.; Kasprzak, K.S. Generation of free radicals from model lipid hydroperoxides and H2O2 by Co(II) in the presence of cysteinyl and histidyl chelators. Chem. Res. Toxicol., 1993, 6(3), 277-283.
[http://dx.doi.org/10.1021/tx00033a005] [PMID: 8318649]
[51]
Malešev, D. Kuntić, V. Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. J. Serb. Chem. Soc., 2007, 72(10), 921-939.
[http://dx.doi.org/10.2298/JSC0710921M]
[52]
Van Der Merwe, D.; Van Den Wollenberg, L.; Van Hees Valkenborg, J.; De Haan, T.; Van Der Drift, S.; Vandendriessche, V. Evaluation of hair analysis for determination of trace mineral status and exposure to toxic heavy metals in horses in the Netherlands. J. Vet. Diagn. Invest., 2022. [Epub Ahead of Print
[http://dx.doi.org/10.1177/10406387221116069] [PMID: 35918902]
[53]
Abdolmohammad, Z.H.; Ebrahimzadeh, E. Determination of cobalt in water samples by atomic absorption spectrometry after pre-concentration with a simple ionic liquid-based dispersive liquid-liquid micro-extraction methodology. Open Chem., 2010, 8(3), 617-625.
[http://dx.doi.org/10.2478/s11532-010-0030-2]
[54]
Kokkinos, C.; Economou, A.; Koupparis, M. Determination of trace cobalt(II) by adsorptive stripping voltammetry on disposable microfabricated electrochemical cells with integrated planar metal-film electrodes. Talanta, 2009, 77(3), 1137-1142.
[http://dx.doi.org/10.1016/j.talanta.2008.08.009] [PMID: 19064102]
[55]
Badocco, D.; Pastore, P.; Favaro, G.; Maccà, C. Effect of eluent composition and pH and chemiluminescent reagent pH on ion chromatographic selectivity and luminol-based chemiluminescence detection of Co2+, Mn2+ and Fe2+ at trace levels. Talanta, 2007, 72(1), 249-255.
[http://dx.doi.org/10.1016/j.talanta.2006.10.026] [PMID: 19071610]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy