Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Cancer Immunotherapy: Diverse Approaches and Obstacles

Author(s): Seyed Amir Sanatkar, Arash Heidari and Nima Rezaei*

Volume 28, Issue 29, 2022

Published on: 25 August, 2022

Page: [2387 - 2403] Pages: 17

DOI: 10.2174/1381612828666220728160519

Price: $65

Abstract

Cancer immunotherapy approaches have progressed significantly during the last decade due to the significant improvement of our understanding of immunologic evasion of malignant cells. Depending on the type, stage, and grade of cancer, distinct immunotherapy approaches are being designed and recommended; each is different in efficacy and adverse effects. Malignant cells can adopt multiple strategies to alter the normal functioning of the immune system in recognizing and eliminating them. These strategies include secreting different immunosuppressive factors, polarizing tumor microenvironment cells to immunosuppressive ones, and interfering with the normal function of the antigen processing machinery (APM). In this context, careful evaluation of immune surveillance has led to a better understanding of the roles of cytokines, including IL-2, IL-12, IL-15, interferon-α (IFN-α), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β) in cancer formation and their potential application in cancer immunotherapy. Additionally, monoclonal antibodies (mAbs), adoptive cell therapy approaches, immune checkpoint blockade, and cancer vaccines also play significant roles in cancer immunotherapy. Moreover, the development of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/CAS9) as an outstanding genome editing tool resolved many obstacles in cancer immunotherapy. In this regard, this review aimed to investigate the impacts of different immunotherapy approaches and their potential roles in the current and future roads of cancer treatment. Whatever the underlying solution for treating highly malignant cancers is, it seems that solving the question is nowhere near an achievement unless the precise cooperation of basic science knowledge with our translational experience.

Keywords: Immunotherapy, cancer, cancer immunotherapy, immune evasion, tumor microenvironment, cytokines, tumor immunotherapy.

[1]
Pearce OMT, Läubli H. Cancer immunotherapy. Glycobiology 2018; 28: 638-9.
[2]
Oiseth SJ, Aziz MS. Cancer immunotherapy: A brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat 2017; 3(10): 250.
[http://dx.doi.org/10.20517/2394-4722.2017.41]
[3]
Markovic SN, Kumar AB. Therapeutic targets of FDA-approved immunotherapies in oncology. In: Dong H, Markovic S, Eds. The Basics of Cancer Immunotherapy. Springer, Cham 2018; pp. 21-37.
[http://dx.doi.org/10.1007/978-3-319-70622-1_2]
[4]
McGill CA. A brief history of A Brief History. Polar Sci 2010; 235: 70-2.
[5]
Decker WK, da Silva RF, Sanabria MH, et al. Cancer immunotherapy: Historical perspective of a clinical revolution and emerging preclinical animal models. Front Immunol 2017; 8: 829.
[http://dx.doi.org/10.3389/fimmu.2017.00829] [PMID: 28824608]
[6]
McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 2006; 26: 154-8.
[PMID: 16789469]
[7]
Miller JFAP, Mitchell GF, Weiss NS. Cellular basis of the immunological defects in thymectomized mice. Nature 1967; 214(5092): 992-7.
[http://dx.doi.org/10.1038/214992a0] [PMID: 6055415]
[8]
Steinman RM, Adams JC, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. IV. Identification and distribution in mouse spleen. J Exp Med 1975; 141(4): 804-20.
[http://dx.doi.org/10.1084/jem.141.4.804] [PMID: 1127378]
[9]
Lorenzo-Herrero S, López-Soto A, Sordo-Bahamonde C, Gonzalez-Rodriguez AP, Vitale M, Gonzalez S. NK cell-based immunotherapy in cancer metastasis. Cancers (Basel) 2018; 11(1): 1-22.
[http://dx.doi.org/10.3390/cancers11010029] [PMID: 30597841]
[10]
Liu M, Guo F. Recent updates on cancer immunotherapy. Precis Clin Med 2018; 1(2): 65-74.
[http://dx.doi.org/10.1093/pcmedi/pby011] [PMID: 30687562]
[11]
de Charette M, Marabelle A, Houot R. Turning tumour cells into antigen presenting cells: The next step to improve cancer immunotherapy? Eur J Cancer 2016; 68: 134-47.
[http://dx.doi.org/10.1016/j.ejca.2016.09.010] [PMID: 27755997]
[12]
Seliger B, Ferrone S. HLA class I antigen processing machinery defects in cancer cells-frequency, functional significance, and clinical relevance with special emphasis on their role in t cell-based immunotherapy of malignant disease. Methods Mol Biol 2020; 2055: 325-50.
[http://dx.doi.org/10.1007/978-1-4939-9773-2_15] [PMID: 31502159]
[13]
Concha-Benavente F, Srivastava R, Ferrone S, Ferris RL. Immunological and clinical significance of HLA class I antigen processing machinery component defects in malignant cells. Oral Oncol 2016; 58: 52-8.
[http://dx.doi.org/10.1016/j.oraloncology.2016.05.008] [PMID: 27264839]
[14]
Cai L, Michelakos T, Yamada T, et al. Defective HLA class I antigen processing machinery in cancer. Cancer Immunol Immunother 2018; 67(6): 999-1009.
[http://dx.doi.org/10.1007/s00262-018-2131-2] [PMID: 29487978]
[15]
Patel SJ, Sanjana NE, Kishton RJ, et al. Identification of essential genes for cancer immunotherapy. Nature 2017; 548(7669): 537-42.
[http://dx.doi.org/10.1038/nature23477] [PMID: 28783722]
[16]
Manguso RT, Pope HW, Zimmer MD, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 2017; 547(7664): 413-8.
[http://dx.doi.org/10.1038/nature23270] [PMID: 28723893]
[17]
Goel S, DeCristo MJ, Watt AC, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 2017; 548(7668): 471-5.
[http://dx.doi.org/10.1038/nature23465] [PMID: 28813415]
[18]
Fuertes Marraco SA, Neubert NJ, Verdeil G, Speiser DE. Inhibitory receptors beyond T cell exhaustion. Front Immunol 2015; 6: 310.
[http://dx.doi.org/10.3389/fimmu.2015.00310] [PMID: 26167163]
[19]
Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity 2018; 48(3): 434-52.
[http://dx.doi.org/10.1016/j.immuni.2018.03.014] [PMID: 29562194]
[20]
Liu Y, Liang X, Dong W, et al. Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and AhR activation. Cancer Cell 2018; 33(3): 480-494.e7.
[http://dx.doi.org/10.1016/j.ccell.2018.02.005] [PMID: 29533786]
[21]
June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018; 359(6382): 1361-5.
[http://dx.doi.org/10.1126/science.aar6711]
[22]
Scharping NE, Delgoffe GM. Tumor microenvironment metabolism: A new checkpoint for anti-tumor immunity. Vaccines (Basel) 2016; 4(4): 46.
[http://dx.doi.org/10.3390/vaccines4040046] [PMID: 27929420]
[23]
Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer 2011; 11(6): 393-410.
[http://dx.doi.org/10.1038/nrc3064] [PMID: 21606941]
[24]
Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG. Cancer metabolism: A therapeutic perspective. Nat Rev Clin Oncol 2017; 14(2): 113.
[http://dx.doi.org/10.1038/nrclinonc.2017.1]
[25]
Eil R, Vodnala SK, Clever D, et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 2016; 537(7621): 539-43.
[http://dx.doi.org/10.1038/nature19364] [PMID: 27626381]
[26]
Maggs L, Ferrone S. Improving the clinical significance of preclinical immunotherapy studies through incorporating tumor microenvironment-like conditions. Clin Cancer Res 2020; 26(17): 4448-53.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-0358] [PMID: 32571789]
[27]
Kloss CC, Lee J, Zhang A, et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol Ther 2018; 26(7): 1855-66.
[http://dx.doi.org/10.1016/j.ymthe.2018.05.003] [PMID: 29807781]
[28]
Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities. Nat Rev Clin Oncol 2020; 17(9): 527-40.
[http://dx.doi.org/10.1038/s41571-020-0363-5] [PMID: 32398706]
[29]
Sharma P, Diergaarde B, Ferrone S, Kirkwood JM, Whiteside TL. Melanoma cell-derived exosomes in plasma of melanoma patients suppress functions of immune effector cells. Sci Rep 2020; 10(1): 92.
[http://dx.doi.org/10.1038/s41598-019-56542-4] [PMID: 31919420]
[30]
Xie F, Xu M, Lu J, Mao L, Wang S. The role of exosomal PD-L1 in tumor progression and immunotherapy. Mol Cancer 2019; 18: 1-10.
[31]
Morrissey SM, Yan J. Exosomal PD-L1: Roles in tumor progression and immunotherapy. Trends Cancer 2020; 6(7): 550-8.
[http://dx.doi.org/10.1016/j.trecan.2020.03.002] [PMID: 32610067]
[32]
Yang Y, Li CW, Chan LC, et al. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res 2018; 28(8): 862-4.
[http://dx.doi.org/10.1038/s41422-018-0060-4] [PMID: 29959401]
[33]
Zhou K, Guo S, Li F, Sun Q, Liang G. Exosomal PD-L1: New insights into tumor immune escape mechanisms and therapeutic strategies. Front Cell Dev Biol 2020; 8(15): 569219.
[http://dx.doi.org/10.3389/fcell.2020.569219] [PMID: 33178688]
[34]
Heidari A, Sharif PM, Rezaei N. The association between tumor-associated macrophages and glioblastoma: a potential target for therapy. Curr Pharm Des 2021; 27(46): 4650-62.
[http://dx.doi.org/10.2174/1381612827666210816114003] [PMID: 34397322]
[35]
Tesi RJ. MDSC; the most important cell you have never heard of. Trends Pharmacol Sci 2019; 40(1): 4-7.
[http://dx.doi.org/10.1016/j.tips.2018.10.008] [PMID: 30527590]
[36]
Ziani L, Chouaib S, Thiery J. Alteration of the antitumor immune response by cancer-associated fibroblasts. Front Immunol 2018; 9: 414.
[http://dx.doi.org/10.3389/fimmu.2018.00414] [PMID: 29545811]
[37]
Zhou J, Xiang Y, Yoshimura T, et al. The role of chemoattractant receptors in shaping the tumor microenvironment. BioMed Res Int 2014; 2014: 751392.
[http://dx.doi.org/10.1155/2014/751392] [PMID: 25110692]
[38]
Zboralski D, Hoehlig K, Eulberg D, Frömming A, Vater A. Increasing tumor-infiltrating T cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol Res 2017; 5(11): 950-6.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0303] [PMID: 28963140]
[39]
Chheda ZS, Sharma RK, Jala VR, Luster AD, Haribabu B. Chemoattractant receptors BLT1 and CXCR3 regulate antitumor immunity by facilitating CD8+ T cell migration into tumors. J Immunol 2016; 197(5): 2016-26.
[http://dx.doi.org/10.4049/jimmunol.1502376] [PMID: 27465528]
[40]
Dobosz P, Dzieciątkowski T. The intriguing history of cancer immunotherapy. Front Immunol 2019; 10: 2965.
[http://dx.doi.org/10.3389/fimmu.2019.02965] [PMID: 31921205]
[41]
Isaacs A, Lindenmann J. Virus interference. I. The interferon. J Interferon Res 1987; 7(5): 429-38.
[http://dx.doi.org/10.1089/jir.1987.7.429] [PMID: 2445832]
[42]
Depper JM, Leonard WJ, Drogula C, Krönke M, Waldmann TA, Greene WC. Interleukin 2 (IL-2) augments transcription of the IL-2 receptor gene. Proc Natl Acad Sci USA 1985; 82(12): 4230-4.
[http://dx.doi.org/10.1073/pnas.82.12.4230] [PMID: 2987968]
[43]
Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 1988; 319(25): 1676-80.
[http://dx.doi.org/10.1056/NEJM198812223192527] [PMID: 3264384]
[44]
Wang X, Rickert M, Garcia KC. Structural biology: Structure of the quaternary complex of interleukin-2 with its α, β and γc receptors. Science 2005; 310(5751): 1159-63.
[45]
Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 2012; 12(3): 180-90.
[http://dx.doi.org/10.1038/nri3156] [PMID: 22343569]
[46]
Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155(3): 1151-64.
[PMID: 7636184]
[47]
Lenardo MJ. Fas and the art of lymphocyte maintenance. J Exp Med 1996; 183(3): 721-4.
[http://dx.doi.org/10.1084/jem.183.3.721] [PMID: 8642275]
[48]
Minami Y, Kono T, Miyazaki T, Taniguchi T. The IL-2 receptor complex: Its structure, function, and target genes. Annu Rev Immunol 1993; 11(1): 245-68.
[http://dx.doi.org/10.1146/annurev.iy.11.040193.001333] [PMID: 8476561]
[49]
Sudan R. Cytokines in cancer immunotherapy. Syst Synth Immunol 2020; 10(12): 255-69.
[http://dx.doi.org/10.1007/978-981-15-3350-1_10]
[50]
Levin AM, Bates DL, Ring AM, et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 2012; 484(7395): 529-33.
[http://dx.doi.org/10.1038/nature10975] [PMID: 22446627]
[51]
Spangler JB, Moraga I, Mendoza JL, Garcia KC. Insights into cytokine-receptor interactions from cytokine engineering. Annu Rev Immunol 2015; 33: 139-67.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120211] [PMID: 25493332]
[52]
Lode HN, Reisfeld RA. Targeted cytokines for cancer immunotherapy. Immunol Res 2000; 21(2-3): 279-88.
[http://dx.doi.org/10.1385/IR:21:2-3:279] [PMID: 10852128]
[53]
Jin GH, Hirano T, Murakami M. Combination treatment with IL-2 and anti-IL-2 mAbs reduces tumor metastasis via NK cell activation. Int Immunol 2008; 20(6): 783-9.
[http://dx.doi.org/10.1093/intimm/dxn036] [PMID: 18448458]
[54]
Charych D, Khalili S, Dixit V, et al. Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy. PLoS One 2017; 12(7): e0179431.
[http://dx.doi.org/10.1371/journal.pone.0179431] [PMID: 28678791]
[55]
Diab A, Hurwitz ME, Cho DC, et al. NKTR-214 (CD122-biased agonist) plus nivolumab in patients with advanced solid tumors: Preliminary phase 1/2 results of PIVOT. J Clin Oncol 2018; 36(15): 3006-6.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.3006]
[56]
Klein C, Waldhauer I, Nicolini VG, et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: Overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. OncoImmunology 2017; 6(3): e1277306.
[http://dx.doi.org/10.1080/2162402X.2016.1277306] [PMID: 28405498]
[57]
Llopiz D, Ruiz M, Infante S, et al. IL-10 expression defines an immunosuppressive dendritic cell population induced by antitumor therapeutic vaccination. Oncotarget 2017; 8(2): 2659-71.
[http://dx.doi.org/10.18632/oncotarget.13736] [PMID: 27926522]
[58]
Gao B. Hepatoprotective and anti-inflammatory cytokines in alcoholic liver disease. J Gastroenterol Hepatol 2012; 27(Suppl. 2): 89-93.
[http://dx.doi.org/10.1111/j.1440-1746.2011.07003.x] [PMID: 22320924]
[59]
Fioravanti J, Di Lucia P, Magini D, et al. Effector CD8+ T cell-derived interleukin-10 enhances acute liver immunopathology. J Hepatol 2017; 67(3): 543-8.
[http://dx.doi.org/10.1016/j.jhep.2017.04.020] [PMID: 28483675]
[60]
Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19(1): 683-765.
[http://dx.doi.org/10.1146/annurev.immunol.19.1.683] [PMID: 11244051]
[61]
Hart KM, Byrne KT, Molloy MJ, Usherwood EM, Berwin B. IL-10 immunomodulation of myeloid cells regulates a murine model of ovarian cancer. Front Immunol 2011; 2: 29.
[http://dx.doi.org/10.3389/fimmu.2011.00029] [PMID: 22566819]
[62]
Tannir NM, Naing A, Infante JR, et al. Pegilodecakin with nivolumab (nivo) or pembrolizumab (pembro) in patients (pts) with metastatic renal cell carcinoma (RCC). J Clin Oncol 2018; 36: 4509-9.
[63]
Naing A, Papadopoulos KP, Autio KA, et al. Safety, antitumor activity, and immune activation of pegylated recombinant human interleukin-10 (AM0010) in patients with advanced solid tumors. J Clin Oncol 2016; 34(29): 3562-9.
[http://dx.doi.org/10.1200/JCO.2016.68.1106] [PMID: 27528724]
[64]
Berman RM, Suzuki T, Tahara H, Robbins PD, Narula SK, Lotze MT. Systemic administration of cellular IL-10 induces an effective, specific, and long-lived immune response against established tumors in mice. J Immunol 1996; 157(1): 231-8.
[PMID: 8683120]
[65]
Ruffell B, Chang-Strachan D, Chan V, et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 2014; 26(5): 623-37.
[http://dx.doi.org/10.1016/j.ccell.2014.09.006] [PMID: 25446896]
[66]
Nemunaitis J, Fong T, Shabe P, Martineau D, Ando D. Comparison of serum interleukin-10 (IL-10) levels between normal volunteers and patients with advanced melanoma. Cancer Invest 2001; 19(3): 239-47.
[http://dx.doi.org/10.1081/CNV-100102550] [PMID: 11338880]
[67]
Mirlekar B. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy. SAGE Open Med 2022; 10: 20503121211069012.
[http://dx.doi.org/10.1177/20503121211069012] [PMID: 35096390]
[68]
Li C, Zuo W. IL-10 in vitro could enhance IFNγ expression and suppress PD-1 expression in CD8 T cells from esophageal cancer patients. Exp Cell Res 2019; 379(2): 159-65.
[http://dx.doi.org/10.1016/j.yexcr.2019.03.038] [PMID: 30951709]
[69]
Smith LK, Boukhaled GM, Condotta SA, et al. Interleukin-10 directly inhibits CD8+ T cell function by enhancing N-glycan branching to decrease antigen sensitivity. Immunity 2018; 48(2): 299-312.e5.
[http://dx.doi.org/10.1016/j.immuni.2018.01.006] [PMID: 29396160]
[70]
Wang X, Li J, Lu C, et al. IL-10-producing B cells in differentiated thyroid cancer suppress the effector function of T cells but improve their survival upon activation. Exp Cell Res 2019; 376(2): 192-7.
[http://dx.doi.org/10.1016/j.yexcr.2019.01.021] [PMID: 30711567]
[71]
Saraiva M, Vieira P, O’Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med 2020; 217(1): e20190418.
[http://dx.doi.org/10.1084/jem.20190418] [PMID: 31611251]
[72]
Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci USA 2010; 107(17): 7875-80.
[http://dx.doi.org/10.1073/pnas.1003345107] [PMID: 20385810]
[73]
Marcon F, Zuo J, Pearce H, et al. NK cells in pancreatic cancer demonstrate impaired cytotoxicity and a regulatory IL-10 phenotype. OncoImmunology 2020; 9(1): 1845424.
[http://dx.doi.org/10.1080/2162402X.2020.1845424] [PMID: 33299656]
[74]
Sun C, Xu J, Huang Q, et al. High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. OncoImmunology 2016; 6(1): e1264562.
[http://dx.doi.org/10.1080/2162402X.2016.1264562] [PMID: 28197391]
[75]
Berraondo P, Sanmamed MF, Ochoa MC, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer 2019; 120(1): 6-15.
[http://dx.doi.org/10.1038/s41416-018-0328-y] [PMID: 30413827]
[76]
Zhao J, Zhao J, Perlman S. Differential effects of IL-12 on Tregs and non-Treg T cells: Roles of IFN-γ, IL-2 and IL-2R. PLoS One 2012; 7(9): e46241.
[http://dx.doi.org/10.1371/journal.pone.0046241] [PMID: 23029447]
[77]
Kerkar SP, Goldszmid RS, Muranski P, et al. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J Clin Invest 2011; 121(12): 4746-57.
[http://dx.doi.org/10.1172/JCI58814] [PMID: 22056381]
[78]
Smith SG, Baltz JL, Koppolu BP, Ravindranathan S, Nguyen K, Zaharoff DA. Immunological mechanisms of intravesical chitosan/interleukin-12 immunotherapy against murine bladder cancer. OncoImmunology 2016; 6(1): e1259050.
[http://dx.doi.org/10.1080/2162402X.2016.1259050] [PMID: 28197381]
[79]
Jayanthi S. Koppolu Bp, Smith SG, et al. Efficient production and purification of recombinant human interleukin-12 (IL-12) overexpressed in mammalian cells without affinity tag. Protein Expr Purif 2014; 102: 76-84.
[http://dx.doi.org/10.1016/j.pep.2014.07.002] [PMID: 25123642]
[80]
Nguyen KG. Species‐specific differences in heparin‐induced] modulation of IL‐12 family cytokines. FASEB J 2019; 33(S1): lb334-4.
[http://dx.doi.org/10.1096/fasebj.2019.33.1_supplement.lb334]
[81]
Nguyen KG, Vrabel MR, Mantooth SM, et al. Localized interleukin-12 for cancer immunotherapy. Front Immunol 2020; 11: 575597.
[http://dx.doi.org/10.3389/fimmu.2020.575597] [PMID: 33178203]
[82]
Lai X, Friedman A. Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: A mathematical model. BMC Syst Biol 2017; 11(1): 70.
[http://dx.doi.org/10.1186/s12918-017-0446-9] [PMID: 28724377]
[83]
Garris CS, Arlauckas SP, Kohler RH, et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 2018; 49(6): 1148-1161.e7.
[http://dx.doi.org/10.1016/j.immuni.2018.09.024] [PMID: 30552023]
[84]
Grabstein KH, Eisenman J, Shanebeck K, et al. Cloning of a T cell growth factor that interacts with the β chain of the interleukin-2 receptor. Science 1994; 264(5161): 965-8.
[85]
Bamford RN, Grant AJ, Burton JD, et al. The interleukin (IL) 2 receptor β chain is shared by IL-2 and a cytokine, provisionally designated IL-T, that stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci USA 1994; 91(11): 4940-4.
[http://dx.doi.org/10.1073/pnas.91.11.4940] [PMID: 8197161]
[86]
Bamford RN, DeFilippis AP, Azimi N, Kurys G, Waldmann TA. The 5′ untranslated region, signal peptide, and the coding sequence of the carboxyl terminus of IL-15 participate in its multifaceted translational control. J Immunol 1998; 160(9): 4418-26.
[PMID: 9574546]
[87]
Fehniger TA, Bluman EM, Porter MM, et al. Potential mechanisms of human natural killer cell expansion in vivo during low-dose IL-2 therapy. J Clin Invest 2000; 106(1): 117-24.
[http://dx.doi.org/10.1172/JCI6218] [PMID: 10880055]
[88]
Fehniger TA, Cooper MA, Caligiuri MA. Interleukin-2 and interleukin-15: Immunotherapy for cancer. Cytokine Growth Factor Rev 2002; 13(2): 169-83.
[http://dx.doi.org/10.1016/S1359-6101(01)00021-1] [PMID: 11900992]
[89]
Waldmann TA. The biology of interleukin-2 and interleukin-15: Implications for cancer therapy and vaccine design. Nat Rev Immunol 2006; 6(8): 595-601.
[http://dx.doi.org/10.1038/nri1901] [PMID: 16868550]
[90]
Waldmann TA. The interleukin-2 receptor. J Biol Chem 1991; 266(5): 2681-4.
[http://dx.doi.org/10.1016/S0021-9258(18)49895-X] [PMID: 1993646]
[91]
Klebanoff CA, Finkelstein SE, Surman DR, et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci USA 2004; 101(7): 1969-74.
[http://dx.doi.org/10.1073/pnas.0307298101] [PMID: 14762166]
[92]
Evans R, Fuller JA, Christianson G, Krupke DM, Troutt AB. IL-15 mediates anti-tumor effects after cyclophosphamide injection of tumor-bearing mice and enhances adoptive immunotherapy: The potential role of NK cell subpopulations. Cell Immunol 1997; 179(1): 66-73.
[http://dx.doi.org/10.1006/cimm.1997.1132] [PMID: 9259773]
[93]
Lodolce JP, Boone DL, Chai S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 1998; 9(5): 669-76.
[http://dx.doi.org/10.1016/S1074-7613(00)80664-0] [PMID: 9846488]
[94]
Kennedy MK, Glaccum M, Brown SN, et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 2000; 191(5): 771-80.
[http://dx.doi.org/10.1084/jem.191.5.771] [PMID: 10704459]
[95]
Berger A, Colpitts SJ, Seabrook MSS, et al. Interleukin-15 in cancer immunotherapy: IL-15 receptor complex versus soluble IL-15 in a cancer cell-delivered murine leukemia model. J Immunother Cancer 2019; 7(1): 355.
[http://dx.doi.org/10.1186/s40425-019-0777-8] [PMID: 31856922]
[96]
Marks-Konczalik J, Dubois S, Losi JM, et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci USA 2000; 97(21): 11445-50.
[http://dx.doi.org/10.1073/pnas.200363097] [PMID: 11016962]
[97]
Waldmann TA, Lugli E, Roederer M, et al. Safety (toxicity), pharmacokinetics, immunogenicity, and impact on elements of the normal immune system of recombinant human IL-15 in rhesus macaques. Blood 2011; 117(18): 4787-95.
[http://dx.doi.org/10.1182/blood-2010-10-311456] [PMID: 21385847]
[98]
Lugli E, Goldman CK, Perera LP, et al. Transient and persistent effects of IL-15 on lymphocyte homeostasis in nonhuman primates. Blood 2010; 116(17): 3238-48.
[http://dx.doi.org/10.1182/blood-2010-03-275438] [PMID: 20631381]
[99]
Conlon KC, Lugli E, Welles HC, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol 2015; 33(1): 74-82.
[http://dx.doi.org/10.1200/JCO.2014.57.3329] [PMID: 25403209]
[100]
Ochoa MC, Mazzolini G, Hervas-Stubbs S, de Sanmamed MF, Berraondo P, Melero I. Interleukin-15 in gene therapy of cancer. Curr Gene Ther 2013; 13(1): 15-30.
[http://dx.doi.org/10.2174/156652313804806561] [PMID: 23157547]
[101]
Vincent M, Quéméner A, Jacques Y. Antitumor activity of an immunocytokine composed of an anti-GD2 antibody and the IL-15 superagonist RLI. OncoImmunology 2013; 2(11): e26441.
[http://dx.doi.org/10.4161/onci.26441] [PMID: 24349876]
[102]
Liu B, Kong L, Marcus WD, et al. Evaluation of a novel CD20-targeted IL-15 immunotherapeutic with potent activity against B cell lymphoma. J Immunother Cancer 2014; 2(Suppl. 3): 122.
[http://dx.doi.org/10.1186/2051-1426-2-S3-P122]
[103]
Battram AM, Bachiller M, Lopez V, Fernández de Larrea C, Urbano-Ispizua A, Martín-Antonio B. Il-15 enhances the persistence and function of bcma-targeting car-t cells compared to il-2 or il-15/il-7 by limiting car-t cell dysfunction and differentiation. Cancers 2021; 13(14): 3534.
[http://dx.doi.org/10.3390/cancers13143534] [PMID: 34298748]
[104]
Giuffrida L, Sek K, Henderson MA, et al. IL-15 Preconditioning augments CAR T cell responses to checkpoint blockade for improved treatment of solid tumors. Mol Ther 2020; 28(11): 2379-93.
[http://dx.doi.org/10.1016/j.ymthe.2020.07.018] [PMID: 32735774]
[105]
Yang Y, Lundqvist A. Immunomodulatory effects of il-2 and il-15; implications for cancer immunotherapy. Cancers 2020; 12(12): 1-20.
[http://dx.doi.org/10.3390/cancers12123586] [PMID: 33266177]
[106]
Leonard WJ, Wan CK. IL-21 Signaling in immunity. F1000 Res 2016; 5(224): F1000 Faculty Rev-224.
[PMID: 26966515]
[107]
Zhang Y, Tighe S, Zhu YT. COX-2 signaling in the tumor microenvironment. Adv Exp Med Biol 2020; 1277: 87-104.
[http://dx.doi.org/10.1007/978-3-030-50224-9_6] [PMID: 33119867]
[108]
Zeng R, Spolski R, Finkelstein SE, et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 2005; 201(1): 139-48.
[http://dx.doi.org/10.1084/jem.20041057] [PMID: 15630141]
[109]
Wang G, Tschoi M, Spolski R, et al. In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res 2003; 63(24): 9016-22.
[PMID: 14695220]
[110]
Ma HL, Whitters MJ, Konz RF, et al. IL-21 activates both innate and adaptive immunity to generate potent antitumor responses that require perforin but are independent of IFN-γ. J Immunol 2003; 171(2): 608-15.
[http://dx.doi.org/10.4049/jimmunol.171.2.608] [PMID: 12847225]
[111]
Ha JH, Kim JE, Kim YS. Immunoglobulin Fc heterodimer platform technology: From design to applications in therapeutic antibodies and proteins. Front Immunol 2016; 7(OCT): 394.
[http://dx.doi.org/10.3389/fimmu.2016.00394] [PMID: 27766096]
[112]
Harris RJ. Processing of C-terminal lysine and arginine residues of proteins isolated from mammalian cell culture. J Chromatogr A 1995; 705(1): 129-34.
[http://dx.doi.org/10.1016/0021-9673(94)01255-D] [PMID: 7620566]
[113]
Shen S, Sckisel G, Sahoo A, et al. Engineered IL-21 cytokine muteins fused to anti-PD-1 antibodies can improve CD8+ T cell function and anti-tumor immunity. Front Immunol 2020; 11: 832.
[http://dx.doi.org/10.3389/fimmu.2020.00832] [PMID: 32457754]
[114]
Yan WL, Shen KY, Tien CY, Chen YA, Liu SJ. Recent progress in GM-CSF-based cancer immunotherapy. Immunotherapy 2017; 9(4): 347-60.
[http://dx.doi.org/10.2217/imt-2016-0141] [PMID: 28303764]
[115]
Hodi FS, Lee S, McDermott DF, et al. Ipilimumab plus sargramostim vs ipilimumab alone for treatment of metastatic melanoma: A randomized clinical trial. JAMA 2014; 312(17): 1744-53.
[http://dx.doi.org/10.1001/jama.2014.13943] [PMID: 25369488]
[116]
Dranoff G. GM-CSF-based cancer vaccines. Immunol Rev 2002; 188(1): 147-54.
[http://dx.doi.org/10.1034/j.1600-065X.2002.18813.x] [PMID: 12445288]
[117]
Li B, Lalani AS, Harding TC, et al. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin Cancer Res 2006; 12(22): 6808-16.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1558] [PMID: 17121902]
[118]
Kaufman HL, Ruby CE, Hughes T, Slingluff Jr CL. Current status ganulocyte-macrophage colony-stimulating factor in the immunotherapy melanoma. J Immunother Cancer 2014; 2: 11.
[119]
Gupta R, Emens LA. GM-CSF-secreting vaccines for solid tumors: Moving forward. Discov Med 2010; 10(50): 52-60.
[PMID: 20670599]
[120]
Martinez Sanz P, van Rees DJ, Matlung HL, Tytgat GAM, Franke K. Response to: Correspondence on “G-CSF as a suitable alternative to GM-CSF to boost dinutuximab-mediated neutrophil cytotoxicity in neuroblastoma treatment” by Mora et al. J Immunother Cancer 2021; 9(12): e002259.
[http://dx.doi.org/10.1136/jitc-2020-002259] [PMID: 34893526]
[121]
Tagliaferri P, Caraglia M, Budillon A, et al. New pharmacokinetic and pharmacodynamic tools for interferon-alpha (IFN-alpha) treatment of human cancer. Cancer Immunol Immunother 2005; 54(1): 1-10.
[http://dx.doi.org/10.1007/s00262-004-0549-1] [PMID: 15693134]
[122]
Müller U, Steinhoff U, Reis LFL, et al. Functional role of type I and type II interferons in antiviral defense. Science 1994; 264(5167): 1918-21.
[http://dx.doi.org/10.1126/science.8009221]
[123]
Müller M, Ibelgaufts H, Kerr IM. Interferon response pathways--a paradigm for cytokine signalling? J Viral Hepat 1994; 1(2): 87-103.
[http://dx.doi.org/10.1111/j.1365-2893.1994.tb00109.x] [PMID: 8790565]
[124]
Zhang J, Wang L. The emerging world of TCR-T cell trials against cancer: A systematic review. Technol Cancer Res Treat 2019; 18: 1533033819831068.
[http://dx.doi.org/10.1177/1533033819831068] [PMID: 30798772]
[125]
Delannoy A, Kluin-Nelemans JC, Louwagie A, et al. Interferon alfa versus chemotherapy for chronic myeloid leukemia: A meta-analysis of seven randomized trials: Chronic Myeloid Leukemia Trialists’ Collaborative Group. J Natl Cancer Inst 1997; 89(21): 1616-20.
[http://dx.doi.org/10.1093/jnci/89.21.1616] [PMID: 9362160]
[126]
Windbichler GH, Hausmaninger H, Stummvoll W, et al. Interferon-gamma in the first-line therapy of ovarian cancer: A randomized phase III trial. Br J Cancer 2000; 82(6): 1138-44.
[http://dx.doi.org/10.1054/bjoc.1999.1053] [PMID: 10735496]
[127]
Lange F, Rateitschak K, Fitzner B, Pöhland R, Wolkenhauer O, Jaster R. Studies on mechanisms of interferon-gamma action in pancreatic cancer using a data-driven and model-based approach. Mol Cancer 2011; 10(1): 13.
[http://dx.doi.org/10.1186/1476-4598-10-13] [PMID: 21310022]
[128]
Fioravanti J, González I, Medina-Echeverz J, et al. Anchoring interferon alpha to apolipoprotein A-I reduces hematological toxicity while enhancing immunostimulatory properties. Hepatology 2011; 53(6): 1864-73.
[http://dx.doi.org/10.1002/hep.24306] [PMID: 21425312]
[129]
Fioravanti J, Medina-Echeverz J, Ardaiz N, et al. The fusion protein of IFN-α and apolipoprotein A-I crosses the blood-brain barrier by a saturable transport mechanism. J Immunol 2012; 188(8): 3988-92.
[http://dx.doi.org/10.4049/jimmunol.1101598] [PMID: 22422884]
[130]
Vasquez M, Paredes-Cervantes V, Aranda F, Ardaiz N, Gomar C, Berraondo P. Antitumor effect of an adeno-associated virus expressing apolipoprotein A-1 fused to interferon alpha in an interferon alpha-resistant murine tumor model. Oncotarget 2017; 8(3): 5247-55.
[http://dx.doi.org/10.18632/oncotarget.14127] [PMID: 28029653]
[131]
Quesada JR, Talpaz M, Rios A, Kurzrock R, Gutterman JU. Clinical toxicity of interferons in cancer patients: A review. J Clin Oncol 1986; 4(2): 234-43.
[http://dx.doi.org/10.1200/JCO.1986.4.2.234] [PMID: 2418169]
[132]
Zaidi MR, Merlino G. The two faces of interferon-γ in cancer. Clin Cancer Res 2011; 17(19): 6118-24.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0482] [PMID: 21705455]
[133]
Bahjat FR, Theodorakis EA. Anti-TNF-α therapies: the next generation. Nat Rev Drug Discov 2003; 2(9): 736-46.
[http://dx.doi.org/10.1038/nrd1175] [PMID: 12951580]
[134]
Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 1995; 377(6547): 348-51.
[http://dx.doi.org/10.1038/377348a0] [PMID: 7566090]
[135]
Bertrand F, Montfort A, Marcheteau E, et al. TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat Commun 2017; 8(1): 1-13.
[http://dx.doi.org/10.1038/s41467-017-02358-7] [PMID: 28232747]
[136]
Shrestha R, Bridle KR, Crawford DHG, Jayachandran A. TNF-α-mediated epithelial-to-mesenchymal transition regulates expression of immune checkpoint molecules in hepatocellular carcinoma. Mol Med Rep 2020; 21(4): 1849-60.
[http://dx.doi.org/10.3892/mmr.2020.10991] [PMID: 32319631]
[137]
Baptista MZ, Sarian LO, Derchain SFM, Pinto GA, Vassallo J. Prognostic significance of PD-L1 and PD-L2 in breast cancer. Hum Pathol 2016; 47(1): 78-84.
[http://dx.doi.org/10.1016/j.humpath.2015.09.006] [PMID: 26541326]
[138]
Zhao X, Chen Y, Mao Q, et al. Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Biomark 2018; 21(4): 859-68.
[http://dx.doi.org/10.3233/CBM-170791] [PMID: 29439311]
[139]
Arrieta O, Montes-Servín E, Hernandez-Martinez JM, et al. Expression of PD-1/PD-L1 and PD-L2 in peripheral T-cells from non-small cell lung cancer patients. Oncotarget 2017; 8(60): 101994-2005.
[http://dx.doi.org/10.18632/oncotarget.22025] [PMID: 29254220]
[140]
Marth C, Fiegl H, Zeimet AG, et al. Interferon-γ expression is an independent prognostic factor in ovarian cancer. Am J Obstet Gynecol 2004; 191(5): 1598-605.
[http://dx.doi.org/10.1016/j.ajog.2004.05.007] [PMID: 15547530]
[141]
Ren ZH, Lin CZ, Cao W, et al. CD73 is associated with poor prognosis in HNSCC. Oncotarget 2016; 7(38): 61690-702.
[http://dx.doi.org/10.18632/oncotarget.11435] [PMID: 27557512]
[142]
Loi S, Pommey S, Haibe-Kains B, et al. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci USA 2013; 110(27): 11091-6.
[http://dx.doi.org/10.1073/pnas.1222251110] [PMID: 23776241]
[143]
Li Y, Zhang J, Han S, et al. B7-H3 promotes the proliferation, migration and invasiveness of cervical cancer cells and is an indicator of poor prognosis. Oncol Rep 2017; 38(2): 1043-50.
[http://dx.doi.org/10.3892/or.2017.5730] [PMID: 28627681]
[144]
Azuma T, Sato Y, Ohno T, Azuma M, Kume H. Serum soluble B7-H3 is a prognostic marker for patients with non-muscle-invasive bladder cancer. PLoS One 2020; 15: e0243379.
[145]
Zhang Y, He L, Sadagopan A, et al. Targeting radiation-resistant prostate cancer stem cells by B7-H3 CAR T cells. Mol Cancer Ther 2021; 20(3): 577-88.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0446] [PMID: 33653946]
[146]
Massagué J. TGFbeta in Cancer. Cell 2008; 134(2): 215-30.
[http://dx.doi.org/10.1016/j.cell.2008.07.001] [PMID: 18662538]
[147]
Moustakas A, Heldin P. TGFβ and matrix-regulated epithelial to mesenchymal transition. Biochim Biophys Acta 2014; 1840(8): 2621-34.
[http://dx.doi.org/10.1016/j.bbagen.2014.02.004] [PMID: 24561266]
[148]
Chen J, Gingold JA, Su X. Immunomodulatory TGF-β signaling in hepatocellular carcinoma. Trends Mol Med 2019; 25(11): 1010-23.
[http://dx.doi.org/10.1016/j.molmed.2019.06.007] [PMID: 31353124]
[149]
Shen C, Li J, Che G. Prognostic value of let-7 in lung cancer: Systematic review and meta-analysis. Transl Cancer Res 2020; 9(10): 6354-61.
[http://dx.doi.org/10.21037/tcr-20-1240] [PMID: 35117243]
[150]
Colak S, Ten Dijke P. Targeting TGF-β signaling in cancer. Trends Cancer 2017; 3(1): 56-71.
[http://dx.doi.org/10.1016/j.trecan.2016.11.008] [PMID: 28718426]
[151]
Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov 2012; 11(10): 790-811.
[http://dx.doi.org/10.1038/nrd3810] [PMID: 23000686]
[152]
Papageorgis P. TGF β signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J Oncol 2015; 2015: 587193.
[http://dx.doi.org/10.1155/2015/587193] [PMID: 25883652]
[153]
Donovan D, Harmey JH, Toomey D, Osborne DH, Redmond HP, Bouchier-Hayes DJ. TGF β-1 regulation of VEGF production by breast cancer cells. Ann Surg Oncol 1997; 4(8): 621-7.
[http://dx.doi.org/10.1007/BF02303745] [PMID: 9416408]
[154]
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2021; 18(1): 9-34.
[http://dx.doi.org/10.1038/s41571-020-0403-1] [PMID: 32710082]
[155]
Terabe M, Robertson FC, Clark K, et al. Blockade of only TGF-β 1 and 2 is sufficient to enhance the efficacy of vaccine and PD-1 checkpoint blockade immunotherapy. OncoImmunology 2017; 6(5): e1308616.
[http://dx.doi.org/10.1080/2162402X.2017.1308616] [PMID: 28638730]
[156]
Chen X, Wang L, Li P, et al. Dual TGF-β and PD-1 blockade synergistically enhances MAGE-A3-specific CD8+ T cell response in esophageal squamous cell carcinoma. Int J Cancer 2018; 143(10): 2561-74.
[http://dx.doi.org/10.1002/ijc.31730] [PMID: 29981155]
[157]
Tauriello DVF, Palomo-Ponce S, Stork D, et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018; 554(7693): 538-43.
[http://dx.doi.org/10.1038/nature25492] [PMID: 29443964]
[158]
Li S, Liu M, Do MH, et al. Cancer immunotherapy via targeted TGF-β signalling blockade in TH cells. Nature 2020; 587(7832): 121-5.
[http://dx.doi.org/10.1038/s41586-020-2850-3] [PMID: 33087933]
[159]
Ren J, Zhang X, Liu X, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 2017; 8(10): 17002-11.
[http://dx.doi.org/10.18632/oncotarget.15218] [PMID: 28199983]
[160]
Tang N, Cheng C, Zhang X, et al. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight 2020; 5(4): e133977.
[http://dx.doi.org/10.1172/jci.insight.133977] [PMID: 31999649]
[161]
Schwaber J, Cohen EP. Human x mouse somatic cell hybrid clone secreting immunoglobulins of both parental types. Nature 1973; 244(5416): 444-7.
[http://dx.doi.org/10.1038/244444a0] [PMID: 4200460]
[162]
Koprowski H, Steplewski Z, Herlyn D, Herlyn M. Study of antibodies against human melanoma produced by somatic cell hybrids. Proc Natl Acad Sci USA 1978; 75(7): 3405-9.
[http://dx.doi.org/10.1073/pnas.75.7.3405] [PMID: 80012]
[163]
Nadler LM, Stashenko P, Hardy R, et al. Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res 1980; 40(9): 3147-54.
[PMID: 7427932]
[164]
Shin SU, Morrison SL. Production and properties of chimeric antibody molecules. Methods Enzymol 1989; 178: 459-76.
[165]
Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun 2012; 12(3): 14.
[PMID: 22896759]
[166]
Weiner LM, Surana R, Wang S. Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nat Rev Immunol 2010; 10(5): 317-27.
[http://dx.doi.org/10.1038/nri2744] [PMID: 20414205]
[167]
Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244(4905): 707-12.
[168]
Patel D, Bassi R, Hooper A, Prewett M, Hicklin DJ, Kang X. Anti-epidermal growth factor receptor monoclonal antibody cetuximab inhibits EGFR/HER-2 heterodimerization and activation. Int J Oncol 2009; 34(1): 25-32.
[http://dx.doi.org/10.3892/ijo_00000125] [PMID: 19082474]
[169]
Li S, Schmitz KR, Jeffrey PD, Wiltzius JJW, Kussie P, Ferguson KM. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 2005; 7(4): 301-11.
[http://dx.doi.org/10.1016/j.ccr.2005.03.003] [PMID: 15837620]
[170]
Chari RVJ. Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Acc Chem Res 2008; 41(1): 98-107.
[http://dx.doi.org/10.1021/ar700108g] [PMID: 17705444]
[171]
Younes A, Bartlett NL, Leonard JP, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 2010; 363(19): 1812-21.
[http://dx.doi.org/10.1056/NEJMoa1002965] [PMID: 21047225]
[172]
Steiner M, Neri D. Antibody-radionuclide conjugates for cancer therapy: Historical considerations and new trends. Clin Cancer Res 2011; 17(20): 6406-16.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0483] [PMID: 22003068]
[173]
Krupitskaya Y, Wakelee HA. Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Curr Opin Investig Drugs 2009; 10(6): 597-605.
[PMID: 19513949]
[174]
Wu Y, Zhong Z, Huber J, et al. Anti-vascular endothelial growth factor receptor-1 antagonist antibody as a therapeutic agent for cancer. Clin Cancer Res 2006; 12(21): 6573-84.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0831] [PMID: 17085673]
[175]
Lutterbuese R, Raum T, Kischel R, et al. T cell-engaging BiTE antibodies specific for EGFR potently eliminate KRAS- and BRAF-mutated colorectal cancer cells. Proc Natl Acad Sci USA 2010; 107(28): 12605-10.
[http://dx.doi.org/10.1073/pnas.1000976107] [PMID: 20616015]
[176]
Reusch U, Sundaram M, Davol PA, et al. Anti-CD3 x anti-epidermal growth factor receptor (EGFR) bispecific antibody redirects T-cell cytolytic activity to EGFR-positive cancers in vitro and in an animal model. Clin Cancer Res 2006; 12(1): 183-90.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1855] [PMID: 16397041]
[177]
Lum LG, Thakur A, Choi M, et al. Clinical and immune responses to anti-CD3 x anti-EGFR bispecific antibody armed activated T cells (EGFR BATs) in pancreatic cancer patients. OncoImmunology 2020; 9(1): 1773201.
[http://dx.doi.org/10.1080/2162402X.2020.1773201] [PMID: 32939319]
[178]
Lum LG, Al-Kadhimi Z, Deol A, et al. Phase II clinical trial using anti-CD3 × anti-HER2 bispecific antibody armed activated T cells (HER2 BATs) consolidation therapy for HER2 negative (0-2+) metastatic breast cancer. J Immunother Cancer 2021; 9(6): e002194.
[http://dx.doi.org/10.1136/jitc-2020-002194] [PMID: 34117114]
[179]
Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel) 2020; 12(3): 738.
[http://dx.doi.org/10.3390/cancers12030738] [PMID: 32245016]
[180]
Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; 373(1): 23-34.
[http://dx.doi.org/10.1056/NEJMoa1504030] [PMID: 26027431]
[181]
Korman A, Chen B, Wang C, Wu L, Cardarelli P, Selby M. Activity of anti-PD-1 in murine tumor models: Role of “Host” PD-L1 and synergistic effect of anti-PD-1 and anti-CTLA-4 (48.37). J Immunol 2007; 178: S82-2.
[182]
Rezaei N, Rayzan E. Cancer immunotherapy: The way to the nobel prize in medicine. Acta Med Iran 2018; 56: 623-4.
[183]
Park TS, Rosenberg SA, Morgan RA. Treating cancer with genetically engineered T cells. Trends Biotechnol 2011; 29(11): 550-7.
[http://dx.doi.org/10.1016/j.tibtech.2011.04.009] [PMID: 21663987]
[184]
Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015; 348(6230): 62-8.
[http://dx.doi.org/10.1126/science.aaa4967]
[185]
Wolf B, Zimmermann S, Arber C, Irving M, Trueb L, Coukos G. safety and tolerability of adoptive cell therapy in cancer. Drug Saf 2019; 42(2): 315-34.
[http://dx.doi.org/10.1007/s40264-018-0779-3] [PMID: 30649750]
[186]
Zhao L, Cao YJ, Engineered T. Engineered T cell therapy for cancer in the clinic. Front Immunol 2019; 10(6): 2250.
[http://dx.doi.org/10.3389/fimmu.2019.02250] [PMID: 31681259]
[187]
Dafni U, Michielin O, Lluesma SM, et al. Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: A systematic review and meta-analysis. Ann Oncol 2019; 30(12): 1902-13.
[http://dx.doi.org/10.1093/annonc/mdz398] [PMID: 31566658]
[188]
Sim GC, Chacon J, Haymaker C, et al. Tumor-infiltrating lymphocyte therapy for melanoma: Rationale and issues for further clinical development. BioDrugs 2014; 28(5): 421-37.
[http://dx.doi.org/10.1007/s40259-014-0097-y] [PMID: 24890028]
[189]
Idos GE, Kwok J, Bonthala N, Kysh L, Gruber SB, Qu C. The prognostic implications of tumor infiltrating lymphocytes in colorectal cancer: A systematic review and meta-analysis. Sci Rep 2020; 10(1): 3360.
[http://dx.doi.org/10.1038/s41598-020-60255-4] [PMID: 32099066]
[190]
Zhang L, Zhang Z. Recharacterizing tumor-infiltrating lymphocytes by single-cell RNA sequencing. Cancer Immunol Res 2019; 7(7): 1040-6.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0658] [PMID: 31262773]
[191]
Whiteside TL, Jost LM, Herberman RB. Tumor-infiltrating lymphocytes. Potential and limitations to their use for cancer therapy. Crit Rev Oncol Hematol 1992; 12(1): 25-47.
[http://dx.doi.org/10.1016/1040-8428(92)90063-V] [PMID: 1540337]
[192]
Crossey F, Marx S, Hölters S, et al. Robust method for isolation of tumor infiltrating lymphocytes with a high vital cell yield from small samples of renal cell carcinomas by a new collagenase-free mechanical procedure. Urol Oncol Semin Orig Investig 2018; 36(9): 402.e1-402.e10.
[http://dx.doi.org/10.1016/j.urolonc.2018.06.002] [PMID: 30072305]
[193]
Lin B, Du L, Li H, Zhu X, Cui L, Li X. Tumor-infiltrating lymphocytes: Warriors fight against tumors powerfully. Biomed Pharmacother 2020; 132: 110873.
[http://dx.doi.org/10.1016/j.biopha.2020.110873]
[194]
Bedognetti D, Spivey TL, Zhao Y, et al. CXCR3/CCR5 pathways in metastatic melanoma patients treated with adoptive therapy and interleukin-2. Br J Cancer 2013; 109(9): 2412-23.
[http://dx.doi.org/10.1038/bjc.2013.557] [PMID: 24129241]
[195]
Wang S, Sun J, Chen K, et al. Perspectives of tumor-infiltrating lymphocyte treatment in solid tumors. BMC Med 2021; 19(1): 140.
[http://dx.doi.org/10.1186/s12916-021-02006-4] [PMID: 34112147]
[196]
Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 2011; 17(13): 4550-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0116] [PMID: 21498393]
[197]
Stevanović S, Draper LM, Langhan MM, et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J Clin Oncol 2015; 33(14): 1543-50.
[http://dx.doi.org/10.1200/JCO.2014.58.9093] [PMID: 25823737]
[198]
Ping Y, Liu C, Zhang Y. T-cell receptor-engineered T cells for cancer treatment: Current status and future directions. Protein Cell 2018; 9(3): 254-66.
[http://dx.doi.org/10.1007/s13238-016-0367-1] [PMID: 28108950]
[199]
Guo Y, Feng K, Wang Y, Han W. Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: A potential and curable approach for cancer treatment. Protein Cell 2018; 9(6): 516-26.
[http://dx.doi.org/10.1007/s13238-017-0394-6] [PMID: 28290053]
[200]
Wei J, Han X, Bo J, Han W. Target selection for CAR-T therapy. J Hematol Oncol 2019; 12(1): 62.
[http://dx.doi.org/10.1186/s13045-019-0758-x] [PMID: 31221182]
[201]
Presotto D, Erdes E, Duong MN, et al. Fine-tuning of optimal TCR signaling in tumor-redirected CD8 T cells by distinct TCR affinity-mediated mechanisms. Front Immunol 2017; 8: 1564.
[http://dx.doi.org/10.3389/fimmu.2017.01564] [PMID: 29187853]
[202]
Kasajima A, Sers C, Sasano H, et al. Down-regulation of the antigen processing machinery is linked to a loss of inflammatory response in colorectal cancer. Hum Pathol 2010; 41(12): 1758-69.
[http://dx.doi.org/10.1016/j.humpath.2010.05.014] [PMID: 20869097]
[203]
Sim MJW, Lu J, Spencer M, et al. High-affinity oligoclonal TCRs define effective adoptive T cell therapy targeting mutant KRAS-G12D. Proc Natl Acad Sci USA 2020; 117(23): 12826-35.
[http://dx.doi.org/10.1073/pnas.1921964117] [PMID: 32461371]
[204]
Campillo-Davo D, Flumens D, Lion E. The quest for the best: How TCR affinity, avidity, and functional avidity affect TCR-engineered T-cell antitumor responses. Cells 2020; 9(7): 1720.
[http://dx.doi.org/10.3390/cells9071720] [PMID: 32708366]
[205]
Rath JA, Arber C. Engineering strategies to enhance TCR-based adoptive T cell therapy. Cells 2020; 9(6): 1485.
[http://dx.doi.org/10.3390/cells9061485] [PMID: 32570906]
[206]
Wang Z, Wu Z, Liu Y, Han W. New development in CAR-T cell therapy. J Hematol Oncol 2017; 10(1): 53.
[http://dx.doi.org/10.1186/s13045-017-0423-1] [PMID: 28222796]
[207]
Ruella M, June CH. Chimeric antigen receptor T cells for B cell neoplasms: Choose the right CAR for you. Curr Hematol Malig Rep 2016; 11(5): 368-84.
[http://dx.doi.org/10.1007/s11899-016-0336-z] [PMID: 27475429]
[208]
Grigor EJM, Fergusson D, Kekre N, et al. Risks and benefits of chimeric antigen receptor T-cell (CAR-T) therapy in cancer: A systematic review and meta-analysis. Transfus Med Rev 2019; 33(2): 98-110.
[http://dx.doi.org/10.1016/j.tmrv.2019.01.005] [PMID: 30948292]
[209]
Wall DA, Krueger J. Chimeric antigen receptor T cell therapy comes to clinical practice. Curr Oncol 2020; 27(Suppl. 2): S115-23.
[http://dx.doi.org/10.3747/co.27.5283] [PMID: 32368181]
[210]
Murad JP, Tilakawardane D, Park AK, et al. Pre-conditioning modifies the TME to enhance solid tumor CAR T cell efficacy and endogenous protective immunity. Mol Ther 2021; 29(7): 2335-49.
[http://dx.doi.org/10.1016/j.ymthe.2021.02.024] [PMID: 33647456]
[211]
Marofi F, Motavalli R, Safonov VA, et al. CAR T cells in solid tumors: Challenges and opportunities. Stem Cell Res Ther 2021; 12(1): 81.
[http://dx.doi.org/10.1186/s13287-020-02128-1] [PMID: 33494834]
[212]
Choe JH, Watchmaker PB, Simic MS, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med 2021; 13(591): eabe7378.
[http://dx.doi.org/10.1126/scitranslmed.abe7378] [PMID: 33910979]
[213]
Hyrenius-Wittsten A, Su Y, Park M, et al. SynNotch CAR circuits enhance solid tumor recognition and promote persistent antitumor activity in mouse models. Sci Transl Med 2021; 13(591): 1.
[http://dx.doi.org/10.1126/scitranslmed.abd8836] [PMID: 33910981]
[214]
Choi BD, Yu X, Castano AP, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol 2019; 37(9): 1049-58.
[http://dx.doi.org/10.1038/s41587-019-0192-1] [PMID: 31332324]
[215]
Zhao W, Jia L, Zhang M, et al. The killing effect of novel bi-specific Trop2/PD-L1 CAR-T cell targeted gastric cancer. Am J Cancer Res 2019; 9(8): 1846-56.
[PMID: 31497363]
[216]
Yu S, Li A, Liu Q, et al. Chimeric antigen receptor T cells: A novel therapy for solid tumors. J Hematol Oncol 2017; 10(1): 78.
[http://dx.doi.org/10.1186/s13045-017-0444-9] [PMID: 28356156]
[217]
Schmidts A, Maus MV. Making CAR T cells a solid option for solid tumors. Front Immunol 2018; 9: 2593.
[http://dx.doi.org/10.3389/fimmu.2018.02593] [PMID: 30467505]
[218]
Li H, Huang Y, Jiang DQ, et al. Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice. Cell Death Dis 2018; 9(2): 177.
[http://dx.doi.org/10.1038/s41419-017-0238-6] [PMID: 29415996]
[219]
O’Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017; 9(399): eaaa0984.
[http://dx.doi.org/10.1126/scitranslmed.aaa0984] [PMID: 28724573]
[220]
Hosen N. CAR T cell therapy. Immunol Med 2021; 44(2): 69-73.
[http://dx.doi.org/10.1080/25785826.2020.1796063] [PMID: 32693699]
[221]
Hossain N, Sahaf B, Abramian M, et al. Phase I experience with a Bi-Specific CAR targeting CD19 and CD22 in adults with B-cell malignancies. Blood 2018; 132(Suppl. 1): 490-0.
[http://dx.doi.org/10.1182/blood-2018-99-110142]
[222]
Wilkie S, van Schalkwyk MCI, Hobbs S, et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol 2012; 32(5): 1059-70.
[http://dx.doi.org/10.1007/s10875-012-9689-9] [PMID: 22526592]
[223]
Sterner RC, Sterner RM. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J 2021; 11(4): 69.
[http://dx.doi.org/10.1038/s41408-021-00459-7] [PMID: 33824268]
[224]
Adusumilli PS, Cherkassky L, Villena-Vargas J, et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med 2014; 6(261): 261ra151.
[http://dx.doi.org/10.1126/scitranslmed.3010162] [PMID: 25378643]
[225]
Jin L, Tao H, Karachi A, et al. CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat Commun 2019; 10(1): 4016.
[http://dx.doi.org/10.1038/s41467-019-11869-4] [PMID: 31488817]
[226]
Caruana I, Savoldo B, Hoyos V, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med 2015; 21(5): 524-9.
[http://dx.doi.org/10.1038/nm.3833] [PMID: 25849134]
[227]
Li AM, Hucks GE, Dinofia AM, et al. Checkpoint inhibitors augment CD19-directed Chimeric Antigen Receptor (CAR) T cell therapy in relapsed B-Cell acute lymphoblastic leukemia. Blood 2018; 132(Suppl. 1): 556-6.
[http://dx.doi.org/10.1182/blood-2018-99-112572]
[228]
Mohammed S, Sukumaran S, Bajgain P, et al. Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Mol Ther 2017; 25(1): 249-58.
[http://dx.doi.org/10.1016/j.ymthe.2016.10.016] [PMID: 28129119]
[229]
Liu X, Jiang S, Fang C, et al. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res 2015; 75(17): 3596-607.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0159] [PMID: 26330166]
[230]
Sterner RM, Sakemura R, Cox MJ, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 2019; 133(7): 697-709.
[http://dx.doi.org/10.1182/blood-2018-10-881722] [PMID: 30463995]
[231]
Philip B, Kokalaki E, Mekkaoui L, et al. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood 2014; 124(8): 1277-87.
[http://dx.doi.org/10.1182/blood-2014-01-545020] [PMID: 24970931]
[232]
Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol 2021; 18(2): 85-100.
[http://dx.doi.org/10.1038/s41571-020-0426-7] [PMID: 32934330]
[233]
Chiorean EG, Miller JS. The biology of natural killer cells and implications for therapy of human disease. J Hematother Stem Cell Res 2001; 10(4): 451-63.
[http://dx.doi.org/10.1089/15258160152509073] [PMID: 11522229]
[234]
Aptsiauri N, Cabrera T, Mendez R, Garcia-Lora A, Ruiz-Cabello F, Garrido F. Role of altered expression of HLA class I molecules in cancer progression. Adv Exp Med Biol 2007; 601: 123-31.
[http://dx.doi.org/10.1007/978-0-387-72005-0_13] [PMID: 17712999]
[235]
Bottino C, Moretta L, Moretta A. NK cell activating receptors and tumor recognition in humans. Curr Top Microbiol Immunol 2006; 298: 175-82.
[http://dx.doi.org/10.1007/3-540-27743-9_9] [PMID: 16323416]
[236]
Olson JA, Leveson-Gower DB, Gill S, Baker J, Beilhack A, Negrin RS. NK cells mediate reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT effects. Blood 2010; 115(21): 4293-301.
[http://dx.doi.org/10.1182/blood-2009-05-222190] [PMID: 20233969]
[237]
Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med 2020; 382(6): 545-53.
[http://dx.doi.org/10.1056/NEJMoa1910607] [PMID: 32023374]
[238]
Marofi F, Abdul-Rasheed OF, Rahman HS, et al. CAR-NK cell in cancer immunotherapy; A promising frontier. Cancer Sci 2021; 112(9): 3427-36.
[http://dx.doi.org/10.1111/cas.14993] [PMID: 34050690]
[239]
Marofi F, Al-Awad AS, Sulaiman Rahman H, et al. CAR-NK Cell: A New Paradigm in Tumor Immunotherapy. Front Oncol 2021; 11: 673276.
[http://dx.doi.org/10.3389/fonc.2021.673276] [PMID: 34178661]
[240]
Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105(8): 3051-7.
[http://dx.doi.org/10.1182/blood-2004-07-2974] [PMID: 15632206]
[241]
Vallera DA, Ferrone S, Kodal B, et al. NK-cell-mediated targeting of various solid tumors using a B7-H3 tri-specific killer engager in vitro and in vivo. Cancers 2020; 12(9): 1-18.
[http://dx.doi.org/10.3390/cancers12092659] [PMID: 32961861]
[242]
Davis ZB, Vallera DA, Miller JS, Felices M. Natural killer cells unleashed: Checkpoint receptor blockade and BiKE/TriKE utilization in NK-mediated anti-tumor immunotherapy. Semin Immunol 2017; 31: 64-75.
[http://dx.doi.org/10.1016/j.smim.2017.07.011] [PMID: 28882429]
[243]
Gleason MK, Ross JA, Warlick ED, et al. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood 2014; 123(19): 3016-26.
[http://dx.doi.org/10.1182/blood-2013-10-533398] [PMID: 24652987]
[244]
Felices M, Kodal B, Hinderlie P, et al. Novel CD19-targeted TriKE restores NK cell function and proliferative capacity in CLL. Blood Adv 2019; 3(6): 897-907.
[http://dx.doi.org/10.1182/bloodadvances.2018029371] [PMID: 30890546]
[245]
Kronenberg M, Gapin L. The unconventional lifestyle of NKT cells. Nat Rev Immunol 2002; 2(8): 557-68.
[http://dx.doi.org/10.1038/nri854] [PMID: 12154375]
[246]
Godfrey DI, Hammond KJL, Poulton LD, Smyth MJ, Baxter AG. NKT cells: Facts, functions and fallacies. Immunol Today 2000; 21(11): 573-83.
[http://dx.doi.org/10.1016/S0167-5699(00)01735-7] [PMID: 11094262]
[247]
Terabe M, Berzofsky JA. The role of NKT cells in tumor immunity. Adv Cancer Res 2008; 101: 277-348.
[248]
Heczey A, Courtney AN, Montalbano A, et al. Anti-GD2 CAR-NKT cells in patients with relapsed or refractory neuroblastoma: An interim analysis. Nat Med 2020; 26(11): 1686-90.
[http://dx.doi.org/10.1038/s41591-020-1074-2] [PMID: 33046868]
[249]
Paget C, Chow MT, Duret H, Mattarollo SR, Smyth MJ. Role of γδ T cells in α-galactosylceramide-mediated immunity. J Immunol 2012; 188(8): 3928-39.
[http://dx.doi.org/10.4049/jimmunol.1103582] [PMID: 22412194]
[250]
Kim BK, Han KH, Ahn SH. Prevention of hepatocellular carcinoma in patients with chronic hepatitis B virus infection. Oncology 2011; 81(Suppl. 1): 41-9.
[http://dx.doi.org/10.1159/000333258] [PMID: 22212935]
[251]
Roden RBS, Stern PL. Opportunities and challenges for human papillomavirus vaccination in cancer. Nat Rev Cancer 2018; 18(4): 240-54.
[http://dx.doi.org/10.1038/nrc.2018.13] [PMID: 29497146]
[252]
Tang S, Ning Q, Yang L, Mo Z, Tang S. Mechanisms of immune escape in the cancer immune cycle. Int Immunopharmacol 2020; 86: 106700.
[http://dx.doi.org/10.1016/j.intimp.2020.106700] [PMID: 32590316]
[253]
Sompayrac L. How The Immune System Works B Cells and Antibodies. 6th ed. Oxford: Wiley Blacwell 2019.
[254]
Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. npj. Vaccines 2019; 4(1): 1-10.
[255]
Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363(5): 411-22.
[http://dx.doi.org/10.1056/NEJMoa1001294] [PMID: 20818862]
[256]
de Gruijl TD, van den Eertwegh AJM, Pinedo HM, Scheper RJ. Whole-cell cancer vaccination: From autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol Immunother 2008; 57(10): 1569-77.
[http://dx.doi.org/10.1007/s00262-008-0536-z] [PMID: 18523771]
[257]
Avigan DE, Vasir B, George DJ, et al. Phase I/II study of vaccination with electrofused allogeneic dendritic cells/autologous tumor-derived cells in patients with stage IV renal cell carcinoma. J Immunother 2007; 30(7): 749-61.
[http://dx.doi.org/10.1097/CJI.0b013e3180de4ce8] [PMID: 17893567]
[258]
Lu YC, Robbins PF. Cancer immunotherapy targeting neoantigens. Semin Immunol 2016; 28(1): 22-7.
[http://dx.doi.org/10.1016/j.smim.2015.11.002] [PMID: 26653770]
[259]
Peng M, Mo Y, Wang Y, et al. Neoantigen vaccine: An emerging tumor immunotherapy. Mol Cancer 2019; 18(1): 128.
[http://dx.doi.org/10.1186/s12943-019-1055-6] [PMID: 31443694]
[260]
Kaiser J. Personalized tumor vaccines keep cancer in check. Science 2017; 356(6334): 122.
[261]
Jiang T, Shi T, Zhang H, et al. Tumor neoantigens: From basic research to clinical applications. J Hematol Oncol 2019; 12(1): 93.
[http://dx.doi.org/10.1186/s13045-019-0787-5] [PMID: 31492199]
[262]
Melero I, Gaudernack G, Gerritsen W, et al. Therapeutic vaccines for cancer: An overview of clinical trials. Nat Rev Clin Oncol 2014; 11(9): 509-24.
[http://dx.doi.org/10.1038/nrclinonc.2014.111] [PMID: 25001465]
[263]
Castle JC, Uduman M, Pabla S, Stein RB, Buell JS. Mutation-derived neoantigens for cancer immunotherapy [Internet]. Front Immunol 2019; 10: 1856.
[http://dx.doi.org/10.3389/fimmu.2019.01856] [PMID: 31440245]
[264]
Shankaran V, Ikeda H, Bruce AT, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001; 410(6832): 1107-11.
[http://dx.doi.org/10.1038/35074122] [PMID: 11323675]
[265]
van Der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254(5038): 1643-7.
[http://dx.doi.org/10.1126/science.1840703]
[266]
Laskowski T, Rezvani K. Adoptive cell therapy: Living drugs against cancer. J Exp Med 2020; 217(12): 1-4.
[http://dx.doi.org/10.1084/jem.20200377] [PMID: 33227136]
[267]
Wu HY, Cao CY. The application of CRISPR-Cas9 genome editing tool in cancer immunotherapy. Brief Funct Genomics 2019; 18(2): 129-32.
[http://dx.doi.org/10.1093/bfgp/ely011] [PMID: 29579146]
[268]
Xia AL, He QF, Wang JC, et al. Applications and advances of CRISPR-Cas9 in cancer immunotherapy. J Med Genet 2019; 56(1): 4-9.
[http://dx.doi.org/10.1136/jmedgenet-2018-105422] [PMID: 29970486]
[269]
Martinez-Lage M, Puig-Serra P, Menendez P, Torres-Ruiz R, Rodriguez-Perales S. CRISPR/Cas9 for cancer therapy: Hopes and challenges. Biomedicines 2018; 6(4): 1-13.
[http://dx.doi.org/10.3390/biomedicines6040105] [PMID: 30424477]
[270]
Li S, Zhang Z, Lai WF, Cui L, Zhu X. How to overcome the side effects of tumor immunotherapy. Biomed Pharmacother 2020; 130: 110639.
[http://dx.doi.org/10.1016/j.biopha.2020.110639] [PMID: 33658124]
[271]
Veglia F, Tyurin VA, Blasi M, et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 2019; 569(7754): 73-8.
[http://dx.doi.org/10.1038/s41586-019-1118-2] [PMID: 30996346]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy