Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Review Article

Neuroinflammation: Molecular Mechanisms And Therapeutic Perspectives

Author(s): Marianna Marino, Elena Mele, Grazia Maria Giovanna Pastorino, Rosaria Meccariello*, Francesca Felicia Operto, Antonietta Santoro and Andrea Viggiano

Volume 22, Issue 3, 2022

Published on: 15 November, 2022

Page: [160 - 174] Pages: 15

DOI: 10.2174/1871524922666220929153215

Price: $65

Abstract

Background: Neuroinflammation is a key component in the etiopathogenesis of neurological diseases and brain aging. This process involves the brain immune system that modulates synaptic functions and protects neurons from infection or damage. Hence, the knowledge of neuroinflammation related pathways and modulation by drugs or natural compounds is functional to developing therapeutic strategies aimed at preserving, maintaining and restoring brain health.

Objective: This review article summarizes the basics of neuroinflammation and related signaling pathways, the success of the dietary intervention in clinical practice and the possible development of RNA-based strategies for treating neurological diseases.

Methods: Pubmed search from 2012 to 2022 with the keywords neuroinflammation and molecular mechanisms in combination with diet, miRNA and non-coding RNA.

Results: Glial cells-play a crucial role in neuroinflammation, but several pathways can be activated in response to different inflammatory stimuli, inducing cell death by apoptosis, pyroptosis or necroptosis. The dietary intervention has immunomodulatory effects and could limit the inflammatory process induced by microglia and astrocytes. Thus by inhibiting neuroinflammation and improving the symptoms of a variety of neurological diseases, diet exerts pleiotropic neuroprotective effects independently from the spectrum of pathophysiological mechanisms underlying the specific disorder. Furthermore, data from animal models revealed that altered expression of specific noncoding RNAs, in particular microRNAs, contributes to neuroinflammatory diseases; consequently, RNA-based strategies may be promising to alleviate the consequences of neuroinflammation.

Conclusion: Further studies are needed to identify the molecular pathways and the new pharmacological targets in neuroinflammation to lay the basis for more effective and selective therapies to be applied, in parallel to dietary intervention, in the treatment of neuroinflammation-based diseases.

Keywords: Neuroinflammation, brain, glial cells, diet, non-coding RNA, miRNA.

Graphical Abstract
[1]
DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem., 2016, 139(Suppl. 2), 136-153.
[http://dx.doi.org/10.1111/jnc.13607]
[2]
Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener., 2020, 9(1), 42.
[http://dx.doi.org/10.1186/s40035-020-00221-2] [PMID: 33239064]
[3]
D’Angelo, S.; Mele, E.; Di Filippo, F.; Viggiano, A.; Meccariello, R. Sirt1 activity in the brain: Simultaneous effects on energy homeostasis and reproduction. Int. J. Environ. Res. Public Health, 2021, 18(3), 1243.
[http://dx.doi.org/10.3390/ijerph18031243] [PMID: 33573212]
[4]
Meccariello, R.; D’Angelo, S. Impact of polyphenolic-food on longevity: An elixir of life: An overview. Antioxidants, 2021, 10(4), 507.
[http://dx.doi.org/10.3390/antiox10040507] [PMID: 33805092]
[5]
D’Angelo, S.; Motti, M.L.; Meccariello, R. ω-3 and ω-6 Polyunsaturated fatty acids, obesity and cancer. Nutrients, 2020, 12(9), 2751.
[http://dx.doi.org/10.3390/nu12092751] [PMID: 32927614]
[6]
Motti, M.L.; D’Angelo, S.; Meccariello, R. MicroRNAs, cancer and diet: Facts and new exciting perspectives. Curr. Mol. Pharmacol., 2018, 11(2), 90-96.
[http://dx.doi.org/10.2174/1874467210666171013123733] [PMID: 29034844]
[7]
Chianese, R.; Coccurello, R.; Viggiano, A.; Scafuro, M.; Fiore, M.; Coppola, G.; Operto, F.F.; Fasano, S.; Layé, S.; Pierantoni, R.; Meccari-ello, R. Impact of dietary fat on brain functions. Curr. Neuropharmacol., 2018, 16(7), 1059-1085.
[http://dx.doi.org/10.2174/1570159X15666171017102547] [PMID: 29046155]
[8]
Vauzour, D.; Martinsen, A.; Layé, S. Neuroinflammatory processes in cognitive disorders: Is there a role for flavonoids and n-3 polyun-saturated fatty acids in counteracting their detrimental effects? Neurochem. Int., 2015, 89, 63-74.
[http://dx.doi.org/10.1016/j.neuint.2015.08.004] [PMID: 26260547]
[9]
Yassine, H.N.; Braskie, M.N.; Mack, W.J.; Castor, K.J.; Fonteh, A.N.; Schneider, L.S.; Harrington, M.G.; Chui, H.C. Association of do-cosahexaenoic acid supplementation with alzheimer disease stage in apolipoprotein E ε4 carriers. JAMA Neurol., 2017, 74(3), 339-347.
[http://dx.doi.org/10.1001/jamaneurol.2016.4899] [PMID: 28114437]
[10]
Ali, S.A.; Peffers, M.J.; Ormseth, M.J.; Jurisica, I.; Kapoor, M. The non-coding RNA interactome in joint health and disease. Nat. Rev. Rheumatol., 2021, 17(11), 692-705.
[http://dx.doi.org/10.1038/s41584-021-00687-y] [PMID: 34588660]
[11]
Slack, F.J.; Chinnaiyan, A.M. The role of non-coding RNAs in oncology. Cell, 2019, 179(5), 1033-1055.
[http://dx.doi.org/10.1016/j.cell.2019.10.017] [PMID: 31730848]
[12]
Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet., 2011, 12(12), 861-874.
[http://dx.doi.org/10.1038/nrg3074] [PMID: 22094949]
[13]
Shek, D.; Read, S.A.; Akhuba, L.; Qiao, L.; Gao, B.; Nagrial, A.; Carlino, M.S.; Ahlenstiel, G. Non-coding RNA and immune-checkpoint inhibitors: Friends or foes? Immunotherapy, 2020, 12(7), 513-529.
[http://dx.doi.org/10.2217/imt-2019-0204] [PMID: 32378480]
[14]
Chi, T.; Lin, J.; Wang, M.; Zhao, Y.; Liao, Z.; Wei, P. Non-coding RNA as biomarkers for type 2 diabetes development and clinical man-agement. Front. Endocrinol. (Lausanne), 2021, 12, 630032.
[http://dx.doi.org/10.3389/fendo.2021.630032] [PMID: 34603195]
[15]
Shen, L.; Bai, Y.; Han, B.; Yao, H. Non-coding RNA and neuroinflammation: Implications for the therapy of stroke. Stroke Vasc. Neurol., 2019, 4(2), 96-98.
[http://dx.doi.org/10.1136/svn-2018-000206] [PMID: 31338219]
[16]
Tuttolomondo, A.; Daidone, M.; Cataldi, M.; Pinto, A. Non-coding RNAs and other determinants of neuroinflammation and endothelial dysfunction: Regulation of gene expression in the acute phase of ischemic stroke and possible therapeutic applications. Neural Regen. Res., 2021, 16(11), 2154-2158.
[http://dx.doi.org/10.4103/1673-5374.310607] [PMID: 33818487]
[17]
Rodríguez-Gómez, J.A.; Kavanagh, E.; Engskog-Vlachos, P.; Engskog, M.K.R.; Herrera, A.J.; Espinosa-Oliva, A.M.; Joseph, B.; Hajji, N.; Venero, J.L.; Burguillos, M.A. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells, 2020, 9(7), 1717.
[http://dx.doi.org/10.3390/cells9071717] [PMID: 32709045]
[18]
Xu, S.; Lu, J.; Shao, A.; Zhang, J.H.; Zhang, J. Glial cells: Role of the immune response in ischemic stroke. Front. Immunol., 2020, 11, 294.
[http://dx.doi.org/10.3389/fimmu.2020.00294] [PMID: 32174916]
[19]
Kumar, V. Toll-like receptors in the pathogenesis of neuroinflammation. J. Neuroimmunol., 2019, 332, 16-30.
[http://dx.doi.org/10.1016/j.jneuroim.2019.03.012] [PMID: 30928868]
[20]
Ransohoff, R.M.; Perry, V.H. Microglial physiology: Unique stimuli, specialized responses. Annu. Rev. Immunol., 2009, 27(1), 119-145.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132528] [PMID: 19302036]
[21]
Boche, D.; Perry, V.H.; Nicoll, J.A.R. Review: Activation patterns of microglia and their identification in the human brain. Neuropathol. Appl. Neurobiol., 2013, 39(1), 3-18.
[http://dx.doi.org/10.1111/nan.12011] [PMID: 23252647]
[22]
Hayes, G.M.; Woodroofe, M.N.; Cuzner, M.L. Characterisation of microglia isolated from adult human and rat brain. J. Neuroimmunol., 1988, 19(3), 177-189.
[http://dx.doi.org/10.1016/0165-5728(88)90001-X] [PMID: 3410964]
[23]
Hu, X.; Li, P.; Guo, Y.; Wang, H.; Leak, R.K.; Chen, S.; Gao, Y.; Chen, J. Microglia/macrophage polarization dynamics reveal novel mech-anism of injury expansion after focal cerebral ischemia. Stroke, 2012, 43(11), 3063-3070.
[http://dx.doi.org/10.1161/STROKEAHA.112.659656] [PMID: 22933588]
[24]
Ge, W.P.; Miyawaki, A.; Gage, F.H.; Jan, Y.N.; Jan, L.Y. Local generation of glia is a major astrocyte source in postnatal cortex. Nature, 2012, 484(7394), 376-380.
[http://dx.doi.org/10.1038/nature10959] [PMID: 22456708]
[25]
Molofsky, A.V.; Kelley, K.W.; Tsai, H.H.; Redmond, S.A.; Chang, S.M.; Madireddy, L.; Chan, J.R.; Baranzini, S.E.; Ullian, E.M.; Rowitch, D.H. Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature, 2014, 509(7499), 189-194.
[http://dx.doi.org/10.1038/nature13161] [PMID: 24776795]
[26]
Santoro, A.; Spinelli, C.C.; Martucciello, S.; Nori, S.L.; Capunzo, M.; Puca, A.A.; Ciaglia, E. Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. J. Leukoc. Biol., 2018, 103(3), 509-524.
[http://dx.doi.org/10.1002/JLB.3MR0118-003R] [PMID: 29389023]
[27]
Molofsky, A.V.; Deneen, B. Astrocyte development: A Guide for the Perplexed. Glia, 2015, 63(8), 1320-1329.
[http://dx.doi.org/10.1002/glia.22836] [PMID: 25963996]
[28]
Linnerbauer, M.; Wheeler, M.A.; Quintana, F.J. Astrocyte Crosstalk in CNS Inflammation. Neuron, 2020, 108(4), 608-622.
[http://dx.doi.org/10.1016/j.neuron.2020.08.012] [PMID: 32898475]
[29]
Haim, L.B.; Rowitch, D.H. Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci., 2017, 18(1), 31-41.
[http://dx.doi.org/10.1038/nrn.2016.159] [PMID: 27904142]
[30]
Santello, M.; Volterra, A. Synaptic modulation by astrocytes via Ca2+-dependent glutamate release. Neuroscience, 2009, 158(1), 253-259.
[http://dx.doi.org/10.1016/j.neuroscience.2008.03.039] [PMID: 18455880]
[31]
Di Giorgio, F.P.; Carrasco, M.A.; Siao, M.C.; Maniatis, T.; Eggan, K. Non–cell autonomous effect of glia on motor neurons in an embry-onic stem cell–based ALS model. Nat. Neurosci., 2007, 10(5), 608-614.
[http://dx.doi.org/10.1038/nn1885] [PMID: 17435754]
[32]
Pekny, M.; Wilhelmsson, U.; Tatlisumak, T.; Pekna, M. Astrocyte activation and reactive gliosis—A new target in stroke? Neurosci. Lett., 2019, 689, 45-55.
[http://dx.doi.org/10.1016/j.neulet.2018.07.021] [PMID: 30025833]
[33]
Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology, 2018, 154(2), 204-219.
[http://dx.doi.org/10.1111/imm.12922] [PMID: 29513402]
[34]
Colombo, E.; Farina, C. Astrocytes: Key regulators of neuroinflammation. Trends Immunol., 2016, 37(9), 608-620.
[http://dx.doi.org/10.1016/j.it.2016.06.006] [PMID: 27443914]
[35]
Shabab, T.; Khanabdali, R.; Moghadamtousi, S.Z.; Kadir, H.A.; Mohan, G. Neuroinflammation pathways: A general review. Int. J. Neurosci., 2017, 127(7), 624-633.
[http://dx.doi.org/10.1080/00207454.2016.1212854] [PMID: 27412492]
[36]
Carson, M.J.; Doose, J.M.; Melchior, B.; Schmid, C.D.; Ploix, C.C. CNS immune privilege: Hiding in plain sight. Immunol. Rev., 2006, 213(1), 48-65.
[http://dx.doi.org/10.1111/j.1600-065X.2006.00441.x] [PMID: 16972896]
[37]
Hiscott, J.; Nguyen, T-L.A.; Arguello, M.; Nakhaei, P.; Paz, S. Manipulation of the nuclear factor-κB pathway and the innate immune re-sponse by viruses. Oncogene, 2006, 25(51), 6844-6867.
[http://dx.doi.org/10.1038/sj.onc.1209941] [PMID: 17072332]
[38]
Honda, K.; Taniguchi, T. IRFs: Master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat. Rev. Immunol., 2006, 6(9), 644-658.
[http://dx.doi.org/10.1038/nri1900] [PMID: 16932750]
[39]
Yuan, J.; Amin, P.; Ofengeim, D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci., 2019, 20(1), 19-33.
[http://dx.doi.org/10.1038/s41583-018-0093-1] [PMID: 30467385]
[40]
Yu, Z.; Jiang, N.; Su, W.; Zhuo, Y. Necroptosis: A novel pathway in neuroinflammation. Front. Pharmacol., 2021, 12, 701564.
[http://dx.doi.org/10.3389/fphar.2021.701564] [PMID: 34322024]
[41]
Micheau, O.; Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell, 2003, 114(2), 181-190.
[http://dx.doi.org/10.1016/S0092-8674(03)00521-X] [PMID: 12887920]
[42]
Amin, P.; Florez, M.; Najafov, A.; Pan, H.; Geng, J.; Ofengeim, D.; Dziedzic, S.A.; Wang, H.; Barrett, V.J.; Ito, Y.; LaVoie, M.J.; Yuan, J. Regulation of a distinct activated RIPK1 intermediate bridging complex I and complex II in TNFα-mediated apoptosis. Proc. Natl. Acad. Sci. USA, 2018, 115(26), E5944-E5953.
[http://dx.doi.org/10.1073/pnas.1806973115] [PMID: 29891719]
[43]
Wang, L.; Du, F.; Wang, X. TNF-α induces two distinct caspase-8 activation pathways. Cell, 2008, 133(4), 693-703.
[http://dx.doi.org/10.1016/j.cell.2008.03.036] [PMID: 18485876]
[44]
Wertz, I.E.; O’Rourke, K.M.; Zhou, H.; Eby, M.; Aravind, L.; Seshagiri, S.; Wu, P.; Wiesmann, C.; Baker, R.; Boone, D.L.; Averil, M.A.; Koonin, E.V.; Dixit, V.M. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-KB signalling. Nature, 2004, 430, 694-699.
[http://dx.doi.org/10.1038/nature02794] [PMID: 15258597]
[45]
Cho, Y.; Challa, S.; Moquin, D.; Genga, R.; Ray, T.D.; Guildford, M.; Chan, F.K.M. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 2009, 137(6), 1112-1123.
[http://dx.doi.org/10.1016/j.cell.2009.05.037] [PMID: 19524513]
[46]
Yang, J.; Wise, L.; Fukuchi, K. TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in Alzheimer’s disease. Front. Immunol., 2020, 11, 724.
[http://dx.doi.org/10.3389/fimmu.2020.00724] [PMID: 32391019]
[47]
Halle, A.; Hornung, V.; Petzold, G.C.; Stewart, C.R.; Monks, B.G.; Reinheckel, T.; Fitzgerald, K.A.; Latz, E.; Moore, K.J.; Golenbock, D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol., 2008, 9(8), 857-865.
[http://dx.doi.org/10.1038/ni.1636] [PMID: 18604209]
[48]
Sofroniew, M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci., 2009, 32(12), 638-647.
[http://dx.doi.org/10.1016/j.tins.2009.08.002] [PMID: 19782411]
[49]
Giovannoni, F.; Quintana, F.J. The role of astrocytes in CNS inflammation. Trends Immunol., 2020, 41(9), 805-819.
[http://dx.doi.org/10.1016/j.it.2020.07.007] [PMID: 32800705]
[50]
Ben Haim, L.; Ceyzériat, K.; Carrillo-de Sauvage, M.A.; Aubry, F.; Auregan, G.; Guillermier, M.; Ruiz, M.; Petit, F.; Houitte, D.; Faivre, E.; Vandesquille, M.; Aron-Badin, R.; Dhenain, M.; Déglon, N.; Hantraye, P.; Brouillet, E.; Bonvento, G.; Escartin, C. The JAK/STAT3 path-way is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J. Neurosci., 2015, 35(6), 2817-2829.
[http://dx.doi.org/10.1523/JNEUROSCI.3516-14.2015] [PMID: 25673868]
[51]
Zamanian, J.L.; Xu, L.; Foo, L.C.; Nouri, N.; Zhou, L.; Giffard, R.G.; Barres, B.A. Genomic analysis of reactive astrogliosis. J. Neurosci., 2012, 32(18), 6391-6410.
[http://dx.doi.org/10.1523/JNEUROSCI.6221-11.2012] [PMID: 22553043]
[52]
Qian, Y.; Liu, C.; Hartupee, J.; Altuntas, C.Z.; Gulen, M.F.; Jane-wit, D.; Xiao, J.; Lu, Y.; Giltiay, N.; Liu, J.; Kordula, T.; Zhang, Q.W.; Vallance, B.; Swaidani, S.; Aronica, M.; Tuohy, V.K.; Hamilton, T.; Li, X. The adaptor Act1 is required for interleukin 17–dependent sig-naling associated with autoimmune and inflammatory disease. Nat. Immunol., 2007, 8(3), 247-256.
[http://dx.doi.org/10.1038/ni1439] [PMID: 17277779]
[53]
Lin, W.; Wang, N.; Zhou, K.; Su, F.; Jiang, Y.; Shou, J.; Liu, H.; Ma, C.; Qian, Y.; Wang, K.; Wang, X. RKIP mediates autoimmune in-flammation by positively regulating IL ‐17R signaling. EMBO Rep., 2018, 19(6), e44951.
[http://dx.doi.org/10.15252/embr.201744951] [PMID: 29674348]
[54]
Colombo, E.; Cordiglieri, C.; Melli, G.; Newcombe, J.; Krumbholz, M.; Parada, L.F.; Medico, E.; Hohlfeld, R.; Meinl, E.; Farina, C. Stimu-lation of the neurotrophin receptor TrkB on astrocytes drives nitric oxide production and neurodegeneration. J. Exp. Med., 2012, 209(3), 521-535.
[http://dx.doi.org/10.1084/jem.20110698] [PMID: 22393127]
[55]
Rothhammer, V.; Kenison, J.E.; Tjon, E.; Takenaka, M.C.; de Lima, K.A.; Borucki, D.M.; Chao, C.C.; Wilz, A.; Blain, M.; Healy, L.; Antel, J.; Quintana, F.J. Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proc. Natl. Acad. Sci. USA, 2017, 114(8), 2012-2017.
[http://dx.doi.org/10.1073/pnas.1615413114] [PMID: 28167760]
[56]
Rivera, J.; Proia, R.L.; Olivera, A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat. Rev. Immunol., 2008, 8(10), 753-763.
[http://dx.doi.org/10.1038/nri2400] [PMID: 18787560]
[57]
Mayo, L.; Trauger, S.A.; Blain, M.; Nadeau, M.; Patel, B.; Alvarez, J.I.; Mascanfroni, I.D.; Yeste, A.; Kivisäkk, P.; Kallas, K.; Ellezam, B.; Bakshi, R.; Prat, A.; Antel, J.P.; Weiner, H.L.; Quintana, F.J. Regulation of astrocyte activation by glycolipids drives chronic CNS inflam-mation. Nat. Med., 2014, 20(10), 1147-1156.
[http://dx.doi.org/10.1038/nm.3681] [PMID: 25216636]
[58]
Chatterjee, S.; Kolmakova, A.; Rajesh, M. Regulation of lactosylceramide synthase (glucosylceramide beta1-->4 galactosyltransferase); implication as a drug target. Curr. Drug Targets, 2008, 9(4), 272-281.
[http://dx.doi.org/10.2174/138945008783954952] [PMID: 18393821]
[59]
Liddelow, S.A.; Barres, B.A. Reactive astrocytes: Production, function, and therapeutic potential. Immunity, 2017, 46(6), 957-967.
[http://dx.doi.org/10.1016/j.immuni.2017.06.006] [PMID: 28636962]
[60]
Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peter-son, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[61]
Yun, S.P.; Kam, T.I.; Panicker, N.; Kim, S.; Oh, Y.; Park, J.S.; Kwon, S.H.; Park, Y.J.; Karuppagounder, S.S.; Park, H.; Kim, S.; Oh, N.; Kim, N.A.; Lee, S.; Brahmachari, S.; Mao, X.; Lee, J.H.; Kumar, M.; An, D.; Kang, S.U.; Lee, Y.; Lee, K.C.; Na, D.H.; Kim, D.; Lee, S.H.; Roschke, V.V.; Liddelow, S.A.; Mari, Z.; Barres, B.A.; Dawson, V.L.; Lee, S.; Dawson, T.M.; Ko, H.S. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat. Med., 2018, 24(7), 931-938.
[http://dx.doi.org/10.1038/s41591-018-0051-5] [PMID: 29892066]
[62]
Bezzi, P.; Domercq, M.; Brambilla, L.; Galli, R.; Schols, D.; De Clercq, E.; Vescovi, A.; Bagetta, G.; Kollias, G.; Meldolesi, J.; Volterra, A. CXCR4-activated astrocyte glutamate release via TNFα: Amplification by microglia triggers neurotoxicity. Nat. Neurosci., 2001, 4(7), 702-710.
[http://dx.doi.org/10.1038/89490] [PMID: 11426226]
[63]
Soung, A.; Klein, R.S. Astrocytes: Initiators of and responders to inflammation. In: Glia in Health and Disease; Spohr, T., Ed.; IntechOpen, 2020.
[http://dx.doi.org/10.5772/intechopen.89760]
[64]
Prow, N.A.; Irani, D.N. The inflammatory cytokine, interleukin-1 β, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis. J. Neurochem., 2008, 105(4), 1276-1286.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05230.x] [PMID: 18194440]
[65]
Garner, K.M.; Amin, R.; Johnson, R.W.; Scarlett, E.J.; Burton, M.D. Microglia priming by interleukin-6 signaling is enhanced in aged mice. J. Neuroimmunol., 2018, 324, 90-99.
[http://dx.doi.org/10.1016/j.jneuroim.2018.09.002] [PMID: 30261355]
[66]
Savarin, C.; Hinton, D.R.; Valentin-Torres, A.; Chen, Z.; Trapp, B.D.; Bergmann, C.C.; Stohlman, S.A. Astrocyte response to IFN-γ limits IL-6-mediated microglia activation and progressive autoimmune encephalomyelitis. J. Neuroinflammation, 2015, 12(1), 79.
[http://dx.doi.org/10.1186/s12974-015-0293-9] [PMID: 25896970]
[67]
Wheeler, M.A.; Jaronen, M.; Covacu, R.; Zandee, S.E.J.; Scalisi, G.; Rothhammer, V.; Tjon, E.C.; Chao, C.C.; Kenison, J.E.; Blain, M.; Rao, V.T.S.; Hewson, P.; Barroso, A.; Gutiérrez-Vázquez, C.; Prat, A.; Antel, J.P.; Hauser, R.; Quintana, F.J. Environmental control of as-trocyte pathogenic activities in CNS inflammation. Cell, 2019, 176(3), 581-596.e18.
[http://dx.doi.org/10.1016/j.cell.2018.12.012] [PMID: 30661753]
[68]
Stafstrom, C.E. Dietary therapy for neurological disorders: Focus on amyotrophic lateral sclerosis, Parkinson’s disease, mood disorders, and migraine; OUP, 2016.
[69]
Mao, X.Y.; Yin, X.X.; Guan, Q.W.; Xia, Q.X.; Yang, N.; Zhou, H.H.; Liu, Z.Q.; Jin, W.L. Dietary nutrition for neurological disease thera-py: Current status and future directions. Pharmacol. Ther., 2021, 226, 107861.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107861] [PMID: 33901506]
[70]
Shirai, N.; Suzuki, H. Effect of dietary docosahexaenoic acid and catechins on maze behavior in mice. Ann. Nutr. Metab., 2004, 48(1), 51-58.
[http://dx.doi.org/10.1159/000075305] [PMID: 14646341]
[71]
Wu, A.; Ying, Z.; Gomez-Pinilla, F. Omega-3 fatty acids supplementation restores mechanisms that maintain brain homeostasis in traumat-ic brain injury. J. Neurotrauma, 2007, 24(10), 1587-1595.
[http://dx.doi.org/10.1089/neu.2007.0313] [PMID: 17970622]
[72]
Hichami, A.; Datiche, F.; Ullah, S.; Liénard, F.; Chardigny, J.; Cattarelli, M.; Khan, N. Olfactory discrimination ability and brain expression of c-fos, Gir and Glut1 mRNA are altered in n−3 fatty acid-depleted rats. Behav. Brain Res., 2007, 184(1), 1-10.
[http://dx.doi.org/10.1016/j.bbr.2007.06.010] [PMID: 17686536]
[73]
Gupta, S.; Knight, A.G.; Gupta, S.; Keller, J.N.; Bruce-Keller, A.J. Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J. Neurochem., 2012, 120(6)
[http://dx.doi.org/10.1111/j.1471-4159.2012.07660.x] [PMID: 22248073]
[74]
Neal, E.G.; Chaffe, H.; Schwartz, R.H.; Lawson, M.S.; Edwards, N.; Fitzsimmons, G.; Whitney, A.; Cross, J.H. A randomized trial of clas-sical and medium-chain triglyceride ketogenic diets in the treatment of childhood epilepsy. Epilepsia, 2009, 50(5), 1109-1117.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01870.x] [PMID: 19054400]
[75]
Coppola, G.; Klepper, J.; Ammendola, E.; Fiorillo, M.; Corte, R.; Capano, G.; Pascotto, A. The effects of the ketogenic diet in refractory partial seizures with reference to tuberous sclerosis. Eur. J. Paediatr. Neurol., 2006, 10(3), 148-151.
[http://dx.doi.org/10.1016/j.ejpn.2006.03.001] [PMID: 16632392]
[76]
Kossoff, E.H.; Thiele, E.A.; Pfeifer, H.H.; McGrogan, J.R.; Freeman, J.M. Tuberous sclerosis complex and the ketogenic diet. Epilepsia, 2005, 46(10), 1684-1686.
[http://dx.doi.org/10.1111/j.1528-1167.2005.00266.x] [PMID: 16190943]
[77]
Rusek, M.; Pluta, R.; Ułamek-Kozioł, M.; Czuczwar, S.J. Ketogenic diet in Alzheimer’s Disease. Int. J. Mol. Sci., 2019, 20(16), 3892.
[http://dx.doi.org/10.3390/ijms20163892] [PMID: 31405021]
[78]
Weber, D.D.; Aminzadeh-Gohari, S.; Tulipan, J.; Catalano, L.; Feichtinger, R.G.; Kofler, B. Ketogenic diet in the treatment of cancer – Where do we stand? Mol. Metab., 2020, 33, 102-121.
[http://dx.doi.org/10.1016/j.molmet.2019.06.026] [PMID: 31399389]
[79]
Napoli, E.; Dueñas, N.; Giulivi, C. Potential therapeutic use of the ketogenic diet in autism spectrum disorders. Front Pediatr., 2014, 2, 69.
[http://dx.doi.org/10.3389/fped.2014.00069] [PMID: 25072037]
[80]
Stafstrom, C.E.; Rho, J.M. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front. Pharmacol., 2012, 3, 59.
[http://dx.doi.org/10.3389/fphar.2012.00059] [PMID: 22509165]
[81]
Xue, B.; Waseem, S.M.A.; Zhu, Z.; Alshahrani, M.A.; Nazam, N.; Anjum, F.; Habib, A.H.; Rafeeq, M.M.; Nazam, F.; Sharma, M. Brain-derived neurotrophic factor: A connecting link between nutrition, lifestyle, and Alzheimer’s disease. Front. Neurosci., 2022, 16, 925991.
[http://dx.doi.org/10.3389/fnins.2022.925991] [PMID: 35692417]
[82]
Baker, L.D.; Frank, L.L.; Foster-Schubert, K.; Green, P.S.; Wilkinson, C.W.; McTiernan, A.; Plymate, S.R.; Fishel, M.A.; Watson, G.S.; Cholerton, B.A.; Duncan, G.E.; Mehta, P.D.; Craft, S. Effects of aerobic exercise on mild cognitive impairment: A controlled trial. Arch. Neurol., 2010, 67(1), 71-79.
[http://dx.doi.org/10.1001/archneurol.2009.307] [PMID: 20065132]
[83]
Szuhany, K.L.; Bugatti, M.; Otto, M.W. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J. Psychiatr. Res., 2015, 60, 56-64.
[http://dx.doi.org/10.1016/j.jpsychires.2014.10.003] [PMID: 25455510]
[84]
Joffre, C. Polyunsaturated Fatty Acid Metabolism in the Brain and Brain Cells. In: Feed your Mind-How does nutrition modulate brain functions throughout life?; IntechOpen, 2019.
[http://dx.doi.org/10.5772/intechopen.88232]
[85]
van Praag, H. Neurogenesis and exercise: Past and future directions. Neuromolecular Med., 2008, 10(2), 128-140.
[http://dx.doi.org/10.1007/s12017-008-8028-z] [PMID: 18286389]
[86]
Kowiański, P.; Lietzau, G.; Czuba, E.; Waśkow, M.; Steliga, A.; Moryś, J. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol., 2018, 38(3), 579-593.
[http://dx.doi.org/10.1007/s10571-017-0510-4] [PMID: 28623429]
[87]
Cutuli, D.; Landolfo, E.; Petrosini, L.; Gelfo, F. Environmental enrichment effects on the brain-derived neurotrophic factor expression in healthy condition, Alzheimer’s Disease, and other neurodegenerative disorders. J. Alzheimers Dis., 2022, 85(3), 975-992.
[http://dx.doi.org/10.3233/JAD-215193] [PMID: 34897089]
[88]
de Assis, G.G.; Almondes, K.M. Exercise-dependent BDNF as a modulatory factor for the executive processing of individuals in course of cognitive decline. A Systematic Review. Front. Psychol., 2017, 8, 584.
[http://dx.doi.org/10.3389/fpsyg.2017.00584] [PMID: 28469588]
[89]
Vaynman, S.S.; Ying, Z.; Yin, D.; Gomez-Pinilla, F. Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain Res., 2006, 1070(1), 124-130.
[http://dx.doi.org/10.1016/j.brainres.2005.11.062] [PMID: 16413508]
[90]
Wang, Y.; Chen, R.; Yang, Z.; Wen, Q.; Cao, X.; Zhao, N.; Yan, J. Protective Effects of Polysaccharides in Neurodegenerative Diseases. Front. Aging Neurosci., 2022, 14, 917629.
[http://dx.doi.org/10.3389/fnagi.2022.917629] [PMID: 35860666]
[91]
Hou, C.; Chen, L.; Yang, L.; Ji, X. An insight into anti-inflammatory effects of natural polysaccharides. Int. J. Biol. Macromol., 2020, 153, 248-255.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.315] [PMID: 32114173]
[92]
Shaik, L.; Kashyap, R.; Thotamgari, S.R.; Singh, R.; Khanna, S. Gut-Brain axis and its neuro-psychiatric effects: A narrative review. Cureus, 2020, 12(10), e11131.
[http://dx.doi.org/10.7759/cureus.11131] [PMID: 33240722]
[93]
Tang, C.; Ding, R.; Sun, J.; Liu, J.; Kan, J.; Jin, C. The impacts of natural polysaccharides on intestinal microbiota and immune responses – a review. Food Funct., 2019, 10(5), 2290-2312.
[http://dx.doi.org/10.1039/C8FO01946K] [PMID: 31032827]
[94]
Dhahri, M.; Alghrably, M.; Mohammed, H.A.; Badshah, S.L.; Noreen, N.; Mouffouk, F.; Rayyan, S.; Qureshi, K.A.; Mahmood, D.; Lachowicz, J.I.; Jaremko, M.; Emwas, A.H. Natural Polysaccharides as Preventive and Therapeutic Horizon for Neurodegenerative Dis-eases. Pharmaceutics, 2021, 14(1), 1.
[http://dx.doi.org/10.3390/pharmaceutics14010001] [PMID: 35056897]
[95]
Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[96]
Davis-Dusenbery, B.N.; Hata, A. Mechanisms of control of microRNA biogenesis. J. Biochem., 2010, 148(4), 381-392.
[PMID: 20833630]
[97]
Li, S.C.; Chan, W.C.; Hu, L.Y.; Lai, C.H.; Hsu, C.N.; Lin, W. Identification of homologous microRNAs in 56 animal genomes. Genomics, 2010, 96(1), 1-9.
[http://dx.doi.org/10.1016/j.ygeno.2010.03.009] [PMID: 20347954]
[98]
Friedländer, M.R.; Lizano, E.; Houben, A.J.S.; Bezdan, D.; Báñez-Coronel, M.; Kudla, G.; Mateu-Huertas, E.; Kagerbauer, B.; González, J.; Chen, K.C.; LeProust, E.M.; Martí, E.; Estivill, X. Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol., 2014, 15(4), R57.
[http://dx.doi.org/10.1186/gb-2014-15-4-r57] [PMID: 24708865]
[99]
de Rie, D.; Abugessaisa, I.; Alam, T.; Arner, E.; Arner, P.; Ashoor, H.; Åström, G.; Babina, M.; Bertin, N.; Burroughs, A.M.; Carlisle, A.J.; Daub, C.O.; Detmar, M.; Deviatiiarov, R.; Fort, A.; Gebhard, C.; Goldowitz, D.; Guhl, S.; Ha, T.J.; Harshbarger, J.; Hasegawa, A.; Hash-imoto, K.; Herlyn, M.; Heutink, P.; Hitchens, K.J.; Hon, C.C.; Huang, E.; Ishizu, Y.; Kai, C.; Kasukawa, T.; Klinken, P.; Lassmann, T.; Le-cellier, C.H.; Lee, W.; Lizio, M.; Makeev, V.; Mathelier, A.; Medvedeva, Y.A.; Mejhert, N.; Mungall, C.J.; Noma, S.; Ohshima, M.; Okada-Hatakeyama, M.; Persson, H.; Rizzu, P.; Roudnicky, F.; Sætrom, P.; Sato, H.; Severin, J.; Shin, J.W.; Swoboda, R.K.; Tarui, H.; Toyoda, H.; Vitting-Seerup, K.; Winteringham, L.; Yamaguchi, Y.; Yasuzawa, K.; Yoneda, M.; Yumoto, N.; Zabierowski, S.; Zhang, P.G.; Wells, C.A.; Summers, K.M.; Kawaji, H.; Sandelin, A.; Rehli, M.; Hayashizaki, Y.; Carninci, P.; Forrest, A.R.R.; de Hoon, M.J.L. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat. Biotechnol., 2017, 35(9), 872-878.
[http://dx.doi.org/10.1038/nbt.3947] [PMID: 28829439]
[100]
Kim, Y.K.; Kim, V.N. Processing of intronic microRNAs. EMBO J., 2007, 26(3), 775-783.
[http://dx.doi.org/10.1038/sj.emboj.7601512] [PMID: 17255951]
[101]
Denli, A.M.; Tops, B.B.J.; Plasterk, R.H.A.; Ketting, R.F.; Hannon, G.J. Processing of primary microRNAs by the Microprocessor com-plex. Nature, 2004, 432(7014), 231-235.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[102]
Han, J.; Lee, Y.; Yeom, K.H.; Kim, Y.K.; Jin, H.; Kim, V.N. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev., 2004, 18(24), 3016-3027.
[http://dx.doi.org/10.1101/gad.1262504] [PMID: 15574589]
[103]
Zhang, H.; Kolb, F.A.; Jaskiewicz, L.; Westhof, E.; Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell, 2004, 118(1), 57-68.
[http://dx.doi.org/10.1016/j.cell.2004.06.017] [PMID: 15242644]
[104]
Okada, C.; Yamashita, E.; Lee, S.J.; Shibata, S.; Katahira, J.; Nakagawa, A.; Yoneda, Y.; Tsukihara, T. A high-resolution structure of the pre-microRNA nuclear export machinery. Science, 2009, 326(5957), 1275-1279.
[http://dx.doi.org/10.1126/science.1178705] [PMID: 19965479]
[105]
Yoda, M.; Kawamata, T.; Paroo, Z.; Ye, X.; Iwasaki, S.; Liu, Q.; Tomari, Y. ATP-dependent human RISC assembly pathways. Nat. Struct. Mol. Biol., 2010, 17(1), 17-23.
[http://dx.doi.org/10.1038/nsmb.1733] [PMID: 19966796]
[106]
Meijer, H.A.; Smith, E.M.; Bushell, M. Regulation of miRNA strand selection: Follow the leader? Biochem. Soc. Trans., 2014, 42(4), 1135-1140.
[http://dx.doi.org/10.1042/BST20140142] [PMID: 25110015]
[107]
O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. (Lausanne), 2018, 9, 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[108]
Tomankova, T.; Petrek, M.; Kriegova, E. Involvement of microRNAs in physiological and pathological processes in the lung. Respir. Res., 2010, 11(1), 159.
[http://dx.doi.org/10.1186/1465-9921-11-159] [PMID: 21092244]
[109]
Prodromidou, K.; Matsas, R. Species-specific miRNAs in human brain development and disease. Front. Cell. Neurosci., 2019, 13, 559.
[http://dx.doi.org/10.3389/fncel.2019.00559] [PMID: 31920559]
[110]
Ksiazek-Winiarek, D.J.; Kacperska, M.J.; Glabinski, A. MicroRNAs as novel regulators of neuroinflammation. Mediators Inflamm., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/172351] [PMID: 23983402]
[111]
Ben-Shushan, D.; Markovsky, E.; Gibori, H.; Tiram, G.; Scomparin, A.; Satchi-Fainaro, R. Overcoming obstacles in microRNA delivery towards improved cancer therapy. Drug Deliv. Transl. Res., 2014, 4(1), 38-49.
[http://dx.doi.org/10.1007/s13346-013-0160-0] [PMID: 25786616]
[112]
Michell-Robinson, M.A.; Moore, C.S.; Healy, L.M.; Osso, L.A.; Zorko, N.; Grouza, V.; Touil, H.; Poliquin-Lasnier, L.; Trudelle, A.M.; Giacomini, P.S.; Bar-Or, A.; Antel, J.P. Effects of fumarates on circulating and CNS myeloid cells in multiple sclerosis. Ann. Clin. Transl. Neurol., 2016, 3(1), 27-41.
[http://dx.doi.org/10.1002/acn3.270] [PMID: 26783548]
[113]
Giuliani, A.; Lattanzi, S.; Ramini, D.; Graciotti, L.; Danni, M.C.; Procopio, A.D.; Silvestrini, M.; Olivieri, F.; Sabbatinelli, J. Potential prog-nostic value of circulating inflamma-miR-146a-5p e miR- 125a-5p nellasclerosimultiplarecidivante-remittente. Multa. Scler. relaz. Disor-dine., 2021, 54, 103126.
[PMID: 34243103]
[114]
Liu, D.; Zhao, D.; Zhao, Y.; Wang, Y.; Zhao, Y.; Wen, C. Inhibition of microRNA-155 Alleviates Cognitive Impairment in Alzheimer’s Disease and Involvement of Neuroinflammation. Curr. Alzheimer Res., 2019, 16(6), 473-482.
[http://dx.doi.org/10.2174/1567205016666190503145207] [PMID: 31456514]
[115]
Weihao, F.; Liang, C.; Mingqian, O.; Zou, R.; Sun, F.; Zhou, H.; Cui, L. MicroRNA-146a is a wide-reaching neuroinflammatory regulator and potential treatment target in neurological diseases. Front. Mol. Neurosci., 2020, 13, 1662-5099.
[116]
Liang, C.; Zou, T.; Zhang, M.; Fan, W.; Zhang, T.; Jiang, Y.; Cai, Y.; Chen, F.; Chen, X.; Sun, Y.; Zhao, B.; Wang, Y.; Cui, L. MicroRNA-146a switches microglial phenotypes to resist the pathological processes and cognitive degradation of Alzheimer’s disease. Theranostics, 2021, 11(9), 4103-4121.
[http://dx.doi.org/10.7150/thno.53418] [PMID: 33754051]
[117]
Luo, Q.; Feng, Y.; Xie, Y.; Shao, Y.; Wu, M.; Deng, X.; Yuan, W.E.; Chen, Y.; Shi, X. Nanoparticle–microRNA-146a-5p polyplexes ame-liorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. Nanomedicine, 2019, 17, 188-197.
[http://dx.doi.org/10.1016/j.nano.2019.01.007] [PMID: 30721753]
[118]
Li, B.; Dasgupta, C.; Huang, L.; Meng, X.; Zhang, L. MiRNA-210 induces microglial activation and regulates microglia-mediated neuroin-flammation in neonatal hypoxic-ischemic encephalopathy. Cell. Mol. Immunol., 2020, 17(9), 976-991.
[http://dx.doi.org/10.1038/s41423-019-0257-6] [PMID: 31300734]
[119]
Fukuoka, M.; Takahashi, M.; Fujita, H.; Chiyo, T.; Popiel, H.A.; Watanabe, S.; Furuya, H.; Murata, M.; Wada, K.; Okada, T.; Nagai, Y.; Hohjoh, H. Supplemental treatment for Huntington’s disease with miR-132 that is deficient in Huntington’s disease brain. Mol. Ther. Nucleic Acids, 2018, 11, 79-90.
[http://dx.doi.org/10.1016/j.omtn.2018.01.007] [PMID: 29858092]
[120]
Chang, K.H.; Wu, Y.R.; Chen, C.M. Down-regulation of miR-9* in the peripheral leukocytes of Huntington’s disease patients. Orphanet J. Rare Dis., 2017, 12(1), 185.
[http://dx.doi.org/10.1186/s13023-017-0742-x] [PMID: 29258536]
[121]
Parsi, S.; Smith, P.Y.; Goupil, C.; Dorval, V.; Hébert, S.S. Preclinical evaluation of miR-15/107 family members as multifactorial drug targets for Alzheimer’s disease. Mol. Ther. Nucleic Acids, 2015, 4(10), e256.
[http://dx.doi.org/10.1038/mtna.2015.33] [PMID: 26440600]
[122]
Lv, J.; Zeng, Y.; Qian, Y.; Dong, J.; Zhang, Z.; Zhang, J. MicroRNA let-7c-5p improves neurological outcomes in a murine model of trau-matic brain injury by suppressing neuroinflammation and regulating microglial activation. Brain Res., 2018, 1685, 91-104.
[http://dx.doi.org/10.1016/j.brainres.2018.01.032] [PMID: 29408500]
[123]
Wang, X.; Chen, S.; Ni, J.; Cheng, J.; Jia, J.; Zhen, X. miRNA-3473b contributes to neuroinflammation following cerebral ischemia. Cell Death Dis., 2018, 9(1), 11.
[http://dx.doi.org/10.1038/s41419-017-0014-7] [PMID: 29317607]
[124]
Jahangard, Y.; Monfared, H.; Moradi, A.; Zare, M.; Mirnajafi-Zadeh, J.; Mowla, S.J. Therapeutic effects of transplanted exosomes contain-ing miR-29b to a rat model of Alzheimer’s disease. Front. Neurosci., 2020, 14, 564.
[http://dx.doi.org/10.3389/fnins.2020.00564] [PMID: 32625049]
[125]
Hébert, S.S.; Horré, K.; Nicolaï, L.; Papadopoulou, A.S.; Mandemakers, W.; Silahtaroglu, A.N.; Kauppinen, S.; Delacourte, A.; De Stroop-er, B. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc. Natl. Acad. Sci. USA, 2008, 105(17), 6415-6420.
[http://dx.doi.org/10.1073/pnas.0710263105] [PMID: 18434550]
[126]
Jin, H.Y.; Gonzalez-Martin, A.; Miletic, A.V.; Lai, M.; Knight, S.; Sabouri-Ghomi, M.; Head, S.R.; Macauley, M.S.; Rickert, R.C.; Xiao, C. Transfection of microRNA mimics should be used with caution. Front. Genet., 2015, 6, 340.
[http://dx.doi.org/10.3389/fgene.2015.00340] [PMID: 26697058]
[127]
Søkilde, R.; Newie, I.; Persson, H.; Borg, Å.; Rovira, C. Passenger strand loading in overexpression experiments using microRNA mimics. RNA Biol., 2015, 12(8), 787-791.
[http://dx.doi.org/10.1080/15476286.2015.1020270] [PMID: 26121563]
[128]
Czech, M.P. MicroRNAs as therapeutic targets. N. Engl. J. Med., 2006, 354(11), 1194-1195.
[http://dx.doi.org/10.1056/NEJMcibr060065] [PMID: 16540623]
[129]
Lennox, K.A.; Behlke, M.A. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther., 2011, 18(12), 1111-1120.
[http://dx.doi.org/10.1038/gt.2011.100] [PMID: 21753793]
[130]
Lennox, K.A.; Behlke, M.A. A direct comparison of anti-microRNA oligonucleotide potency. Pharm. Res., 2010, 27(9), 1788-1799.
[http://dx.doi.org/10.1007/s11095-010-0156-0] [PMID: 20424893]
[131]
Esau, C.C. Inhibition of microRNA with antisense oligonucleotides. Methods, 2008, 44(1), 55-60.
[http://dx.doi.org/10.1016/j.ymeth.2007.11.001] [PMID: 18158133]
[132]
Krützfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K.G.; Tuschl, T.; Manoharan, M.; Stoffel, M. Silencing of microRNAs in vivo with ‘an-tagomirs’. Nature, 2005, 438(7068), 685-689.
[http://dx.doi.org/10.1038/nature04303] [PMID: 16258535]
[133]
Swayze, E.E.; Siwkowski, A.M.; Wancewicz, E.V.; Migawa, M.T.; Wyrzykiewicz, T.K.; Hung, G.; Monia, B.P.; Bennett, C.F. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res., 2007, 35(2), 687-700.
[http://dx.doi.org/10.1093/nar/gkl1071] [PMID: 17182632]
[134]
Rooij, E.; Kauppinen, S. Development of micro RNA therapeutics is coming of age. EMBO Mol. Med., 2014, 6(7), 851-864.
[http://dx.doi.org/10.15252/emmm.201100899] [PMID: 24935956]
[135]
Ayub, A.; Wettig, S. An overview of nanotechnologies for drug delivery to the brain. Pharmaceutics, 2022, 14(2), 224.
[http://dx.doi.org/10.3390/pharmaceutics14020224] [PMID: 35213957]
[136]
Simion, V.; Nadim, W.; Benedetti, H.; Pichon, C.; Morisset-Lopez, S.; Baril, P. Pharmacomodulation of microRNA expression in neu-rocognitive diseases: Obstacles and future opportunities. Curr. Neuropharmacol., 2017, 15(2), 276-290.
[http://dx.doi.org/10.2174/1570159X14666160630210422] [PMID: 27397479]
[137]
Lu, C.T.; Zhao, Y.Z.; Wong, H.L.; Cai, J.; Peng, L.; Tian, X.Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int. J. Nanomedicine, 2014, 9, 2241-2257.
[http://dx.doi.org/10.2147/IJN.S61288] [PMID: 24872687]
[138]
Mandal, A.; Bisht, R.; Pal, D.; Mitra, A.K. Diagnosis and drug delivery to the brain: Novel strategies. In: Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices; Mitra, A.K.; Cholkar, K.; Mandal, A., Eds.; Elsevier, 2017; pp. 59-83.
[139]
Bajracharya, R.; Song, J.G.; Back, S.Y.; Han, H.K. Recent advancements in non-invasive formulations for protein drug delivery. Comput. Struct. Biotechnol. J., 2019, 17, 1290-1308.
[http://dx.doi.org/10.1016/j.csbj.2019.09.004] [PMID: 31921395]
[140]
Baumann, V.; Winkler, J. miRNA-based therapies: Strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med. Chem., 2014, 6(17), 1967-1984.
[http://dx.doi.org/10.4155/fmc.14.116] [PMID: 25495987]
[141]
Nayerossadat, N.; Ali, P.A.; Maedeh, T. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res., 2012, 1(1), 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[142]
Pereira, P.; Queiroz, J.A.; Figueiras, A.; Sousa, F. Current progress on MICRORNAS ‐based therapeutics in neurodegenerative diseases. Wiley Interdiscip. Rev. RNA, 2017, 8(3), e1409.
[http://dx.doi.org/10.1002/wrna.1409] [PMID: 27882692]
[143]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[144]
Majerova, P.; Hanes, J.; Olesova, D.; Sinsky, J.; Pilipcinec, E.; Kovac, A. Novel blood–brain barrier shuttle peptides discovered through the phage display method. Molecules, 2020, 25(4), 874.
[http://dx.doi.org/10.3390/molecules25040874] [PMID: 32079185]
[145]
Ebrahimi, R.; Golestani, A. The emerging role of noncoding RNAs in neuroinflammation: Implications in pathogenesis and therapeutic approaches. J. Cell. Physiol., 2022, 237(2), 1206-1224.
[http://dx.doi.org/10.1002/jcp.30624] [PMID: 34724212]
[146]
Li, M.L.; Wang, W.; Jin, Z.B. Circular RNAs in the central nervous system. Front. Mol. Biosci., 2021, 8, 629593.
[http://dx.doi.org/10.3389/fmolb.2021.629593] [PMID: 33816552]
[147]
Faghihi, M.A.; Modarresi, F.; Khalil, A.M.; Wood, D.E.; Sahagan, B.G.; Morgan, T.E.; Finch, C.E.; St Laurent, G., III; Kenny, P.J.; Wahlestedt, C. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat. Med., 2008, 14(7), 723-730.
[http://dx.doi.org/10.1038/nm1784] [PMID: 18587408]
[148]
Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet., 2009, 10(3), 155-159.
[http://dx.doi.org/10.1038/nrg2521] [PMID: 19188922]
[149]
Han, V.X.; Patel, S.; Jones, H.F.; Dale, R.C. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat. Rev. Neurol., 2021, 17(9), 564-579.
[http://dx.doi.org/10.1038/s41582-021-00530-8] [PMID: 34341569]
[150]
Dauncey, M.J. Recent advances in nutrition, genes and brain health. Proc. Nutr. Soc., 2012, 71(4), 581-591.
[http://dx.doi.org/10.1017/S0029665112000237] [PMID: 22716958]
[151]
Zgórzyńska, E.; Stulczewski, D.; Dziedzic, B.; Su, K.P.; Walczewska, A. Docosahexaenoic fatty acid reduces the pro‐inflammatory re-sponse induced by IL-1β in astrocytes through inhibition of NF-κB and AP-1 transcription factor activation. BMC Neurosci., 2021, 22(1), 4.
[http://dx.doi.org/10.1186/s12868-021-00611-w] [PMID: 33499800]
[152]
Rapaport, M.H.; Nierenberg, A.A.; Schettler, P.J.; Kinkead, B.; Cardoos, A.; Walker, R.; Mischoulon, D. Inflammation as a predictive bi-omarker for response to omega-3 fatty acids in major depressive disorder: A proof-of-concept study. Mol. Psychiatry, 2016, 21(1), 71-79.
[http://dx.doi.org/10.1038/mp.2015.22] [PMID: 25802980]
[153]
Wang, X.; Hjorth, E.; Vedin, I.; Eriksdotter, M.; Freund-Levi, Y.; Wahlund, L.O.; Cederholm, T.; Palmblad, J.; Schultzberg, M. Effects of n-3 FA supplementation on the release of proresolving lipid mediators by blood mononuclear cells: The OmegAD study. J. Lipid Res., 2015, 56(3), 674-681.
[http://dx.doi.org/10.1194/jlr.P055418] [PMID: 25616438]
[154]
Gao, J.; Wang, L.; Zhao, C.; Wu, Y.; Lu, Z.; Gu, Y.; Ba, Z.; Wang, X.; Wang, J.; Xu, Y. Peony seed oil ameliorates neuroinflammation‐mediated cognitive deficits by suppressing microglial activation through inhibition of NF‐κB pathway in presenilin 1/2 conditional double knockout mice. J. Leukoc. Biol., 2021, 110(6), 1005-1022.
[http://dx.doi.org/10.1002/JLB.3MA0821-639RR] [PMID: 34494312]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy