Mini-Review Article

Role of Long Non-Coding RNA in Regulating ER Stress Response to the Progression of Diabetic Complications

Author(s): Ramanarayanan Vijayalalitha, TCA Archita, George Raj Juanitaa, Ravichandran Jayasuriya, Karan Naresh Amin and Kunka Mohanram Ramkumar*

Volume 23, Issue 2, 2023

Published on: 22 August, 2022

Page: [96 - 110] Pages: 15

DOI: 10.2174/1566523222666220801141450

Price: $65

Abstract

Chronic hyperglycemia damages the nerves and blood vessels, culminating in other vascular complications. Such complications enhance cytokine, oxidative and endoplasmic reticulum (ER) stress. ER is the primary organelle where proteins are synthesised and attains confirmatory changes before its site of destination. Perturbation of ER homeostasis activates signaling sensors within its lumen, the unfolded protein response (UPR) that orchestrates ER stress and is extensively studied. Increased ER stress markers are reported in diabetic complications in addition to lncRNA that acts as an upstream marker inducing ER stress response. This review focuses on the mechanisms of lncRNA that regulate ER stress markers, especially during the progression of diabetic complications. Through this systemic review, we showcase the dysfunctional lncRNAs that act as a leading cause of ER stress response to the progression of diabetic complications.

Keywords: lncRNA, ER stress, diabetic complications, insulin production, ER stress response, UPR.

Graphical Abstract
[1]
Diagnosis and classification of diabetes mellitus. Diabetes Care 2014; 37 (Suppl. 1): S81-90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[2]
Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018; 138: 271-81.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[3]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract 2019; 157: 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[4]
Kota S, Meher L, Jammula S, Kota S, Krishna SVS, Modi K. Aberrant angiogenesis: The gateway to diabetic complications. Indian J Endocrinol Metab 2012; 16(6): 918-30.
[http://dx.doi.org/10.4103/2230-8210.102992] [PMID: 23226636]
[5]
Ray PD, Huang BW, Tsuji Y. Reactive Oxygen Species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012; 24(5): 981-90.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.008] [PMID: 22286106]
[6]
Grimm S. The ER–mitochondria interface: The social network of cell death. Biochim Biophys Acta Mol Cell Res 2012; 1823(2): 327-34.
[http://dx.doi.org/10.1016/j.bbamcr.2011.11.018] [PMID: 22182703]
[7]
Braakman I, Hebert DN. Protein folding in the endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5(5): a013201.
[http://dx.doi.org/10.1101/cshperspect.a013201] [PMID: 23637286]
[8]
Costa CA, Manaa WE, Duplan E, Checler F. The endoplasmic reticulum stress/unfolded protein response and their contributions to Parkinson’s Disease Physiopathology. Cells 2020; 9(11): 2495.
[http://dx.doi.org/10.3390/cells9112495] [PMID: 33212954]
[9]
Guzel E, Arlier S, Guzeloglu-Kayisli O, et al. Endoplasmic reticulum stress and homeostasis in reproductive physiology and pathology. Int J Mol Sci 2017; 18(4): 792.
[http://dx.doi.org/10.3390/ijms18040792] [PMID: 28397763]
[10]
McMahon M, Samali A, Chevet E. Regulation of the unfolded protein response by noncoding RNA. Am J Physiol Cell Physiol 2017; 313(3): C243-54.
[http://dx.doi.org/10.1152/ajpcell.00293.2016] [PMID: 28637678]
[11]
Adams CJ, Kopp MC, Larburu N, Nowak PR, Ali MMU. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front Mol Biosci 2019; 6: 11.
[http://dx.doi.org/10.3389/fmolb.2019.00011] [PMID: 30931312]
[12]
Suganya N, Mani KP, Sireesh D, et al. Establishment of pancreatic microenvironment model of ER stress: Quercetin attenuates β-cell apoptosis by invoking nitric oxide-cGMP signaling in endothelial cells. J Nutr Biochem 2018; 55: 142-56.
[http://dx.doi.org/10.1016/j.jnutbio.2017.12.012] [PMID: 29455095]
[13]
Victor P, Umapathy D, George L, et al. Crosstalk between endoplasmic reticulum stress and oxidative stress in the progression of diabetic nephropathy. Cell Stress Chaperones 2021; 26(2): 311-21.
[http://dx.doi.org/10.1007/s12192-020-01176-z] [PMID: 33161510]
[14]
Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta Mol Cell Res 2013; 1833(12): 3460-70.
[http://dx.doi.org/10.1016/j.bbamcr.2013.06.028] [PMID: 23850759]
[15]
Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 2013; 5(3): a013169.
[http://dx.doi.org/10.1101/cshperspect.a013169] [PMID: 23388626]
[16]
Ozcan L, Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med 2012; 63(1): 317-28.
[http://dx.doi.org/10.1146/annurev-med-043010-144749] [PMID: 22248326]
[17]
Ghemrawi R, Khair M. Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases. Int J Mol Sci 2020; 21(17): 6127.
[http://dx.doi.org/10.3390/ijms21176127] [PMID: 32854418]
[18]
Ibrahim IM, Abdelmalek DH, Elfiky AA. GRP78: A cell’s response to stress. Life Sci 2019; 226: 156-63.
[http://dx.doi.org/10.1016/j.lfs.2019.04.022] [PMID: 30978349]
[19]
Rao RV, Bredesen DE. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol 2004; 16(6): 653-62.
[http://dx.doi.org/10.1016/j.ceb.2004.09.012] [PMID: 15530777]
[20]
Chen Y, Brandizzi F. IRE1: ER stress sensor and cell fate executor. Trends Cell Biol 2013; 23(11): 547-55.
[http://dx.doi.org/10.1016/j.tcb.2013.06.005] [PMID: 23880584]
[21]
Ali MMU, Bagratuni T, Davenport EL, et al. Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response. EMBO J 2011; 30(5): 894-905.
[http://dx.doi.org/10.1038/emboj.2011.18] [PMID: 21317875]
[22]
Park SM, Kang TI, So JS. Roles of XBP1s in transcriptional regulation of target genes. Biomedicines 2021; 9(7): 791.
[http://dx.doi.org/10.3390/biomedicines9070791] [PMID: 34356855]
[23]
Hu H, Tian M, Ding C, Yu S. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol 2019; 9: 3083.
[http://dx.doi.org/10.3389/fimmu.2018.03083] [PMID: 30662442]
[24]
Chaudhari N, Talwar P, Parimisetty A, Lefebvre d’Hellencourt C, Ravanan P. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 2014; 8: 213.
[http://dx.doi.org/10.3389/fncel.2014.00213] [PMID: 25120434]
[25]
Yamamoto M, Gohda J, Akiyama T, Inoue J. TNF Receptor-Associated Factor 6 (TRAF6) plays crucial roles in multiple biological systems through polyubiquitination-mediated NF-κB activation. Proc Jpn Acad, Ser B, Phys Biol Sci 2021; 97(4): 145-60.
[http://dx.doi.org/10.2183/pjab.97.009] [PMID: 33840674]
[26]
Lerner AG, Upton JP, Praveen PVK, et al. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab 2012; 16(2): 250-64.
[http://dx.doi.org/10.1016/j.cmet.2012.07.007] [PMID: 22883233]
[27]
Read A, Schröder M. The unfolded protein response: An overview. Biology (Basel) 2021; 10(5): 384.
[http://dx.doi.org/10.3390/biology10050384] [PMID: 33946669]
[28]
Boye E, Grallert B. eIF2α phosphorylation and the regulation of translation. Curr Genet 2020; 66(2): 293-7.
[http://dx.doi.org/10.1007/s00294-019-01026-1] [PMID: 31485739]
[29]
Jayasuriya R, Dhamodharan U, Ali D, Ganesan K, Xu B, Ramkumar KM. Targeting Nrf2/Keap1 signaling pathway by bioactive natural agents: Possible therapeutic strategy to combat liver disease. Phytomedicine 2021; 92: 153755.
[http://dx.doi.org/10.1016/j.phymed.2021.153755] [PMID: 34583226]
[30]
Iurlaro R, Muñoz-Pinedo C. Cell death induced by endoplasmic reticulum stress. FEBS J 2016; 283(14): 2640-52.
[http://dx.doi.org/10.1111/febs.13598] [PMID: 26587781]
[31]
Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol 2007; 35(4): 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[32]
Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 2011; 13(3): 184-90.
[http://dx.doi.org/10.1038/ncb0311-184] [PMID: 21364565]
[33]
Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S. Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab 2017; 6(9): 943-57.
[http://dx.doi.org/10.1016/j.molmet.2017.06.019] [PMID: 28951820]
[34]
Jo S, Fang S. Therapeutic strategies for diabetes: Immune modulation in pancreatic β cells. Front Endocrinol (Lausanne) 2021; 12: 716692.
[http://dx.doi.org/10.3389/fendo.2021.716692] [PMID: 34484126]
[35]
Sun J, Cui J, He Q, et al. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes. Mol Aspects Med 2015; 42(10): 5-18.
[http://dx.doi.org/10.1016/j.mam.2015.01.001]
[36]
Despa F, Berry RS. β-Cell dysfunction under hyperglycemic stress: A molecular model. J Diabetes Sci Technol 2010; 4(6): 1447-56.
[http://dx.doi.org/10.1177/193229681000400619] [PMID: 21129340]
[37]
Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: Cell life and death decisions. J Clin Invest 2005; 115(10): 2656-64.
[http://dx.doi.org/10.1172/JCI26373] [PMID: 16200199]
[38]
Goh SY, Cooper ME. Clinical review: The role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab 2008; 93(4): 1143-52.
[http://dx.doi.org/10.1210/jc.2007-1817] [PMID: 18182449]
[39]
Naresh Amin K, Rajagru P, Sarkar K, et al. Pharmacological activation of Nrf2 by rosolic acid attenuates endoplasmic reticulum stress in endothelial cells. Oxid Med Cell Longev 2021; 2021: 1-20.
[http://dx.doi.org/10.1155/2021/2732435] [PMID: 33897939]
[40]
Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet 2010; 376(9735): 124-36.
[http://dx.doi.org/10.1016/S0140-6736(09)62124-3] [PMID: 20580421]
[41]
Yang J, Chen C, McLaughlin T, et al. Loss of X-box binding protein 1 in Müller cells augments retinal inflammation in a mouse model of diabetes. Diabetologia 2019; 62(3): 531-43.
[http://dx.doi.org/10.1007/s00125-018-4776-y] [PMID: 30612139]
[42]
Aley KO, Levine JD. Rapid onset pain induced by intravenous streptozotocin in the rat. J Pain 2001; 2(3): 146-50.
[http://dx.doi.org/10.1054/jpai.2001.21592] [PMID: 14622824]
[43]
Inceoglu B, Bettaieb A, Trindade da Silva CA, Lee KSS, Haj FG, Hammock BD. Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain. Proc Natl Acad Sci USA 2015; 112(29): 9082-7.
[http://dx.doi.org/10.1073/pnas.1510137112] [PMID: 26150506]
[44]
Yao W, Yang X, Zhu J, Gao B, Shi H, Xu L. IRE1α siRNA relieves endoplasmic reticulum stress-induced apoptosis and alleviates diabetic peripheral neuropathy in vivo and in vitro. Sci Rep 2018; 8(1): 2579.
[http://dx.doi.org/10.1038/s41598-018-20950-9] [PMID: 29416111]
[45]
Buchanan J, Mazumder PK, Hu P, et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 2005; 146(12): 5341-9.
[http://dx.doi.org/10.1210/en.2005-0938] [PMID: 16141388]
[46]
Lakshmanan AP, Harima M, Suzuki K, et al. The hyperglycemia stimulated myocardial endoplasmic reticulum (ER) stress contributes to diabetic cardiomyopathy in the transgenic non-obese type 2 diabetic rats: A differential role of unfolded protein response (UPR) signaling proteins. Int J Biochem Cell Biol 2013; 45(2): 438-47.
[http://dx.doi.org/10.1016/j.biocel.2012.09.017] [PMID: 23032698]
[47]
Kaser A, Lee AH, Franke A, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008; 134(5): 743-56.
[http://dx.doi.org/10.1016/j.cell.2008.07.021] [PMID: 18775308]
[48]
Handy DE, Castro R, Loscalzo J. Epigenetic Modifications. Circulation 2011; 123(19): 2145-56.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.956839] [PMID: 21576679]
[49]
Reul JMHM. Making memories of stressful events: A journey along epigenetic, gene transcription, and signaling pathways. Front Psychiatry 2014; 5: 5.
[http://dx.doi.org/10.3389/fpsyt.2014.00005] [PMID: 24478733]
[50]
Jayasuriya R, Ramkumar KM. Role of long non-coding RNAs on the regulation of Nrf2 in chronic diseases. Life Sci 2021; 270: 119025.
[http://dx.doi.org/10.1016/j.lfs.2021.119025] [PMID: 33450255]
[51]
Zhang ZL, Zhao LJ, Xu L, et al. Transcriptomic model based lncRNAs and mRNAs serve as independent prognostic indicators in head and neck squamous cell carcinoma. Oncol Lett 2019; 17(6): 5536-44.
[http://dx.doi.org/10.3892/ol.2019.10213] [PMID: 31186775]
[52]
Robinson EK, Covarrubias S, Carpenter S. The how and why of lncRNA function: An innate immune perspective. Biochim Biophys Acta Gene Regul Mech 2020; 1863(4): 194419.
[http://dx.doi.org/10.1016/j.bbagrm.2019.194419] [PMID: 31487549]
[53]
Zhang X, Wang W, Zhu W, et al. Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int J Mol Sci 2019; 20(22): 5573.
[http://dx.doi.org/10.3390/ijms20225573] [PMID: 31717266]
[54]
Chen Y, Li Z, Chen X, Zhang S. Long non-coding RNAs: From disease code to drug role. Acta Pharm Sin B 2021; 11(2): 340-54.
[http://dx.doi.org/10.1016/j.apsb.2020.10.001] [PMID: 33643816]
[55]
Ali T, Grote P. Beyond the RNA-dependent function of LncRNA genes. eLife 2020; 9: e60583.
[http://dx.doi.org/10.7554/eLife.60583] [PMID: 33095159]
[56]
Hegre SA, Samdal H, Klima A, et al. Joint changes in RNA, RNA polymerase II, and promoter activity through the cell cycle identify non-coding RNAs involved in proliferation. Sci Rep 2021; 11(1): 18952.
[http://dx.doi.org/10.1038/s41598-021-97909-w] [PMID: 34556693]
[57]
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 2016; 17(1): 47-62.
[http://dx.doi.org/10.1038/nrg.2015.10] [PMID: 26666209]
[58]
Dandare A, Rabia G, Khan MJ. In silico analysis of non-coding RNAs and putative target genes implicated in metabolic syndrome. Comput Biol Med 2021; 130: 104229.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104229] [PMID: 33516961]
[59]
Mortazavi SS, Bahmanpour Z, Daneshmandpour Y, et al. An updated overview and classification of bioinformatics tools for microRNA analysis, which one to choose? Comput Biol Med 2021; 134: 104544.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104544] [PMID: 34119921]
[60]
Pranavkrishna S, Sanjeev G, Akshaya RL, Rohini M, Selvamurugan N. A computational approach on studying the regulation of TGF-β1-stimulated Runx2 expression by MicroRNAs in human breast cancer cells. Comput Biol Med 2021; 137: 104823.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104823] [PMID: 34492519]
[61]
Yones C, Raad J, Bugnon LA, Milone DH, Stegmayer G. High precision in microRNA prediction: A novel genome-wide approach with convolutional deep residual networks. Comput Biol Med 2021; 134: 104448.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104448] [PMID: 33979731]
[62]
Lai H, Li Y, Zhang H, et al. exoRBase 2.0: an atlas of mRNA, lncRNA and circRNA in extracellular vesicles from human biofluids. Nucleic Acids Res 2022; 50(D1): D118-28.
[http://dx.doi.org/10.1093/nar/gkab1085] [PMID: 34918744]
[63]
Fukunaga T, Iwakiri J, Ono Y, Hamada M. LncRRIsearch: A web server for lncRNA-RNA interaction prediction integrated with tissue-specific expression and subcellular localization data. Front Genet 2019; 10: 462.
[http://dx.doi.org/10.3389/fgene.2019.00462] [PMID: 31191601]
[64]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[65]
Zhou H, Sun L, Wan F. Molecular mechanisms of TUG1 in the proliferation, apoptosis, migration and invasion of cancer cells (Review). Oncol Lett 2019; 18(5): 4393-402.
[http://dx.doi.org/10.3892/ol.2019.10848] [PMID: 31611948]
[66]
Xu Y, Deng W, Zhang W. RETRACTED: Long non-coding RNA TUG1 protects renal tubular epithelial cells against injury induced by lipopolysaccharide via regulating microRNA-223. Biomed Pharmacother 2018; 104: 509-19.
[http://dx.doi.org/10.1016/j.biopha.2018.05.069] [PMID: 29800915]
[67]
Wang S, Yi P, Wang N, Song M, Li W, Zheng Y. LncRNA TUG1/miR-29c-3p/SIRT1 axis regulates endoplasmic reticulum stress-mediated renal epithelial cells injury in diabetic nephropathy model in vitro. PLoS One 2021; 16(6): e0252761.
[http://dx.doi.org/10.1371/journal.pone.0252761] [PMID: 34097717]
[68]
Shen H, Ming Y, Xu C, Xu Y, Zhao S, Zhang Q. Deregulation of long noncoding RNA (TUG1) contributes to excessive podocytes apoptosis by activating endoplasmic reticulum stress in the development of diabetic nephropathy. J Cell Physiol 2019; 234(9): 15123-33.
[http://dx.doi.org/10.1002/jcp.28153] [PMID: 30671964]
[69]
Li G, Qian L, Tang X, Chen Y, Zhao Z, Zhang C. Long non coding RNA growth arrest specific 5 (GAS5) acts as a tumor suppressor by promoting autophagy in breast cancer. Mol Med Rep 2020; 22(3): 2460-8.
[http://dx.doi.org/10.3892/mmr.2020.11334] [PMID: 32705220]
[70]
Ge X, Xu B, Xu W, et al. Long noncoding RNA GAS5 inhibits cell proliferation and fibrosis in diabetic nephropathy by sponging miR-221 and modulating SIRT1 expression. Aging (Albany NY) 2019; 11(20): 8745-59.
[http://dx.doi.org/10.18632/aging.102249] [PMID: 31631065]
[71]
Prola A, Pires Da Silva J, Guilbert A, et al. SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation. Cell Death Differ 2017; 24(2): 343-56.
[http://dx.doi.org/10.1038/cdd.2016.138] [PMID: 27911441]
[72]
Jiang L, Wang C, Shen X. LncRNA GAS5 suppresses ER stress induced apoptosis and inflammation by regulating SERCA2b in HG treated retinal epithelial cell. Mol Med Rep 2020; 22(2): 1072-80.
[http://dx.doi.org/10.3892/mmr.2020.11163] [PMID: 32467994]
[73]
Lv L, Li D, Tian F, Li X, Jing Z, Yu X. RETRACTED ARTICLE: Silence of lncRNA GAS5 alleviates high glucose toxicity to human renal tubular epithelial HK-2 cells through regulation of miR-27a. Artif Cells Nanomed Biotechnol 2019; 47(1): 2205-12.
[http://dx.doi.org/10.1080/21691401.2019.1616552] [PMID: 31159592]
[74]
Ghafouri-Fard S, Taheri M. Maternally Expressed Gene 3 (MEG3): A tumor suppressor long non coding RNA. Biomed Pharmacother 2019; 118: 109129.
[http://dx.doi.org/10.1016/j.biopha.2019.109129] [PMID: 31326791]
[75]
Zhang X, Rice K, Wang Y, et al. Maternally Expressed Gene 3 (MEG3) noncoding ribonucleic acid: Isoform structure, expression, and functions. Endocrinology 2010; 151(3): 939-47.
[http://dx.doi.org/10.1210/en.2009-0657] [PMID: 20032057]
[76]
Zhang X, Wu N, Wang J, Li Z. LncRNA MEG3 inhibits cell proliferation and induces apoptosis in laryngeal cancer via miR‐23a/APAF‐1 axis. J Cell Mol Med 2019; 23(10): 6708-19.
[http://dx.doi.org/10.1111/jcmm.14549] [PMID: 31328388]
[77]
Li H, Li B, Zhu D, et al. Correction: Downregulation of lncRNA MEG3 and miR-770-5p inhibit cell migration and proliferation in Hirschsprung’s disease. Oncotarget 2019; 10(43): 4501-2.
[http://dx.doi.org/10.18632/oncotarget.27049] [PMID: 31327985]
[78]
Liu W, Huang L, Zhang C, Liu Z. lncRNA MEG3 is downregulated in ankylosing spondylitis and associated with disease activity, hospitalization time and disease duration. Exp Ther Med 2019; 17(1): 291-7.
[http://dx.doi.org/10.3892/etm.2018.6921] [PMID: 30651794]
[79]
Zhang D, Qin H, Leng Y, et al. LncRNA MEG3 overexpression inhibits the development of diabetic retinopathy by regulating TGF β1 and VEGF. Exp Ther Med 2018; 16(3): 2337-42.
[http://dx.doi.org/10.3892/etm.2018.6451] [PMID: 30186476]
[80]
Sun Y, Cao FL, Qu LL, Wang ZM, Liu XY. MEG3 promotes liver cancer by activating PI3K/AKT pathway through regulating AP1G1. Eur Rev Med Pharmacol Sci 2019; 23(4): 1459-67.
[http://dx.doi.org/10.26355/eurrev_201902_17103] [PMID: 30840267]
[81]
Hyoda K, Hosoi T, Horie N, Okuma Y, Ozawa K, Nomura Y. PI3K-Akt inactivation induced CHOP expression in endoplasmic reticulum-stressed cells. Biochem Biophys Res Commun 2006; 340(1): 286-90.
[http://dx.doi.org/10.1016/j.bbrc.2005.12.007] [PMID: 16375864]
[82]
Okumura N, Hashimoto K, Kitahara M, et al. Activation of TGF-β signaling induces cell death via the unfolded protein response in Fuchs endothelial corneal dystrophy. Sci Rep 2017; 7(1): 6801.
[http://dx.doi.org/10.1038/s41598-017-06924-3] [PMID: 28754918]
[83]
Pereira ER, Frudd K, Awad W, Hendershot LM. Endoplasmic Reticulum (ER) stress and hypoxia response pathways interact to potentiate Hypoxia-Inducible Factor 1 (HIF-1) transcriptional activity on targets like Vascular Endothelial Growth Factor (VEGF). J Biol Chem 2014; 289(6): 3352-64.
[http://dx.doi.org/10.1074/jbc.M113.507194] [PMID: 24347168]
[84]
Wang Z, Ding L, Zhu J, et al. Long non-coding RNA MEG3 mediates high glucose-induced endothelial cell dysfunction. Int J Clin Exp Pathol 2018; 11(3): 1088-100.
[PMID: 31938204]
[85]
Tong P, Peng QH, Gu LM, Xie WW, Li WJ. LncRNA-MEG3 alleviates high glucose induced inflammation and apoptosis of retina epithelial cells via regulating miR-34a/SIRT1 axis. Exp Mol Pathol 2019; 107: 102-9.
[http://dx.doi.org/10.1016/j.yexmp.2018.12.003] [PMID: 30529346]
[86]
Krammes L, Hart M, Rheinheimer S, et al. Induction of the endoplasmic-reticulum-stress response: MicroRNA-34a targeting of the IRE1α- Branch Cells 2020; 9(6): 1442.
[http://dx.doi.org/10.3390/cells9061442] [PMID: 32531952]
[87]
Luo R, Xiao F, Wang P, Hu YX. lncRNA H19 sponging miR-93 to regulate inflammation in retinal epithelial cells under hyperglycemia via XBP1s. Inflamm Res 2020; 69(3): 255-65.
[http://dx.doi.org/10.1007/s00011-019-01312-1] [PMID: 31953562]
[88]
Benetatos L, Hatzimichael E, Londin E, et al. The microRNAs within the DLK1-DIO3 genomic region: Involvement in disease pathogenesis. Cell Mol Life Sci 2013; 70(5): 795-814.
[http://dx.doi.org/10.1007/s00018-012-1080-8] [PMID: 22825660]
[89]
Kato M, Wang M, Chen Z, et al. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nat Commun 2016; 7(1): 12864.
[http://dx.doi.org/10.1038/ncomms12864] [PMID: 27686049]
[90]
Guo R, Zhang Y, Yu Y, et al. Correction to: TCONS_00230836 silencing restores stearic acid-induced β cell dysfunction through alleviating endoplasmic reticulum stress rather than apoptosis. Genes Nutr 2021; 16(1): 11.
[http://dx.doi.org/10.1186/s12263-021-00690-8] [PMID: 34253190]
[91]
Bai X, Geng J, Li X, et al. Long noncoding RNA LINC01619 regulates MicroRNA-27a/Forkhead box protein o1 and endoplasmic reticulum stress-mediated podocyte injury in diabetic nephropathy. Antioxid Redox Signal 2018; 29(4): 355-76.
[http://dx.doi.org/10.1089/ars.2017.7278] [PMID: 29334763]
[92]
Liu H, Sun HL. LncRNA TCF7 triggered endoplasmic reticulum stress through a sponge action with miR-200c in patients with diabetic nephropathy. Eur Rev Med Pharmacol Sci 2019; 23(13): 5912-22.
[http://dx.doi.org/10.26355/eurrev_201907_18336] [PMID: 31298342]
[93]
Arun G, Aggarwal D, Spector DL. MALAT1 long non-coding RNA: Functional implications. Noncoding RNA 2020; 6(2): 22.
[http://dx.doi.org/10.3390/ncrna6020022] [PMID: 32503170]
[94]
Wang J, Song YX, Ma B, et al. Regulatory roles of Non-Coding RNAs in colorectal cancer. Int J Mol Sci 2015; 16(8): 19886-919.
[http://dx.doi.org/10.3390/ijms160819886] [PMID: 26307974]
[95]
Wang Y, Wang L, Guo H, et al. Knockdown of MALAT1 attenuates high-glucose-induced angiogenesis and inflammation via endoplasmic reticulum stress in human retinal vascular endothelial cells. Biomed Pharmacother 2020; 124: 109699.
[http://dx.doi.org/10.1016/j.biopha.2019.109699] [PMID: 31986419]
[96]
Jayasuriya R, Dhamodharan U, Karan AN, Anandharaj A, Rajesh K, Ramkumar KM. Role of Nrf2 in MALAT1/HIF-1α loop on the regulation of angiogenesis in diabetic foot ulcer. Free Radic Biol Med 2020; 156: 168-75.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.05.018] [PMID: 32473205]
[97]
National Center for Biotechnology Information (NCBI). SNHG7 small nucleolar RNA host gene 7 GENE [cited: Feb 28 2022]. https://www.ncbi.nlm.nih.gov/gene/84973
[98]
Ren J, Yang Y, Xue J, et al. Long noncoding RNA SNHG7 promotes the progression and growth of glioblastoma via inhibition of miR-5095. Biochem Biophys Res Commun 2018; 496(2): 712-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.109] [PMID: 29360452]
[99]
Yao X, Liu C, Liu C, Xi W, Sun S, Gao Z. lncRNA SNHG7 sponges miR‐425 to promote proliferation, migration, and invasion of hepatic carcinoma cells via Wnt/β‐catenin/EMT signalling pathway. Cell Biochem Funct 2019; 37(7): 525-33.
[http://dx.doi.org/10.1002/cbf.3429] [PMID: 31478234]
[100]
Cao X, Xue LD, Di Y, Li T, Tian YJ, Song Y. MSC-derived exosomal lncRNA SNHG7 suppresses endothelial-mesenchymal transition and tube formation in diabetic retinopathy via miR-34a-5p/XBP1 axis. Life Sci 2021; 272: 119232.
[http://dx.doi.org/10.1016/j.lfs.2021.119232] [PMID: 33600866]
[101]
Ma JH, Wang JJ, Zhang SX. The unfolded protein response and diabetic retinopathy. J Diabetes Res 2014; 2014: 1-14.
[http://dx.doi.org/10.1155/2014/160140] [PMID: 25530974]
[102]
Shi Y, Parag S, Patel R, et al. Stabilization of lncRNA GAS5 by a small molecule and its implications in diabetic adipocytes. Cell Chem Biol 2019; 26(3): 319-330.e6.
[http://dx.doi.org/10.1016/j.chembiol.2018.11.012] [PMID: 30661991]
[103]
Jayasuriya R, Ganesan K, Xu B, Ramkumar KM. Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomed Pharmacother 2022; 145: 112421.
[http://dx.doi.org/10.1016/j.biopha.2021.112421] [PMID: 34798473]
[104]
Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics -challenges and potential solutions. Nat Rev Drug Discov 2021; 20(8): 629-51.
[http://dx.doi.org/10.1038/s41573-021-00219-z] [PMID: 34145432]
[105]
Jegal KH, Park SM, Cho SS, et al. Activating transcription factor 6-dependent sestrin 2 induction ameliorates ER stress-mediated liver injury. Biochim Biophys Acta Mol Cell Res 2017; 1864(7): 1295-307.
[http://dx.doi.org/10.1016/j.bbamcr.2017.04.010] [PMID: 28433684]
[106]
Fazio EN, DiMattia GE, Chadi SA, Kernohan KD, Pin CL. Stanniocalcin 2 alters PERK signalling and reduces cellular injury during cerulein induced pancreatitis in mice. BMC Cell Biol 2011; 12(1): 17.
[http://dx.doi.org/10.1186/1471-2121-12-17] [PMID: 21545732]
[108]
Ahn C, An BS, Jeung EB. Streptozotocin induces endoplasmic reticulum stress and apoptosis via disruption of calcium homeostasis in mouse pancreas. Mol Cell Endocrinol 2015; 412: 302-8.
[http://dx.doi.org/10.1016/j.mce.2015.05.017] [PMID: 26003140]
[109]
Pissurlenkar RRS, Nagarsenker MS, Bramhane DM, Kulkarni PA, Martis EAF, Coutinho EC. Characterization of pioglitazone cyclodextrin complexes: Molecular modeling to in vivo evaluation. J Pharm Bioallied Sci 2016; 8(2): 161-9.
[http://dx.doi.org/10.4103/0975-7406.171680] [PMID: 27134470]
[110]
Atlas of Genetics and Cytogenetics in Oncology and Haematology. Available from: http://atlasgeneticsoncology.org/
[111]
Fang N, Zhang W, Xu S, et al. TRIB3 alters endoplasmic reticulum stress-induced β-cell apoptosis via the NF-κB pathway. Metabolism 2014; 63(6): 822-30.
[http://dx.doi.org/10.1016/j.metabol.2014.03.003] [PMID: 24746137]
[112]
Zhu X, Huang L, Gong J, et al. NF-κB pathway link with ER stress-induced autophagy and apoptosis in cervical tumor cells. Cell Death Discov 2017; 3(1): 17059.
[http://dx.doi.org/10.1038/cddiscovery.2017.59] [PMID: 28904818]
[113]
Abadpour S, Göpel SO, Schive SW, Korsgren O, Foss A, Scholz H. Glial cell-line derived neurotrophic factor protects human islets from nutrient deprivation and endoplasmic reticulum stress induced apoptosis. Sci Rep 2017; 7(1): 1575.
[http://dx.doi.org/10.1038/s41598-017-01805-1] [PMID: 28484241]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy