Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Nano-carrier Polyamidoamine Dendrimer G4 Induces Mitochondrialdependent Apoptosis in Human Multidrug-resistant Breast Cancer Cells through G0/G1 Phase Arrest

Author(s): Jie Zhang, Zhaoyong Wu, Shuyu Zhan, Mingjuan Li, Yang Wang, Hang Xu, Baoyue Ding* and Jianqing Gao*

Volume 24, Issue 4, 2023

Published on: 29 September, 2022

Page: [589 - 598] Pages: 10

DOI: 10.2174/1389201023666220822150050

Price: $65

Abstract

Background: Multidrug-resistant tumor cells have special drug detoxification/inactivation mechanisms. The terminal amino groups of the polyamidoamine (PAMAM-NH2), which is cytotoxic to tumor sensitive cells, may have no cytotoxicity in tumor resistant cells with a mechanism different from tumor sensitive cells.

Objective: This study aimed to investigate the cytotoxic effects of PAMAM-G4-NH2 on human multidrug- resistant breast cancer cells (MCF-7/ADR cells) and identify the possible molecular mechanisms.

Methods: The cytotoxicity of PAMAM-G4-NH2 (10-1000 μg/mL) against MCF-7 and MCF-7/ADR cells was detected. Then, MCF-7 and MCF-7/ADR cells were treated with PAMAM-G4-NH2 (10, 100 and 1000 μg/mL), and apoptosis, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), activities of caspase-3, -8 and -9 and cell cycle distribution were determined.

Results: Within 48 h, the cell viabilities in MCF-7/ADR cells after treatment with PAMAM-G4-NH2 were significantly higher than that in MCF-7 cells in the concentration range of 200-500 μg/mL (P < 0.05). Viabilities of MCF-7/ADR cells treated with PAMAM-G4-OH and PAMAM-G4-COOH for 48 and 72 h were much higher than that of MCF-7/ADR cells treated with PAMAM-G4-NH2. Treated with high concentration (1000 μg/mL) of PAMAM-G4-NH2 for 24 h, the apoptosis ratio, ROS levels, as well as caspase-3 and -9 activities in MCF-7 and MCF-7/ADR cells increased, while MMP decreased, and the cells were arrested in the G0/G1 phase.

Conclusion: PAMAM-G4-NH2 induced concentration-dependent cytotoxicity in MCF-7/ADR cells via G0/G1 arrest, and acted through h the mitochondria-dependent apoptotic pathway, which was similar to those in tumor sensitive cell, MCF-7 cells. The results suggest that PAMAM-G4-NH2, instead of PAMAM-G4-OH and PAMAM-G4-COOH, can be used as a carrier for drug delivery, concomitantly, it can also induce apoptosis in multidrug-resistant cancer cells in combination with the loaded drug through multiple apoptotic pathways.

Keywords: PAMAM-G4-NH2 dendrimer, multidrug-resistant tumor, cytotoxicity, apoptosis, cell cycle, mitochondrial pathway.

« Previous
Graphical Abstract
[1]
Li, J.; Liang, H.; Liu, J.; Wang, Z. Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. Int. J. Pharm., 2018, 546(1-2), 215-225.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.045] [PMID: 29787895]
[2]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[3]
Hong, W.; Chen, D.; Zhang, X.; Zeng, J.; Hu, H.; Zhao, X.; Qiao, M. Reversing multidrug resistance by intracellular delivery of pluronic® P85 unimers. Biomaterials, 2013, 34(37), 9602-9614.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.032] [PMID: 24021757]
[4]
Wang, M.; Li, Y. HuangFu, M.; Xiao, Y.; Zhang, T.; Han, M.; Xu, D.; Li, F.; Ling, D.; Jin, Y.; Gao, J. Pluronic-attached polyamidoamine dendrimer conjugates overcome drug resistance in breast cancer. Nanomedicine (Lond.), 2016, 11(22), 2917-2934.
[http://dx.doi.org/10.2217/nnm-2016-0252] [PMID: 27780403]
[5]
Saraswathy, M.; Gong, S. Different strategies to overcome multidrug resistance in cancer. Biotechnol. Adv., 2013, 31(8), 1397-1407.
[http://dx.doi.org/10.1016/j.biotechadv.2013.06.004] [PMID: 23800690]
[6]
Patel, N.R.; Pattni, B.S.; Abouzeid, A.H.; Torchilin, V.P. Nanopreparations to overcome multidrug resistance in cancer. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1748-1762.
[http://dx.doi.org/10.1016/j.addr.2013.08.004] [PMID: 23973912]
[7]
Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci., 2014, 39(2), 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[8]
Palmerston Mendes, L.; Pan, J.; Torchilin, V.P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 2017, 22(9), 1401.
[http://dx.doi.org/10.3390/molecules22091401] [PMID: 28832535]
[9]
Marson, D.; Laurini, E.; Aulic, S.; Fermeglia, M.; Pricl, S. Evolution from covalent to self-assembled PAMAM-based dendrimers as nanovectors for siRNA delivery in cancer by coupled in silico-experimental studies. Part I: Covalent siRNA nanocarriers. Pharmaceutics, 2019, 11(7), 351.
[http://dx.doi.org/10.3390/pharmaceutics11070351] [PMID: 31323863]
[10]
Winnicka, K.; Bielawski, K.; Rusak, M.; Anna, B. The effect of generation 2 and 3 poly (amidoamine) dendrimers on viability of human breast cancer cells. J. Health Sci., 2009, 55(2), 169-177.
[http://dx.doi.org/10.1248/jhs.55.169]
[11]
Zhang, J.; Liu, D.; Zhang, M.; Sun, Y.; Zhang, X.; Guan, G.; Zhao, X.; Qiao, M.; Chen, D.; Hu, H. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells. Int. J. Nanomedicine, 2016, 11, 3677-3690.
[http://dx.doi.org/10.2147/IJN.S106418] [PMID: 27536106]
[12]
Shi, X.; Ma, R.; Lu, Y.; Cheng, Y.; Fan, X.; Zou, J.; Zheng, H.; Li, F.; Piao, J.G. iRGD and TGN co-modified PAMAM for multi-targeted delivery of ATO to gliomas. Biochem. Biophys. Res. Commun., 2020, 527(1), 117-123.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.064] [PMID: 32446354]
[13]
Arima, H.; Motoyama, K.; Higashi, T. Polyamidoamine dendrimer conjugates with cyclodextrins as novel carriers for DNA, shRNA and siRNA. Pharmaceutics, 2012, 4(1), 130-148.
[http://dx.doi.org/10.3390/pharmaceutics4010130] [PMID: 24300184]
[14]
Tariq, I.; Ali, M.Y.; Janga, H.; Ali, S.; Amin, M.U.; Ambreen, G.; Ali, U.; Pinnapireddy, S.R.; Schäfer, J.; Schulte, L.N.; Bakowsky, U. Downregulation of MDR 1 gene contributes to tyrosine kinase inhibitor induce apoptosis and reduction in tumor metastasis: A gravity to space investigation. Int. J. Pharm., 2020, 591119993
[http://dx.doi.org/10.1016/j.ijpharm.2020.119993] [PMID: 33086089]
[15]
Duncan, R.; Izzo, L. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev., 2005, 57(15), 2215-2237.
[http://dx.doi.org/10.1016/j.addr.2005.09.019] [PMID: 16297497]
[16]
Chauhan, A.S.; Jain, N.K.; Diwan, P.V. Pre-clinical and behavioural toxicity profile of PAMAM dendrimers in mice. Proc. R. Soc. A., 2009, 466(2117), 1535-1550.
[http://dx.doi.org/10.1098/rspa.2009.0448]
[17]
Zeng, Y.; Kurokawa, Y.; Win-Shwe, T-T.; Zeng, Q.; Hirano, S.; Zhang, Z.; Sone, H. Effects of PAMAM dendrimers with various surface functional groups and multiple generations on cytotoxicity and neuronal differentiation using human neural progenitor cells. J. Toxicol. Sci., 2016, 41(3), 351-370.
[http://dx.doi.org/10.2131/jts.41.351] [PMID: 27193728]
[18]
Jevprasesphant, R.; Penny, J.; Jalal, R.; Attwood, D.; McKeown, N.B.; D’Emanuele, A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm., 2003, 252(1-2), 263-266.
[http://dx.doi.org/10.1016/S0378-5173(02)00623-3] [PMID: 12550802]
[19]
Thomas, T.P.; Majoros, I.; Kotlyar, A.; Mullen, D.; Holl, M.M.; Baker, J.R. Jr Cationic poly(amidoamine) dendrimer induces lysosomal apoptotic pathway at therapeutically relevant concentrations. Biomacromolecules, 2009, 10(12), 3207-3214.
[http://dx.doi.org/10.1021/bm900683r] [PMID: 19924846]
[20]
Sadekar, S.; Ghandehari, H. Transepithelial transport and toxicity of PAMAM dendrimers: Implications for oral drug delivery. Adv. Drug Deliv. Rev., 2012, 64(6), 571-588.
[http://dx.doi.org/10.1016/j.addr.2011.09.010] [PMID: 21983078]
[21]
Liu, D.; Hu, H.; Zhang, J.; Zhao, X.; Tang, X.; Chen, D. Drug pH-sensitive release in vitro and targeting ability of polyamidoamine dendrimer complexes for tumor cells. Chem. Pharm. Bull. (Tokyo), 2011, 59(1), 63-71.
[http://dx.doi.org/10.1248/cpb.59.63] [PMID: 21212549]
[22]
Wang, M.; Hu, H.; Sun, Y.; Qiu, L.; Zhang, J.; Guan, G.; Zhao, X.; Qiao, M.; Cheng, L.; Cheng, L.; Chen, D. A pH-sensitive gene delivery system based on folic acid-PEG-chitosan - PAMAM-plasmid DNA complexes for cancer cell targeting. Biomaterials, 2013, 34(38), 10120-10132.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.006] [PMID: 24094823]
[23]
van Engeland, M.; Ramaekers, F.C.; Schutte, B.; Reutelingsperger, C.P. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry, 1996, 24(2), 131-139.
[http://dx.doi.org/10.1002/(SICI)1097-0320(19960601)24:2<131:AID-CYTO5>3.0.CO;2-M] [PMID: 8725662]
[24]
Crissman, H.A.; Steinkamp, J.A. Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations. J. Cell Biol., 1973, 59(3), 766-771.
[http://dx.doi.org/10.1083/jcb.59.3.766] [PMID: 4128323]
[25]
Fried, J.; Perez, A.G.; Clarkson, B.D. Flow cytofluorometric analysis of cell cycle distributions using propidium iodide. Properties of the method and mathematical analysis of the data. J. Cell Biol., 1976, 71(1), 172-181.
[http://dx.doi.org/10.1083/jcb.71.1.172] [PMID: 61966]
[26]
Wyllie, A.H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature, 1980, 284(5756), 555-556.
[http://dx.doi.org/10.1038/284555a0] [PMID: 6245367]
[27]
Lee, J-H.; Cha, K.E.; Kim, M.S.; Hong, H.W.; Chung, D.J.; Ryu, G.; Myung, H. Nanosized Polyamidoamine (PAMAM) dendrimer-induced apoptosis mediated by mitochondrial dysfunction. Toxicol. Lett., 2009, 190(2), 202-207.
[http://dx.doi.org/10.1016/j.toxlet.2009.07.018] [PMID: 19643170]
[28]
Sun, W.; Li, L.; Yang, Q.; Shan, W.; Zhang, Z.; Huang, Y. G3-C12 peptide reverses galectin-3 from foe to friend for active targeting cancer treatment. Mol. Pharm., 2015, 12(11), 4124-4136.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00568] [PMID: 26393405]
[29]
Liang, D.; Wang, A.T.; Yang, Z.Z.; Liu, Y.J.; Qi, X.R. Enhance cancer cell recognition and overcome drug resistance using hyaluronic acid and alpha-tocopheryl succinate based multifunctional nanoparticles. Mol. Pharm., 2015, 12(6), 2189-2202.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00129] [PMID: 25945733]
[30]
Labieniec-Watala, M.; Karolczak, K.; Siewiera, K.; Watala, C. The janus face of PAMAM dendrimers used to potentially cure nonenzymatic modifications of biomacromolecules in metabolic disorders-a critical review of the pros and cons. Molecules, 2013, 18(11), 13769-13811.
[http://dx.doi.org/10.3390/molecules181113769] [PMID: 24213655]
[31]
Fröhlich, E. Action of nanoparticles on platelet activation and plasmatic coagulation. Curr. Med. Chem., 2016, 23(5), 408-430.
[http://dx.doi.org/10.2174/0929867323666160106151428] [PMID: 26063498]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy