Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Phytochemicals-based Therapeutics against Alzheimer's Disease: An Update

Author(s): Muhammad Ayaz*, Asif Nawaz, Falak Naz, Farhat Ullah, Abdul Sadiq and Zia Ul Islam

Volume 22, Issue 22, 2022

Published on: 27 August, 2022

Page: [1811 - 1820] Pages: 10

DOI: 10.2174/1568026622666220815104305

Price: $65

Abstract

Alzheimer’s disease (AD) is one of the main healthcare challenges of the twenty-first century, not only affecting millions of people's quality of life but also increasing the burden on the medical community, families, and society. It is a neurodegenerative disorder characterized by learning and cognitive dysfunction, behavioral turbulence, and memory loss and is a major cause of dementia, contributing to 50-60 % of dementia cases in patients above the age of 65. The major pathophysiological changes include accumulation of beta-amyloid plaques (Aβ), highly phosphorylated tau protein, neuroinflammation, GABA neurotransmission disruption, mitochondrial dysfunction, neuronal damage due to free radicals, and decreased concentration of acetylcholine (ACh) and butyrylcholine (BCh). The inability of commercial therapeutics, such as donepezil, rivastigmine, galantamine, and tacrine, leads to the attraction toward phytochemical-based therapeutics. Phytochemicals derived from plants exhibit neuroprotection via targeting apoptosis, neurotrophic factor deficit, mitochondrial dysfunction, oxidative stress, and abnormal accumulation of proteins. Here, we discussed some of the neuroprotective phytochemicals used for the treatment of neurodegenerative diseases like AD and dementia.

Keywords: Alzheimer’s disease, Neuroprotection, Phytochemicals, Dementia, Neurodegenerative diseases, Neuroinflammation.

Next »
Graphical Abstract
[1]
Brookmeyer, RJ.E; Graham, Z.K.; Arrighi, H.M. Forecasting the global burden of Alzheimer’s disease Alzheimers Demen 2007, 3(3), 186-191.
[2]
Karran, E.; De Strooper, B. The amyloid hypothesis in Alzheimer disease: New insights from new therapeutics. Nat. Rev. Drug Discov., 2022, 21(4), 306-318.
[http://dx.doi.org/10.1038/s41573-022-00391-w] [PMID: 35177833]
[3]
Prigerson, H.G. Costs to society of family caregiving for patients with end-stage Alzheimer’s disease. N. Engl. J. Med., 2003, 349(20), 1891-1892.
[http://dx.doi.org/10.1056/NEJMp038157] [PMID: 14614164]
[4]
Frisoni, G.B.; Boccardi, M.; Barkhof, F.; Blennow, K.; Cappa, S.; Chiotis, K.; Démonet, J-F.; Garibotto, V.; Giannakopoulos, P.; Gietl, A.; Hansson, O.; Herholz, K.; Jack, C.R., Jr; Nobili, F.; Nordberg, A.; Snyder, H.M.; Ten Kate, M.; Varrone, A.; Albanese, E.; Becker, S.; Bossuyt, P.; Carrillo, M.C.; Cerami, C.; Dubois, B.; Gallo, V.; Giacobini, E.; Gold, G.; Hurst, S.; Lönneborg, A.; Lovblad, K.O.; Mattsson, N.; Molinuevo, J.L.; Monsch, A.U.; Mosimann, U.; Padovani, A.; Picco, A.; Porteri, C.; Ratib, O.; Saint-Aubert, L.; Scerri, C.; Scheltens, P.; Schott, J.M.; Sonni, I.; Teipel, S.; Vineis, P.; Visser, P.J.; Yasui, Y.; Winblad, B. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol., 2017, 16(8), 661-676.
[http://dx.doi.org/10.1016/S1474-4422(17)30159-X] [PMID: 28721928]
[5]
Frisoni, G.B.; Altomare, D.; Thal, D.R.; Ribaldi, F.; van der Kant, R.; Ossenkoppele, R.; Blennow, K.; Cummings, J.; van Duijn, C.; Nilsson, P.M.; Dietrich, P.Y.; Scheltens, P.; Dubois, B. The probabilistic model of Alzheimer disease: The amyloid hypothesis revised. Nat. Rev. Neurosci., 2022, 23(1), 53-66.
[http://dx.doi.org/10.1038/s41583-021-00533-w] [PMID: 34815562]
[6]
Brookmeyer, R.; Johnson, E.; Ziegler-Graham, K.; Arrighi, H.M. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement., 2007, 3(3), 186-191.
[http://dx.doi.org/10.1016/j.jalz.2007.04.381] [PMID: 19595937]
[7]
Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.T.; Prina, A.M.; Winblad, B.; Jönsson, L.; Liu, Z.; Prince, M. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement., 2017, 13(1), 1-7.
[http://dx.doi.org/10.1016/j.jalz.2016.07.150] [PMID: 27583652]
[8]
Tong, X.; Li, X.; Ayaz, M.; Ullah, F.; Sadiq, A.; Ovais, M.; Shahid, M.; Khayrullin, M.; Hazrat, A. Neuroprotective studies on Polygonum hydropiper L. essential oils using transgenic animal models. Front. Pharmacol., 2020, 2020, 11.
[PMID: 33584260]
[9]
Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Ovais, M.; Ullah, I.; Ahmed, J.; Shahid, M. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front. Aging Neurosci., 2019, 11, 155.
[http://dx.doi.org/10.3389/fnagi.2019.00155] [PMID: 31293414]
[10]
Skoog, I. Detection of preclinical Alzheimer’s disease. Mass Med. Soc., 2000, 343, 502-503.
[11]
Fenoglio, C.; Scarpini, E.; Serpente, M.; Galimberti, D. Role of genetics and epigenetics in the pathogenesis of Alzheimer’s disease and frontotemporal dementia. J. Alzheimers Dis., 2018, 62(3), 913-932.
[http://dx.doi.org/10.3233/JAD-170702] [PMID: 29562532]
[12]
De Felice, F.G.; Gonçalves, R.A.; Ferreira, S.T. Impaired insulin signalling and allostatic load in Alzheimer disease. Nat. Rev. Neurosci., 2022, 23(4), 215-230.
[http://dx.doi.org/10.1038/s41583-022-00558-9] [PMID: 35228741]
[13]
Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Subhan, F.; Ahmed, J. Neuroprotective and anti-aging potentials of essential oils from aromatic and medicinal plants. Front. Aging Neurosci., 2017, 9, 168.
[http://dx.doi.org/10.3389/fnagi.2017.00168] [PMID: 28611658]
[14]
Grill, J.D.; Cummings, J.L. Novel targets for Alzheimer’s disease treatment. Expert Rev. Neurother., 2010, 10(5), 711.
[http://dx.doi.org/10.1586/ern.10.29] [PMID: 20420492]
[15]
Ayaz, M.; Junaid, M.; Ullah, F.; Subhan, F.; Sadiq, A.; Ali, G.; Ovais, M.; Shahid, M.; Ahmad, A.; Wadood, A.; El-Shazly, M.; Ahmad, N.; Ahmad, S. Anti-Alzheimer’s studies on β-sitosterol isolated from Polygonum hydropiper L. Front. Pharmacol., 2017, 8, 697.
[http://dx.doi.org/10.3389/fphar.2017.00697] [PMID: 29056913]
[16]
Grill, J.D.; Cummings, J.L. Current therapeutic targets for the treatment of Alzheimer’s disease. Expert Rev. Neurother., 2010, 10(5), 711-728.
[http://dx.doi.org/10.1586/ern.10.29] [PMID: 20420492]
[17]
Wahid, M.; Ali, A.; Saqib, F.; Aleem, A.; Bibi, S.; Afzal, K.; Ali, A.; Baig, A.; Khan, S.A.; Bin Asad, M.H.H. Pharmacological exploration of traditional plants for the treatment of neurodegenerative disorders. Phytother. Res., 2020, 34(12), 3089-3112.
[http://dx.doi.org/10.1002/ptr.6742] [PMID: 32478964]
[18]
Ayaz, M.; Ullah, F.; Sadiq, A.; Kim, M.O.; Ali, T. Editorial: Natural products-based drugs: Potential therapeutics against Alzheimer’s disease and other neurological disorders. Front. Pharmacol., 2019, 10, 1417.
[http://dx.doi.org/10.3389/fphar.2019.01417] [PMID: 31849668]
[19]
Hosseinkhani, A.; Sahragard, A.; Namdari, A.; Zarshenas, M.M. Botanical sources for Alzheimer’s: A review on reports from traditional Persian medicine. Am. J. Alzheimers Dis. Other Demen., 2017, 32(7), 429-437.
[http://dx.doi.org/10.1177/1533317517717013] [PMID: 28683559]
[20]
D’Onofrio, G.; Sancarlo, D.; Ruan, Q.; Yu, Z.; Panza, F.; Daniele, A.; Greco, A.; Seripa, D. Phytochemicals in the treatment of Alzheimer’s disease: A systematic review. Curr. Drug Targets, 2017, 18(13), 1487-1498.
[http://dx.doi.org/10.2174/1389450117666161102121553] [PMID: 27809746]
[21]
Shal, B.; Ding, W.; Ali, H.; Kim, Y.S.; Khan, S. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front. Pharmacol., 2018, 9, 548.
[http://dx.doi.org/10.3389/fphar.2018.00548] [PMID: 29896105]
[22]
Hussain, G.; Zhang, L.; Rasul, A.; Anwar, H.; Sohail, M.U.; Razzaq, A.; Aziz, N.; Shabbir, A.; Ali, M.; Sun, T. Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer’s and Parkinson’s diseases: An update of recent data. Molecules, 2018, 23(4), 814.
[http://dx.doi.org/10.3390/molecules23040814] [PMID: 29614843]
[23]
Khalil, A.T.; Ayaz, M.; Ovais, M.; Wadood, A.; Ali, M.; Shinwari, Z.K.; Maaza, M. in vitro cholinesterase enzymes inhibitory potential and in silico molecular docking studies of biogenic metal oxides nanoparticles. Inorg. Nano-Metal Chem., 2018, 48(9), 441-448.
[http://dx.doi.org/10.1080/24701556.2019.1569686]
[24]
Clarfield, A.M. Early Alzheimer’s disease. N. Engl. J. Med., 2004, 350(1), 80-82.
[http://dx.doi.org/10.1056/NEJM200401013500115] [PMID: 14702432]
[25]
Alam, R.K.; Ali, B.A.; Ahmad, S.N.; Muhammad Iqbal, C. Acetylcholinesterase and butyrylcholinesterase inhibitory potential of some Pakistani medicinal plants. J. Ethnopharmacol., 2004, 91(1), 57-60.
[26]
Cho, J.K.; Ryu, Y.B.; Curtis-Long, M.J.; Kim, J.Y.; Kim, D.; Lee, S.; Lee, W.S.; Park, K.H. Inhibition and structural reliability of prenylated flavones from the stem bark of Morus lhou on β-secretase (BACE-1). Bioorg. Med. Chem. Lett., 2011, 21(10), 2945-2948.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.060] [PMID: 21511472]
[27]
Fang, W.; Sun, D.; Yang, S.; Guo, N. β-Secretase (BACE1) inhibitors from natural products. Nutrients, 2017, 9, 973.
[28]
Jeon, S-Y.; Bae, K.; Seong, Y-H.; Song, K-S. Green tea catechins as a BACE1 (β-secretase) inhibitor. Bioorg. Med. Chem. Lett., 2003, 13(22), 3905-3908.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.018] [PMID: 14592472]
[29]
Shimmyo, Y.; Kihara, T.; Akaike, A.; Niidome, T.; Sugimoto, H. Flavonols and flavones as BACE-1 inhibitors: Structure-activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim. Biophys. Acta, 2008, 1780(5), 819-825.
[http://dx.doi.org/10.1016/j.bbagen.2008.01.017] [PMID: 18295609]
[30]
Di Martino, R.M.C.; De Simone, A.; Andrisano, V.; Bisignano, P.; Bisi, A.; Gobbi, S.; Rampa, A.; Fato, R.; Bergamini, C.; Perez, D.I.; Martinez, A.; Bottegoni, G.; Cavalli, A.; Belluti, F. Versatility of the curcumin scaffold: Discovery of potent and balanced dual BACE-1 and GSK-3β inhibitors. J. Med. Chem., 2016, 59(2), 531-544.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00894] [PMID: 26696252]
[31]
Manayi, A.; Nabavi, S.M.; Daglia, M.; Jafari, S. Natural terpenoids as a promising source for modulation of GABAergic system and treatment of neurological diseases. Pharmacol. Rep., 2016, 68(4), 671-679.
[http://dx.doi.org/10.1016/j.pharep.2016.03.014] [PMID: 27110875]
[32]
Liu, B.; Hattori, N.; Zhang, N-Y.; Wu, B.; Yang, L.; Kitagawa, K.; Xiong, Z-M.; Irie, T.; Inagaki, C. Anxiolytic agent, dihydrohonokiol-B, recovers amyloid β protein-induced neurotoxicity in cultured rat hippocampal neurons. Neurosci. Lett., 2005, 384(1-2), 44-47.
[http://dx.doi.org/10.1016/j.neulet.2005.04.081] [PMID: 15899548]
[33]
Johnston, G.A.; Hanrahan, J.R.; Chebib, M.; Duke, R.K.; Mewett, K.N. Modulation of ionotropic GABA receptors by natural products of plant origin. Adv. Pharmacol., 2006, 54, 285-316.
[http://dx.doi.org/10.1016/S1054-3589(06)54012-8] [PMID: 17175819]
[34]
Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Khan, M.A.; Ahmad, W.; Shah, M.R.; Imran, M.; Ahmad, S. Comparative chemical profiling, cholinesterase inhibitions and anti-radicals properties of essential oils from Polygonum hydropiper L: A preliminary anti- Alzheimer’s study. Lipids Health Dis., 2015, 14(1), 141.
[http://dx.doi.org/10.1186/s12944-015-0145-8] [PMID: 26530857]
[35]
Ali, S.K.; Hamed, A.R.; Soltan, M.M.; Hegazy, U.M.; Elgorashi, E.E.; El-Garf, I.A.; Hussein, A.A. In-vitro evaluation of selected Egyptian traditional herbal medicines for treatment of Alzheimer disease. BMC Complement. Altern. Med., 2013, 13(1), 121.
[http://dx.doi.org/10.1186/1472-6882-13-121] [PMID: 23721591]
[36]
Choi, S.H.; Aid, S.; Caracciolo, L.; Minami, S.S.; Niikura, T.; Matsuoka, Y.; Turner, R.S.; Mattson, M.P.; Bosetti, F. Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease. J. Neurochem., 2013, 124(1), 59-68.
[http://dx.doi.org/10.1111/jnc.12059] [PMID: 23083210]
[37]
Hoozemans, J.J.; Rozemuller, A.J.; Janssen, I.; De Groot, C.J.; Veerhuis, R.; Eikelenboom, P. Cyclooxygenase expression in microglia and neurons in Alzheimer’s disease and control brain. Acta Neuropathol., 2001, 101(1), 2-8.
[http://dx.doi.org/10.1007/s004010000251] [PMID: 11194936]
[38]
Choi, S-H.; Bosetti, F. Cyclooxygenase-1 null mice show reduced neuroinflammation in response to β-amyloid. Aging (Albany NY), 2009, 1(2), 234-244.
[http://dx.doi.org/10.18632/aging.100021] [PMID: 20157512]
[39]
Naoi, M.; Shamoto-Nagai, M.; Maruyama, W. Neuroprotection of multifunctional phytochemicals as novel therapeutic strategy for neurodegenerative disorders: Antiapoptotic and antiamyloidogenic activities by modulation of cellular signal pathways. Future Neurol., 2019, 14(1), FNL9.
[http://dx.doi.org/10.2217/fnl-2018-0028]
[40]
Lee, H.E.; Kim, D.H.; Park, S.J.; Kim, J.M.; Lee, Y.W.; Jung, J.M.; Lee, C.H.; Hong, J.G.; Liu, X.; Cai, M.; Park, K.J.; Jang, D.S.; Ryu, J.H. Neuroprotective effect of sinapic acid in a mouse model of amyloid β(1-42) protein-induced Alzheimer’s disease. Pharmacol. Biochem. Behav., 2012, 103(2), 260-266.
[http://dx.doi.org/10.1016/j.pbb.2012.08.015] [PMID: 22971592]
[41]
Rasool, M.; Malik, A.; Qureshi, M.S.; Manan, A.; Pushparaj, P.N.; Asif, M.; Qazi, M.H.; Qazi, A.M.; Kamal, M.A.; Gan, S.H. Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evid.-. Based Complement. Altern. Med., 2014, 2014, 979730.
[http://dx.doi.org/10.1155/2014/979730]
[42]
Mietelska-Porowska, A.; Wasik, U.; Goras, M.; Filipek, A.; Niewiadomska, G. Tau protein modifications and interactions: Their role in function and dysfunction. Int. J. Mol. Sci., 2014, 15(3), 4671-4713.
[http://dx.doi.org/10.3390/ijms15034671] [PMID: 24646911]
[43]
Ahn, J.Y.; Kim, S.; Jung, S.E.; Ha, T.Y. Effect of licorice (Glycyrrhiza uralensis Fisch) on amyloid-β-induced neurotoxicity in PC12 cells. Food Sci. Biotechnol., 2010, 19(5), 1391-1395.
[http://dx.doi.org/10.1007/s10068-010-0198-4]
[44]
Baptista, F.I.; Henriques, A.G.; Silva, A.M.; Wiltfang, J. da Cruz e Silva, O.A. Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer’s disease. ACS Chem. Neurosci., 2014, 5(2), 83-92.
[http://dx.doi.org/10.1021/cn400213r] [PMID: 24328060]
[45]
Park, T-S.; Ryu, Y-K.; Park, H-Y.; Kim, J.Y.; Go, J.; Noh, J-R.; Kim, Y-H.; Hwang, J.H.; Choi, D-H.; Oh, W-K.; Lee, C.H.; Kim, K.S. Humulus japonicus inhibits the progression of Alzheimer’s disease in a APP/PS1 transgenic mouse model. Int. J. Mol. Med., 2017, 39(1), 21-30.
[http://dx.doi.org/10.3892/ijmm.2016.2804] [PMID: 28004107]
[46]
Khan, A.; Jahan, S.; Alshahrani, S.; Alshehri, B.M.; Sameer, A.S.; Arafah, A.; Ahmad, A.; Rehman, M.U. Phytotherapeutic agents for neurodegenerative disorders: A neuropharmacological review. Phytomedicine. Edn; Elsevier, 2021, pp. 581-620.
[http://dx.doi.org/10.1016/B978-0-12-824109-7.00012-1]
[47]
Kim, J.; Lee, H.J.; Lee, K.W. Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J. Neurochem., 2010, 112(6), 1415-1430.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06562.x] [PMID: 20050972]
[48]
Nikolova, M. Screening of radical scavenging activity and polyphenol content of Bulgarian plant species. Pharmacognosy Res., 2011, 3(4), 256-259.
[http://dx.doi.org/10.4103/0974-8490.89746] [PMID: 22224049]
[49]
Venkatesan, R.; Ji, E.; Kim, S.Y. Phytochemicals that regulate neurodegenerative disease by targeting neurotrophins: A comprehensive review. BioMed Res. Int., 2015, 2015, 814068.
[http://dx.doi.org/10.1155/2015/814068] [PMID: 26075266]
[50]
Velmurugan, B.K.; Rathinasamy, B.; Lohanathan, B.P.; Thiyagarajan, V.; Weng, C-F. Neuroprotective role of phytochemicals. Molecules, 2018, 23(10), 2485.
[http://dx.doi.org/10.3390/molecules23102485] [PMID: 30262792]
[51]
Soleimani, H.; Amini, A.; Taheri, S.; Sajadi, E.; Shafikhani, S.; Schuger, L.A.; Reddy, V.B.; Ghoreishi, S.K.; Pouriran, R.; Chien, S.; Bayat, M. The effect of combined photobiomodulation and curcumin on skin wound healing in type I diabetes in rats. J. Photochem. Photobiol. B, 2018, 181, 23-30.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.02.023] [PMID: 29486459]
[52]
Darvesh, A.S.; Carroll, R.T.; Bishayee, A.; Novotny, N.A.; Geldenhuys, W.J.; Van der Schyf, C.J. Curcumin and neurodegenerative diseases: A perspective. Expert Opin. Investig. Drugs, 2012, 21(8), 1123-1140.
[http://dx.doi.org/10.1517/13543784.2012.693479] [PMID: 22668065]
[53]
Kim, H.; Park, B.S.; Lee, K.G.; Choi, C.Y.; Jang, S.S.; Kim, Y.H.; Lee, S.E. Effects of naturally occurring compounds on fibril formation and oxidative stress of beta-amyloid. J. Agric. Food Chem., 2005, 53(22), 8537-8541.
[http://dx.doi.org/10.1021/jf051985c] [PMID: 16248550]
[54]
Nam, S.M.; Choi, J.H.; Yoo, D.Y.; Kim, W.; Jung, H.Y.; Kim, J.W.; Yoo, M.; Lee, S.; Kim, C.J.; Yoon, Y.S.; Hwang, I.K. Effects of curcumin (Curcuma longa) on learning and spatial memory as well as cell proliferation and neuroblast differentiation in adult and aged mice by upregulating brain-derived neurotrophic factor and CREB signaling. J. Med. Food, 2014, 17(6), 641-649.
[http://dx.doi.org/10.1089/jmf.2013.2965] [PMID: 24712702]
[55]
Zhang, C.; Browne, A.; Child, D.; Tanzi, R.E. Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein. J. Biol. Chem., 2010, 285(37), 28472-28480.
[http://dx.doi.org/10.1074/jbc.M110.133520] [PMID: 20622013]
[56]
Hoppe, J.B.; Coradini, K.; Frozza, R.L.; Oliveira, C.M.; Meneghetti, A.B.; Bernardi, A.; Pires, E.S.; Beck, R.C.; Salbego, C.G. Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: Involvement of BDNF and Akt/GSK-3β signaling pathway. Neurobiol. Learn. Mem., 2013, 106, 134-144.
[http://dx.doi.org/10.1016/j.nlm.2013.08.001] [PMID: 23954730]
[57]
Rogers, J.; Lue, L-F. Microglial chemotaxis, activation, and phagocytosis of amyloid β-peptide as linked phenomena in Alzheimer’s disease. Neurochem. Int., 2001, 39(5-6), 333-340.
[http://dx.doi.org/10.1016/S0197-0186(01)00040-7] [PMID: 11578768]
[58]
He, G-L.; Luo, Z.; Yang, J.; Shen, T.T.; Chen, Y.; Yang, X-S. Curcumin ameliorates the reduction effect of PGE2 on fibrillar β-amyloid peptide (1-42)-induced microglial phagocytosis through the inhibition of EP2-PKA signaling in N9 microglial cells. PLoS One, 2016, 11(1), e0147721.
[http://dx.doi.org/10.1371/journal.pone.0147721] [PMID: 26824354]
[59]
Yu, S.; Zheng, W.; Xin, N.; Chi, Z.H.; Wang, N.Q.; Nie, Y.X.; Feng, W.Y.; Wang, Z.Y. Curcumin prevents dopaminergic neuronal death through inhibition of the c-Jun N-terminal kinase pathway. Rejuvenation Res., 2010, 13(1), 55-64.
[http://dx.doi.org/10.1089/rej.2009.0908] [PMID: 20230279]
[60]
Heo, H.J.; Lee, C.Y. Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J. Agric. Food Chem., 2004, 52(25), 7514-7517.
[http://dx.doi.org/10.1021/jf049243r] [PMID: 15675797]
[61]
Dajas, F.; Abin-Carriquiry, J.A.; Arredondo, F.; Blasina, F.; Echeverry, C.; Martínez, M.; Rivera, F.; Vaamonde, L. Quercetin in brain diseases: Potential and limits. Neurochem. Int., 2015, 89, 140-148.
[http://dx.doi.org/10.1016/j.neuint.2015.07.002] [PMID: 26160469]
[62]
Anastácio, J.R.; Netto, C.A.; Castro, C.C.; Sanches, E.F.; Ferreira, D.C.; Noschang, C.; Krolow, R.; Dalmaz, C.; Pagnussat, A. Resveratrol treatment has neuroprotective effects and prevents cognitive impairment after chronic cerebral hypoperfusion. Neurol. Res., 2014, 36(7), 627-633.
[http://dx.doi.org/10.1179/1743132813Y.0000000293] [PMID: 24620966]
[63]
Ma, T.; Tan, M.S.; Yu, J.T.; Tan, L. Resveratrol as a therapeutic agent for Alzheimer’s disease. BioMed Res. Int., 2014, 2014, 350516.
[http://dx.doi.org/10.1155/2014/350516] [PMID: 25525597]
[64]
Zhang, G.; Liu, Y.; Xu, L.; Sha, C.; Zhang, H.; Xu, W. Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model. BMC Biotechnol., 2019, 19(1), 10.
[http://dx.doi.org/10.1186/s12896-019-0502-1] [PMID: 30691440]
[65]
Karuppagounder, S.S.; Pinto, J.T.; Xu, H.; Chen, H.L.; Beal, M.F.; Gibson, G.E. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem. Int., 2009, 54(2), 111-118.
[http://dx.doi.org/10.1016/j.neuint.2008.10.008] [PMID: 19041676]
[66]
Wu, Y.; Li, X.; Zhu, J.X.; Xie, W.; Le, W.; Fan, Z.; Jankovic, J.; Pan, T. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals, 2011, 19(3), 163-174.
[http://dx.doi.org/10.1159/000328516] [PMID: 21778691]
[67]
Wang, B.; Lu, Y.; Wang, R.; Liu, S.; Hu, X.; Wang, H. Transport and metabolic profiling studies of amentoflavone in Caco-2 cells by UHPLC-ESI-MS/MS and UHPLC-ESI-Q-TOF-MS/MS. J. Pharm. Biomed. Anal., 2020, 189, 113441.
[http://dx.doi.org/10.1016/j.jpba.2020.113441] [PMID: 32615340]
[68]
Nabavi, S.F.; Braidy, N.; Gortzi, O.; Sobarzo-Sanchez, E.; Daglia, M.; Skalicka-Woźniak, K.; Nabavi, S.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull., 2015, 119(Pt A), 1-11.
[http://dx.doi.org/10.1016/j.brainresbull.2015.09.002]
[69]
Srivastava, P.; Yadav, R.S. Efficacy of natural compounds in neurodegenerative disorders. In: The Benefits of Natural Products for Neurodegenerative Diseases; Springer, 2016; pp. 107-123.
[http://dx.doi.org/10.1007/978-3-319-28383-8_7]
[70]
Akter, R.; Chowdhury, M.A.R.; Rahman, M.H. Flavonoids and polyphenolic compounds as potential talented agents for the treatment of Alzheimer’s disease and their antioxidant activities. Curr. Pharm. Des., 2021, 27(3), 345-356.
[http://dx.doi.org/10.2174/1381612826666201102102810] [PMID: 33138754]
[71]
Zheng, H.; Koo, E.H. The amyloid precursor protein: Beyond amyloid. Mol. Neurodegener., 2006, 1(1), 5.
[http://dx.doi.org/10.1186/1750-1326-1-5] [PMID: 16930452]
[72]
Nabavi, S.F.; Khan, H.; D’onofrio, G.; Šamec, D.; Shirooie, S.; Dehpour, A.R.; Argüelles, S.; Habtemariam, S.; Sobarzo-Sanchez, E. Apigenin as neuroprotective agent: Of mice and men. Pharmacol. Res., 2018, 128, 359-365.
[http://dx.doi.org/10.1016/j.phrs.2017.10.008] [PMID: 29055745]
[73]
Yan, X.; Qi, M.; Li, P.; Zhan, Y.; Shao, H. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell Biosci., 2017, 7(1), 50.
[http://dx.doi.org/10.1186/s13578-017-0179-x] [PMID: 29034071]
[74]
Siddique, Y.H.; Naz, F.; Jyoti, S.; Afzal, M. Protective effect of apigenin in transgenic Drosophila melanogaster model of Parkinson’s disease. Pharmacology, 2011, 3, 790-795.
[75]
Balez, R.; Steiner, N.; Engel, M.; Muñoz, S.S.; Lum, J.S.; Wu, Y.; Wang, D.; Vallotton, P.; Sachdev, P.; O’Connor, M.; Sidhu, K.; Münch, G.; Ooi, L. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci. Rep., 2016, 6(1), 31450.
[http://dx.doi.org/10.1038/srep31450] [PMID: 27514990]
[76]
Mohd Sairazi, N.S.; Sirajudeen, K. Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative diseases. Evid.-. Based Complement. Altern. Med., 2020, 2020, 6565396.
[http://dx.doi.org/10.1155/2020/6565396]
[77]
Greanious, A.M-N.M.; Ncube, N.; Sibanda, A.; Dube, D.; Farai, F.C.; Makoni, P. Phytotherapeutics attenuation of oxidative stress, inflammation and lipid peroxidation in severe and chronic diseases. Accent. Lipid Peroxidat., 2021, 2021, 77.
[78]
Suntres, Z.E.; Coccimiglio, J.; Alipour, M. The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr., 2015, 55(3), 304-318.
[http://dx.doi.org/10.1080/10408398.2011.653458] [PMID: 24915411]
[79]
Harwood, M.; Danielewska-Nikiel, B.; Borzelleca, J.F.; Flamm, G.W.; Williams, G.M.; Lines, T.C. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol., 2007, 45(11), 2179-2205.
[http://dx.doi.org/10.1016/j.fct.2007.05.015] [PMID: 17698276]
[80]
Polkowski, K.; Mazurek, A.P. Biological properties of genistein. A review of in vitro and in vivo data. Acta Pol. Pharm., 2000, 57(2), 135-155.
[PMID: 10934794]
[81]
Williams, L.D.; Burdock, G.A.; Edwards, J.A.; Beck, M.; Bausch, J. Safety studies conducted on high-purity trans-resveratrol in experimental animals. Food Chem. Toxicol., 2009, 47(9), 2170-2182.
[http://dx.doi.org/10.1016/j.fct.2009.06.002] [PMID: 19505523]
[82]
Vaz-da-Silva, M.; Loureiro, A.I.; Falcao, A.; Nunes, T.; Rocha, J.F.; Fernandes-Lopes, C.; Soares, E.; Wright, L.; Almeida, L.; Soares-da-Silva, P. Effect of food on the pharmacokinetic profile of trans-resveratrol. Int. J. Clin. Pharmacol. Ther., 2008, 46(11), 564-570.
[http://dx.doi.org/10.5414/CPP46564] [PMID: 19000554]
[83]
Almeida, L.; Vaz-da-Silva, M.; Falcão, A.; Soares, E.; Costa, R.; Loureiro, A.I.; Fernandes-Lopes, C.; Rocha, J.F.; Nunes, T.; Wright, L.; Soares-da-Silva, P. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol. Nutr. Food Res., 2009, 53(Suppl. 1), S7-S15.
[http://dx.doi.org/10.1002/mnfr.200800177] [PMID: 19194969]
[84]
Ganiger, S.; Malleshappa, H.N.; Krishnappa, H.; Rajashekhar, G.; Ramakrishna Rao, V.; Sullivan, F. A two generation reproductive toxicity study with curcumin, turmeric yellow, in Wistar rats. Food Chem. Toxicol., 2007, 45(1), 64-69.
[http://dx.doi.org/10.1016/j.fct.2006.07.016] [PMID: 16987575]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy