Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Synthesis of Fluorescent Carbon Quantum Dots based on Boletus speciosus and Analysis of Metronidazole

Author(s): Yujiao Tu, Ze Liu, Lin Yuan, Yingying Xiang, Fei Song and Lei Jiang*

Volume 19, Issue 5, 2023

Published on: 18 October, 2022

Page: [715 - 725] Pages: 11

DOI: 10.2174/1573413718666220901124531

Price: $65

Abstract

Background: Metronidazole is widely used due to its clinical excellence in treating systemic or local infections caused by anaerobic bacteria. However, it is easily soluble in water, not easy to biodegrade and adsorb and stays for a long time in environments, causing great harm to human health and food safety. Therefore, it is important to choose highly selective and sensitive methods for metronidazole content determination in environments. In this paper, the edible fungus Boletus speciosus was used as the carbon precursor to successfully prepare carbon dots by one-step hydrothermal method, and were used to analyze metronidazole.

Methods: Characterization of the prepared carbon dots from B. speciosus (Bs-CDs) were studied by Transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and X-ray Diffraction.

Results: The linear equation was y=0.06231+0.01099x (R2=0.9970) with a metronidazole concentration of 2.5~50 μM, and the detection limit was 71 nM. The fluorescence quenching mechanism of Bs-CDs detecting metronidazole belonged to the internal filtration effect. Bs-CDs were applied to detect metronidazole in actual water samples, presenting good sensitivity and a high recovery rate (97.0~106.0%).

Conclusion: It provides a new idea for applying carbon dots in metronidazole content detection.

Keywords: Boletus speciosus, fluorescence quenching, metronidazole, internal filtration effect, water samples, DNA.

Graphical Abstract
[1]
Shen, J.; Yhang, Y.; Zhang, S.; Ding, S.; Xiang, X. Determination of nitroimidazoles and their metabolites in swine tissues by liquid chromatography. J. AOAC Int., 2003, 86(3), 505-509.
[http://dx.doi.org/10.1093/jaoac/86.3.505] [PMID: 12852567]
[2]
Carrales-Alvarado, D.H.; Leyva-Ramos, R.; Rodríguez-Ramos, I.; Mendoza-Mendoza, E.; Moral-Rodríguez, A.E. Adsorption capacity of different types of carbon nanotubes towards metronidazole and dimetridazole antibiotics from aqueous solutions: Effect of morphology and surface chemistry. Environ. Sci. Pollut. Res. Int., 2020, 27(14), 17123-17137.
[http://dx.doi.org/10.1007/s11356-020-08110-x] [PMID: 32146669]
[3]
Carrales-Alvarado, D.H.; Ocampo-Pérez, R.; Leyva-Ramos, R.; Rivera-Utrilla, J. Removal of the antibiotic metronidazole by adsorption on various carbon materials from aqueous phase. J. Colloid Interface Sci., 2014, 436, 276-285.
[http://dx.doi.org/10.1016/j.jcis.2014.08.023] [PMID: 25280372]
[4]
Carrales-Alvarado, D.H.; Leyva-Ramos, R.; Martínez-Costa, J.I.; Ocampo-Pérez, R. Competitive adsorption of dimetridazole and metronidazole antibiotics on carbon materials from aqueous solution. Water Air Soil Pollut., 2018, 229, 108-122.
[http://dx.doi.org/10.1007/s11270-018-3730-4]
[5]
Ali, M.R.; Bacchu, M.S.; Daizy, M.; Tarafder, C.; Hossain, M.S.; Rahman, M.M.; Khan, M.Z.H. A highly sensitive poly-arginine based MIP as an electrochemical sensor for selective detection of dimetridazole. Anal. Chim. Acta, 2020, 1121, 11-16.
[http://dx.doi.org/10.1016/j.aca.2020.05.004] [PMID: 32493584]
[6]
Lin, Y.; Su, Y.; Liao, X.; Yang, N.; Yang, X.; Choi, M.M. Determination of five nitroimidazole residues in artificial porcine muscle tissue samples by capillary electrophoresis. Talanta, 2012, 88, 646-652.
[http://dx.doi.org/10.1016/j.talanta.2011.11.053] [PMID: 22265553]
[7]
Hu, C.; Deng, J.; Xiao, X.; Zhan, X.; Huang, K.; Xiao, N.; Ju, S. Determination of dimetridazole using carbon paste electrode modified with aluminum doped surface molecularly imprinted siloxane. Electrochim. Acta, 2015, 158, 298-305.
[http://dx.doi.org/10.1016/j.electacta.2015.01.176]
[8]
Liang, W.; Bunker, C.E.; Sun, Y.P. Carbon dots: Zero-dimensional carbon allotrope with unique photoinduced redox characteristics. ACS Omega, 2020, 5(2), 965-971.
[http://dx.doi.org/10.1021/acsomega.9b03669] [PMID: 31984251]
[9]
Ray, S.C.; Saha, A.; Jana, N.R.; Sarkar, R. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C, 2009, 113(43), 18546-18551.
[http://dx.doi.org/10.1021/jp905912n]
[10]
Liang, Q.; Ma, W.; Shi, Y.; Li, Z.; Yang, Y. Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon, 2013, 60, 421-428.
[http://dx.doi.org/10.1016/j.carbon.2013.04.055]
[11]
Chen, L.; Tian, X.; Chao, Y.; Li, Y.; Zhou, Z.X.; Wang, Y.X.; Xiang, F. Highly selective and sensitive determination of copper ion based on a visual fluorescence method. Sens. Actuators B Chem., 2017, 240, 66-75.
[http://dx.doi.org/10.1016/j.snb.2016.08.155]
[12]
Dang, D.K.; Chandrasekaran, S.; Ngo, Y.L.T.; Jin, S.C.; Kim, E.J.; Hur, S.H. One pot solid-state synthesis of highly fluorescent N and S co-doped carbon dots and its use as fluorescent probe for Ag+ detection in aqueous solution. Sens. Actuators B Chem., 2018, 255, 3284-3291.
[http://dx.doi.org/10.1016/j.snb.2017.09.155]
[13]
Bora, A.; Mohan, K.; Dolui, S.K. Carbon dots as cosensitizers in dye-sensitized solar cells and fluorescence chemosensors for 2,4,6-trinitrophenol detection. Ind. Eng. Chem. Res., 2019, 58(51), 22771-22778.
[http://dx.doi.org/10.1021/acs.iecr.9b05056]
[14]
Ding, H.; Zhang, F.; Zhao, C.; Lv, Y.; Ma, G.; Wei, W.; Tian, Z. Beyond a carrier: Graphene quantum dots as a probe for programmatically monitoring anti-cancer drug delivery, release, and response. ACS Appl. Mater. Interfaces, 2017, 9(33), 27396-27401.
[http://dx.doi.org/10.1021/acsami.7b08824] [PMID: 28782357]
[15]
Lee, H.U.; Park, S.Y.; Park, E.S.; Son, B.; Lee, S.C.; Lee, J.W.; Lee, Y.C.; Kang, K.S.; Kim, M.I.; Park, H.G.; Choi, S.; Huh, Y.S.; Lee, S.Y.; Lee, K.B.; Oh, Y.K.; Lee, J. Photoluminescent carbon nanotags from harmful cyanobacteria for drug delivery and imaging in cancer cells. Sci. Rep., 2014, 4(1), 4665.
[http://dx.doi.org/10.1038/srep04665] [PMID: 24721805]
[16]
Wang, Y.; Yao, L.; Liu, X.; Cheng, J.; Liu, W.; Liu, T.; Sun, M.; Zhao, L.; Ding, F.; Lu, Z.; Zou, P.; Wang, X.; Zhao, Q.; Rao, H. CuCo2O4/N-Doped CNTs loaded with molecularly imprinted polymer for electrochemical sensor: Preparation, characterization and detection of metronidazole. Biosens. Bioelectron., 2019, 142, 111483.
[http://dx.doi.org/10.1016/j.bios.2019.111483] [PMID: 31279173]
[17]
Ma, X.; Li, J.; Luo, J.; Liu, C.; Li, S. Electrochemical sensor for the determination of dimetridazole using a 3D Cu2O/ErGO-Modified electrode. Anal. Methods, 2018, 10, 3380-3385.
[http://dx.doi.org/10.1039/C8AY00589C]
[18]
Ho, C.; Sin, D.W.; Wong, K.M.; Tang, H.P. Determination of dimetridazole and metronidazole in poultry and porcine tissues by gas chromatography-electron capture negative ionization mass spectrometry. Anal. Chim. Acta, 2005, 530, 23-31.
[http://dx.doi.org/10.1016/j.aca.2004.09.004]
[19]
Capitan-Vallvey, L.F.; Ariza, A.; Checa, R.; Navas, N. Determination of five nitroimidazoles in water by liquid chromatography-mass spectrometry. J. Chromatogr. A, 2002, 978(1-2), 243-248.
[http://dx.doi.org/10.1016/S0021-9673(02)01355-9] [PMID: 12458960]
[20]
Zhou, J.; Shen, J.; Xue, X.; Zhao, J.; Li, Y.; Zhang, J.; Zhang, S. Simultaneous determination of nitroimidazole residues in honey samples by high-performance liquid chromatography with ultraviolet detection. J. AOAC Int., 2007, 90(3), 872-878.
[http://dx.doi.org/10.1093/jaoac/90.3.872] [PMID: 17580642]
[21]
Mahugo-Santana, C.; Sosa-Ferrera, Z.; Torres-Padrón, M.E.; Santana-Rodríguez, J.J. Analytical methodologies for the determination of nitroimidazole residues in biological and environmental liquid samples: A review. Anal. Chim. Acta, 2010, 665(2), 113-122.
[http://dx.doi.org/10.1016/j.aca.2010.03.022] [PMID: 20417321]
[22]
Capitan-Vallvey, L.F.; Ariza, A.; Checa, R.; Navas, N. Liquid chromatography-mass spectrometry determination of six 5-nitroimidazoles in animal feedstuff. Chromatographia, 2007, 65(5-6), 283-290.
[http://dx.doi.org/10.1365/s10337-006-0147-9]
[23]
Huet, A.C.; Mortier, L.; Daeseleire, E.; Fodey, T.; Elliott, C.; Delahaut, P. Development of an ELISA screening test for nitroimidazoles in egg and chicken muscle. Anal. Chim. Acta, 2005, 534(1), 157-162.
[http://dx.doi.org/10.1016/j.aca.2004.06.037] [PMID: 17723343]
[24]
Thompson, C.S.; Traynor, I.M.; Fodey, T.L.; Crooks, S.R. Improved screening method for the detection of a range of nitroimidazoles in various matrices by optical biosensor. Anal. Chim. Acta, 2009, 637(1-2), 259-264.
[http://dx.doi.org/10.1016/j.aca.2008.09.040] [PMID: 19286038]
[25]
Sriram, B.; Baby, J.N.; Wang, S.F.; Ranjitha, R.; George, M. Eutectic solvent-mediated synthesis of nife-LDH/sulfur-doped carbon nitride arrays: Investigation of electrocatalytic activity for the dimetridazole sensor in human sustenance. ACS Sustain. Chem.& Eng., 2020, 8(48), 17772-17782.
[http://dx.doi.org/10.1021/acssuschemeng.0c06070]
[26]
Materón, E.M.; Wong, A.; Freitas, T.A.; Faria, R.C.; Oliveira, O.N. Jr A sensitive electrochemical detection of metronidazole in synthetic serum and urine samples using low-cost screen-printed electrodes modified with reduced graphene oxide and C60. J. Pharm. Anal., 2021, 11(5), 646-652.
[http://dx.doi.org/10.1016/j.jpha.2021.03.004] [PMID: 34765278]
[27]
Kojta, A.K.; Falandysz, J. Metallic elements (Ca, Hg, Fe, K, Mg, Mn, Na, Zn) in the fruiting bodies of Boletus badius. Food Chem., 2016, 200(1), 206-214.
[http://dx.doi.org/10.1016/j.foodchem.2016.01.006] [PMID: 26830580]
[28]
Zhang, L.; Hu, Y.; Duan, X.; Tang, T.; Shen, Y.; Hu, B.; Liu, A.; Chen, H.; Li, C.; Liu, Y. Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms. Int. J. Biol. Macromol., 2018, 113(1), 1-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.084] [PMID: 29458100]
[29]
Choma, A.; Nowak, K.; Komaniecka, I.; Waśko, A.; Pleszczyńska, M.; Siwulski, M.; Wiater, A. Chemical characterization of alkali-soluble polysaccharides isolated from a Boletus edulis (Bull.) fruiting body and their potential for heavy metal biosorption. Food Chem., 2018, 266(5), 329-334.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.023] [PMID: 30381194]
[30]
Proskura, N.; Podlasińska, J.; Skopicz-Radkiewicz, L. Chemical composition and bioaccumulation ability of Boletus badius (Fr.) Fr. collected in Western Poland. Chemosphere, 2017, 168, 106-111.
[http://dx.doi.org/10.1016/j.chemosphere.2016.10.003] [PMID: 27776228]
[31]
Liu, P.; Zhang, C.; Liu, X.; Cui, P. Preparation of carbon quantum dots with a high quantum yield and the application in labeling bovine serum albumin. Appl. Surf. Sci., 2016, 368, 122-128.
[http://dx.doi.org/10.1016/j.apsusc.2016.01.278]
[32]
Shi, W.; Cheng, Q.; Duan, L.A.; Ding, Y.; Xiong, Z.D.; Li, X.X.; Xu, A.H. Catalytic generation of hydroxyl radicals by dioxygen-mediated oxidation of p-aminophenol by simple cobalt (II) ions in bicarbonate aqueous solution for use in acid orange 7 decolorization. New J. Chem., 2014, 38(10), 4938-4945.
[http://dx.doi.org/10.1039/C4NJ00772G]
[33]
Zhang, S.; Zhang, D.; Ding, Y.; Hua, J.; Tang, B.; Ji, X.; Zhang, Q.; Wei, Y.; Qin, K.; Li, B. Bacteria-derived fluorescent carbon dots for highly selective detection of p-nitrophenol and bioimaging. Analyst, 2019, 144(18), 5497-5503.
[http://dx.doi.org/10.1039/C9AN01103J] [PMID: 31386712]
[34]
Zu, F.L.; Yan, F.Y.; Bai, Z.J.; Xu, J.X.; Wang, Y.Y.; Huang, Y.C.; Zhou, X.G. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Mikrochim. Acta, 2017, 184(7), 1899-1914.
[http://dx.doi.org/10.1007/s00604-017-2318-9]
[35]
Guo, Z.; Zhu, X.; Wang, S.; Lei, C.; Huang, Y.; Nie, Z.; Yao, S. Fluorescent Ti3C2 MXene quantum dots for an alkaline phosphatase assay and embryonic stem cell identification based on the inner filter effect. Nanoscale, 2018, 10(41), 19579-19585.
[http://dx.doi.org/10.1039/C8NR05767B] [PMID: 30324953]
[36]
Gauthier, T.D.; Shane, E.C.; Guerin, W.F.; Seitz, W.R.; Grant, C.L. Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ. Sci. Technol., 1986, 20, 1162-1166.
[http://dx.doi.org/10.1021/es00153a012]
[37]
Tu, Y.J.; Wang, S.P.; Yuan, X.T.; Xiang, Y.Y.; Oin, K.H.; Wei, Y.L.; Zhang, Q.; Chen, X.M.; Ji, X.L. Facile hydrothermal synthesis of nitrogen, phosphorus-doped fluorescent carbon dots for live/dead bacterial differentiation, cell imaging and two nitrophenols detection. Dyes Pigments, 2021, 184, 108761.
[http://dx.doi.org/10.1016/j.dyepig.2020.108761]
[38]
Ji, X.L.; Wang, S.P.; Luo, Y.Y.; Yuan, X.T.; Wei, Y.L.; Zhang, Q.; Qin, K.H.; Tu, Y.J. Green synthesis of weissella-derived fluorescence carbon dots for microbial staining, cell imaging and dual sensing of vitamin B12 and hexavalent chromium. Dyes Pigments, 2021, 184, 108818.
[http://dx.doi.org/10.1016/j.dyepig.2020.108818]
[39]
Liu, H.; Ding, J.; Zhang, K.; Ding, L. Fabrication of carbon dots@restricted access molecularly imprinted polymers for selective detection of metronidazole in serum. Talanta, 2020, 209, 120508.
[http://dx.doi.org/10.1016/j.talanta.2019.120508] [PMID: 31892057]
[40]
Ren, G.; Hou, X.; Kang, Y.; Zhang, R.; Zhang, M.; Liu, W.; Li, L.; Wei, S.; Wang, H.; Wang, B.; Diao, H. Efficient preparation of nitrogen-doped fluorescent carbon dots for highly sensitive detection of metronidazole and live cell imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 234, 118251.
[http://dx.doi.org/10.1016/j.saa.2020.118251] [PMID: 32193157]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy