Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Recent Advancements in Biomimetic Drug Delivery System of Single- Chain Fatty Acids as Ufasomes and Ufosomes: A Comprehensive Review

Author(s): Manjeet Kaur, Lakhvir Kaur*, Gurjeet Singh, Lovepreet Singh, Amarjeet Kaur and R. K. Dhawan

Volume 19, Issue 3, 2023

Published on: 14 October, 2022

Page: [362 - 371] Pages: 10

DOI: 10.2174/1573413718666220919113148

Price: $65

Abstract

The current review is focused on many carrier systems and technologies that have recently been explored for achieving controlled drug release, promoting therapeutic potential, and selectivity. Among various carrier systems, the vesicular drug delivery system is the highly effective method of delivering medication to the infection site resulting in minimal drug toxicity and adverse effects. Various research studies have been conducted to reduce drug loss and degradation, prevent unwanted side effects, improve drug bioavailability, and retain the fraction of drugs in the necessary region. To achieve these goals, novel vesicular drug delivery and vesicular drug targeting systems, such as ufasomes and ufosomes, are currently under research. They are highly ordered, self-assembled novel vesicular drug delivery systems formed from disordered building blocks into highly ordered systems by specific inter-block mutual interactions. These two carrier systems are separately being studied for their efficacy to improve the effectiveness of various drugs. In this perspective, we summarized the basic concept and recent studies on ufasomes and ufosomes for drug delivery, along with pertinent investigations in the present review. The vesicular systems discussed in this article are given chronologically, from existing systems to advanced fatty acid vesicles. Drug design and development using ufasome and ufosome vesicular systems have added a new dimension to the treatment of disease conditions by circumventing penetration, limiting obstacles and, therefore, increasing efficacy.

Keywords: Fatty acid vesicles, vesicular delivery, ufasomes, targeted delivery, carrier system, LDL, HDL.

Graphical Abstract
[1]
Pandita, A.; Sharma, P. Pharmacosomes: An emerging novel vesicular drug delivery system for poorly soluble synthetic and herbal drugs. ISRN Pharm., 2013, 2013, 348186.
[http://dx.doi.org/10.1155/2013/348186] [PMID: 24106615]
[2]
Chandra, D.; Yadav, K.K.; Singh, V.K.; Patel, A.; Chaurasia, S. An overview: The novel carrier for vesicular drug delivery system. World J. Pharm. Res., 2014, 3(6), 1299-1322.
[3]
Poste, G.; Kirsh, R.; Koestler, T. The challenge of liposome targeting in vivo. Liposome Technol., 1985, 3, 28.
[4]
Arundhasree, R.R.R.A.; Kumar, A.R.; Kumar, S.S.; Nair, S.C. Ufasomes: Unsaturated fatty acid based vesicular drug delivery system. Int. J. Appl. Pharm., 2021, 13(2), 76-83.
[http://dx.doi.org/10.22159/ijap.2021v13i2.39526]
[5]
Patel, J.L.; Bharadia, P.D. A review on: Pharamacosomes as a novel vesicular drug delivery system. World J. Pharm. Res., 2012, 1(3), 456-469.
[6]
Rajalingam, K.; Krishnaswami, V.; Alagarsamy, S.; Kandasamy, R. Solubility enhancement of methotrexate by solid nanodispersion ap-proach for the improved treatment of small cell lung carcinoma. Curr. Top. Med. Chem., 2021, 21(2), 140-150.
[http://dx.doi.org/10.2174/1568026620999200904120241] [PMID: 32888268]
[7]
Sharma, A.; Arora, S. Formulation and in vitro evaluation of ufasomes for dermal administration of methotrexate. ISRN Pharm., 2012, 2012, 873653.
[http://dx.doi.org/10.5402/2012/873653] [PMID: 22745918]
[8]
Vinod, K.R.; Kumar, M.S.; Anbazhagan, S.; Sandhya, S.; Saikumar, P.; Rohit, R.T.; Banji, D. Critical issues related to transfersomes – Novel vesicular system. Acta Sci. Pol. Technol. Aliment., 2012, 11(1), 67-82.
[PMID: 22230977]
[9]
Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B, 2015, 5(5), 442-453.
[http://dx.doi.org/10.1016/j.apsb.2015.07.003] [PMID: 26579474]
[10]
Zakir, F.; Vaidya, B.; Goyal, A.K.; Malik, B.; Vyas, S.P. Development and characterization of oleic acid vesicles for the topical delivery of fluconazole. Drug Deliv., 2010, 17(4), 238-248.
[http://dx.doi.org/10.3109/10717541003680981] [PMID: 20235758]
[11]
Bajaj, H.; Yadav, M.; Singh, V. Bioavailability enhancement: A review. Int. J. Pharma Bio Sci., 2011, 2(2), 202-216.
[12]
Kumar, P.; Singh, S.; Handa, V.; Kathuria, H. Oleic acid nanovesicles of minoxidil for enhanced follicular delivery. Medicines, 2018, 5(3), 103.
[http://dx.doi.org/10.3390/medicines5030103] [PMID: 30223446]
[13]
Gupta, S.; Singh, R.P.; Lokwani, P.; Yadav, S.; Gupta, S.K. Vesicular system as targeted drug delivery system: An overview. Int. J. Pharm. Technol., 2011, 3(2), 987-1021.
[14]
Kumar, R.; Kumar, S.; Jha, S.S.; Jha, A.K. Vesicular system-carrier for drug delivery. Pharm. Sin., 2011, 2(4), 192-202.
[15]
Bolla, P.K.; Meraz, C.A.; Rodriguez, V.A.; Deaguero, I.; Singh, M.; Yellepeddi, V.K.; Renukuntla, J. Clotrimazole loaded ufosomes for topical delivery: Formulation development and in-vitro studies. Molecules, 2019, 24(17), 3139.
[http://dx.doi.org/10.3390/molecules24173139] [PMID: 31470517]
[16]
Shilakari, G.; Singh, D.; Asthana, A. Novel vesicular carriers for topical drug delivery and their application’s. Int. J. Pharm. Sci. Rev. Res., 2013, 21(1), 77-86.
[17]
Shende, M.; Bodele, S.; Ghode, S.; Shende, C.; Baravkar, A.; Nalawade, N. Ufasomes: An emerging vesicular system for futuristic drug delivery applications. World J. Pharm. Med. Res., 2021, 7(11), 217-223.
[18]
Mittal, R.; Sharma, A.; Arora, S. Ufasomes mediated cutaneous delivery of dexamethasone: Formulation and evaluation of anti-inflammatory activity by carrageenin-induced rat paw edema model. J. Pharm., 2013, 2013, 680580.
[http://dx.doi.org/10.1155/2013/680580] [PMID: 26555990]
[19]
Gebicki, J.M.; Hicks, M. Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature, 1973, 243(5404), 232-234.
[http://dx.doi.org/10.1038/243232a0] [PMID: 4706295]
[20]
Patel, D.M.; Patel, C.N.; Jani, R.H. Ufasomes: A vesicular drug delivery. Syst. Rev. Pharm., 2011, 2(2), 72-78.
[http://dx.doi.org/10.4103/0975-8453.86290]
[21]
Patel, H.M.; Stevenson, R.W.; Parsons, J.A.; Ryman, B.E. Use of liposomes to aid intestinal absorption of entrapped insulin in normal and diabetic dogs. Biochim. Biophys. Acta, Gen. Subj., 1982, 716(2), 188-193.
[http://dx.doi.org/10.1016/0304-4165(82)90267-7] [PMID: 7046805]
[22]
Takeuchi, H.; Yamamoto, H.; Niwa, T.; Hino, T.; Kawashima, Y. Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm. Res., 1996, 13(6), 896-901.
[http://dx.doi.org/10.1023/A:1016009313548] [PMID: 8792429]
[23]
Ashara, K.C.; Soniwala, M.M.; Chhotalal Ashara, K.; Paun, J.S.; Soniwala, M.; Nathawani, S.; Mori, N.M.; Mendapara, V.P. Vesicular drug delivery systems: A novel approach. Mintage J. Pharm. Med. Sci., 2014, 3(3), 85945511.
[24]
Cevc, G. Isothermal lipid phase transitions. Chem. Phys. Lipids, 1991, 57(2-3), 293-307.
[http://dx.doi.org/10.1016/0009-3084(91)90082-M] [PMID: 2054910]
[25]
Markvoort, A.J.; Pfleger, N.; Staffhorst, R.; Hilbers, P.A.J.; Van Santen, R.A.; Killian, J.A.; De Kruijff, B. Self-reproduction of fatty acid vesicles: A combined experimental and simulation study. Biophys. J., 2010, 99(5), 1520-1528.
[http://dx.doi.org/10.1016/j.bpj.2010.06.057] [PMID: 20816064]
[26]
Morigaki, K.; Walde, P.; Misran, M.; Robinson, B.H. Thermodynamic and kinetic stability. Properties of micelles and vesicles formed by the decanoic acid/decanoate system. Colloids Surf. A Physicochem. Eng. Asp., 2003, 213(1), 37-44.
[http://dx.doi.org/10.1016/S0927-7757(02)00336-9]
[27]
Xu, W.; Wang, X.; Zhong, Z.; Song, A.; Hao, J. Influence of counterions on lauric acid vesicles and theoretical consideration of vesicle stability. J. Phys. Chem. B, 2013, 117(1), 242-251.
[http://dx.doi.org/10.1021/jp306630n] [PMID: 23231352]
[28]
Namani, T.; Walde, P. From decanoate micelles to decanoic acid/dodecylbenzenesulfonate vesicles. Langmuir, 2005, 21(14), 6210-6219.
[http://dx.doi.org/10.1021/la047028z] [PMID: 15982022]
[29]
Hargreaves, W.R.; Deamer, D.W. Liposomes from ionic, single-chain amphiphiles. Biochemistry, 1978, 17(18), 3759-3768.
[http://dx.doi.org/10.1021/bi00611a014] [PMID: 698196]
[30]
Rogerson, M.L.; Robinson, B.H.; Bucak, S.; Walde, P. Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes). Colloids Surf. B Biointerfaces, 2006, 48(1), 24-34.
[http://dx.doi.org/10.1016/j.colsurfb.2006.01.001] [PMID: 16466910]
[31]
Chen, I.A.; Salehi, A.K.; Szostak, J.W. RNA catalysis in model protocell vesicles. J. Am. Chem. Soc., 2005, 127(38), 13213-13219.
[http://dx.doi.org/10.1021/ja051784p] [PMID: 16173749]
[32]
Fan, Y.; Fang, Y.; Ma, L. The self-crosslinked ufasome of conjugated linoleic acid: Investigation of morphology, bilayer membrane and stability. Colloids Surf. B Biointerfaces, 2014, 123, 8-14.
[http://dx.doi.org/10.1016/j.colsurfb.2014.08.028] [PMID: 25217809]
[33]
Naik, P.V.; Dixit, S.G. Ufasomes as plausible carriers for horizontal gene transfer. J. Dispers. Sci. Technol., 2008, 29(6), 804-808.
[http://dx.doi.org/10.1080/01932690701781402]
[34]
Csongradi, C.; Du Plessis, J.; Aucamp, M.E.; Gerber, M. Topical delivery of roxithromycin solid-state forms entrapped in vesicles. Eur. J. Pharm. Biopharm., 2017, 114, 96-107.
[http://dx.doi.org/10.1016/j.ejpb.2017.01.006] [PMID: 28119103]
[35]
Morigaki, K.; Walde, P. Fatty acid vesicles. Curr. Opin. Colloid Interface Sci., 2007, 12(2), 75-80.
[http://dx.doi.org/10.1016/j.cocis.2007.05.005]
[36]
Witika, B.A.; Mweetwa, L.L.; Tshiamo, K.O.; Edler, K.; Matafwali, S.K.; Ntemi, P.V.; Chikukwa, M.T.R.; Makoni, P.A. Vesicular drug delivery for the treatment of topical disorders: Current and future perspectives. J. Pharm. Pharmacol., 2021, 73(11), 1427-1441.
[http://dx.doi.org/10.1093/jpp/rgab082] [PMID: 34132342]
[37]
USFDA. Inactive ingredient search for approved drug products., Available from: https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm
[38]
Doppalapudi, S.; Jain, A.; Chopra, D.K.; Khan, W. Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur. J. Pharm. Sci., 2017, 96, 515-529.
[http://dx.doi.org/10.1016/j.ejps.2016.10.025] [PMID: 27777066]
[39]
Oliveira, M.B.; Calixto, G.; Graminha, M.; Cerecetto, H.; González, M.; Chorilli, M. Development, characterization, and in vitro biological performance of fluconazole-loaded microemulsions for the topical treatment of cutaneous leishmaniasis. BioMed Res. Int., 2015, 2015, 396894.
[http://dx.doi.org/10.1155/2015/396894] [PMID: 25650054]
[40]
Witteveen, F. Topical flavouring ccompositions comprising oleic acid and sodium oleate. U.S. Patent, A1 2018/0042289, 2018.
[41]
Salama, A.H.; Aburahma, M.H. Ufasomes nano-vesicles-based lyophilized platforms for intranasal delivery of cinnarizine: Preparation, optimization, ex-vivo histopathological safety assessment and mucosal confocal imaging. Pharm. Dev. Technol., 2015, 21(6), 706-715.
[http://dx.doi.org/10.3109/10837450.2015.1048553] [PMID: 25996631]
[42]
Gebicki, J.M.; Hicks, M. Preparation and properties of vesicles enclosed by fatty acid membranes. Chem. Phys. Lipids, 1976, 16(2), 142-160.
[http://dx.doi.org/10.1016/0009-3084(76)90006-2] [PMID: 1269068]
[43]
Fukuda, H.; Goto, A.; Yoshioka, H.; Goto, R.; Morigaki, K.; Walde, P. Electron spin resonance study of the pH-induced transformation of micelles to vesicles in an aqueous oleic acid/oleate system. Langmuir, 2001, 17(14), 4223-4231.
[http://dx.doi.org/10.1021/la0100338]
[44]
Hicks, M.; Gebicki, J.M. A quantitative relationship between permeability and the degree of peroxidation in ufasome membranes. Biochem. Biophys. Res. Commun., 1978, 80(4), 704-708.
[http://dx.doi.org/10.1016/0006-291X(78)91301-3] [PMID: 416824]
[45]
Hicks, M.; Gebicki, J.M. Inhibition of peroxidation in linoleic acid membranes by nitroxide radicals, butylated hydroxytoluene, and α-tocopherol. Arch. Biochem. Biophys., 1981, 210(1), 56-63.
[http://dx.doi.org/10.1016/0003-9861(81)90163-6] [PMID: 7197505]
[46]
McLean, L.; Hagaman, K. Effect of lipid physical state on the rate of peroxidation of liposomes. Free Radic. Biol. Med., 1992, 12(2), 113-119.
[http://dx.doi.org/10.1016/0891-5849(92)90004-Z] [PMID: 1559616]
[47]
Lee, C.; Barnett, J.; Reaven, P.D. Liposomes enriched in oleic acid are less susceptible to oxidation and have less proinflammatory activity when exposed to oxidizing conditions. J. Lipid Res., 1998, 39(6), 1239-1247.
[http://dx.doi.org/10.1016/S0022-2275(20)32548-7] [PMID: 9643355]
[48]
Aruoma, O.I.; Halliwell, B.; Laughton, M.J.; Quinlan, G.J.; Gutteridge, J.M.C. The mechanism of initiation of lipid peroxidation. Evidence against a requirement for an iron(II)-iron(III) complex. Biochem. J., 1989, 258(2), 617-620.
[http://dx.doi.org/10.1042/bj2580617] [PMID: 2706005]
[49]
Quinlan, G.J.; Halliwell, B.; Moorhouse, C.P.; Gutteridge, J.M.C. Action of lead(II) and aluminium(III) ions on iron-stimulated lipid pe-roxidation in liposomes, erythrocytes and rat liver microsomal fractions. Biochim. Biophys. Acta Lipids Lipid Metab., 1988, 962(2), 196-200.
[http://dx.doi.org/10.1016/0005-2760(88)90159-2] [PMID: 3167077]
[50]
Scarpa, M.; Rigo, A.; Maiorino, M.; Ursini, F.; Gregolin, C. Formation of A-tocopherol radical and recycling of B-tocopherol by ascorbate during peroxidation of phosphatidycholine liposomes. Biochim. Biophys. Acta, 1984, 801, 215-219.
[http://dx.doi.org/10.1016/0304-4165(84)90070-9] [PMID: 6089911]
[51]
O’Connell, M.J.; Ward, R.J.; Baum, H.; Peters, T.J. The role of iron in ferritin- and haemosiderin-mediated lipid peroxidation in lipo-somes. Biochem. J., 1985, 229(1), 135-139.
[http://dx.doi.org/10.1042/bj2290135] [PMID: 3929767]
[52]
Fukuzawa, K.; Chida, H.; Tokumura, A.; Tsukatani, H. Antioxidative effect of α-tocopherol incorporation into lecithin liposomes on ascorbic acid-Fe2+-induced lipid peroxidation. Arch. Biochem. Biophys., 1981, 206(1), 173-180.
[http://dx.doi.org/10.1016/0003-9861(81)90078-3] [PMID: 7212715]
[53]
Gutteridge, J.M.C.; Quinlan, G.J.; Clark, I.; Halliwell, B. Aluminium salts accelerate peroxidation of membrane lipids stimulated by iron salts. Biochim. Biophys. Acta Lipids Lipid Metab., 1985, 835(3), 441-447.
[http://dx.doi.org/10.1016/0005-2760(85)90113-4] [PMID: 2861853]
[54]
Babizhayev, M.A. The biphasic effect of calcium on lipid peroxidation. Arch. Biochem. Biophys., 1988, 266(2), 446-451.
[http://dx.doi.org/10.1016/0003-9861(88)90276-7] [PMID: 3190239]
[55]
Verma, S.; Bhardwaj, A.; Vij, M.; Bajpai, P.; Goutam, N.; Kumar, L. Oleic acid vesicles: A new approach for topical delivery of antifungal agent. Artif. Cells Nanomed. Biotechnol., 2014, 42(2), 95-101.
[http://dx.doi.org/10.3109/21691401.2013.794351] [PMID: 23656670]
[56]
Cristiano, M.C.; Froiio, F.; Mancuso, A.; Cosco, D.; Dini, L.; Di Marzio, L.; Fresta, M.; Paolino, D. Oleuropein-laded ufasomes improve the nutraceutical efficacy. Nanomaterials, 2021, 11(1), 105.
[http://dx.doi.org/10.3390/nano11010105] [PMID: 33406805]
[57]
Bhattacharya, S. Preparation and characterizations of glyceryl oleate ufasomes of terbinafine hydrochloride: A novel approach to trigger Candida albicans fungal infection. Fut J. Pharm. Sci., 2021, 7(1), 3.
[http://dx.doi.org/10.1186/s43094-020-00143-w]
[58]
Lakshmi, S.; Manohar, D.R.; Mathan, S.; Dharan, S.S. Formulation and evaluation of ufasomal topical gel containing selected Non Steroi-dal Anti Inflammatory Drug (NSAIDs). J. Pharm. Sci. Res., 2021, 13(1), 38-48.
[59]
Deaguero, I.G.; Huda, M.N.; Rodriguez, V.; Zicari, J.; Al-Hilal, T.A.; Badruddoza, A.Z.M.; Nurunnabi, M. Nano-vesicle based anti-fungal formulation shows higher stability, skin diffusion, biosafety and anti-fungal efficacy in vitro. Pharmaceutics, 2020, 12(6), 516.
[http://dx.doi.org/10.3390/pharmaceutics12060516] [PMID: 32517047]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy