Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

Naturally Occurring Compounds as Potential Inhibitors of Epidermal Growth Factor Receptors (EGFRs)

Author(s): Listiana Oktavia*, Asrul Muhamad Fuad*, Seni Kurnia Senjaya and Yuliawati Yuliyawati

Volume 26, Issue 6, 2023

Published on: 27 August, 2022

Page: [1093 - 1107] Pages: 15

DOI: 10.2174/1386207325666220726164712

Price: $65

Abstract

The Epidermal Growth Factor Receptor (EGFR) activation appears essential in tumor growth and progression. Targeting EGFR signaling pathway has become an exciting area in cancer therapy. Synthetic chemotherapy drugs have been used to inhibit some EGFR signaling in various cancer cells. The use of naturally occurring compounds as EGFR inhibitors is an attractive area for research due to the urgent need to combat resistance over current EGFR inhibitors. In this review, we first summarize the schematic role of EGFR in cancer and the current EGFR inhibitor used, its advantage, and disadvantage. Next, we discuss the natural products that have been reported as the source of EGFR inhibitors. The discussion covers the natural products which where majorly reported from the year 2005-2020. A total of 21 groups of natural compounds and their derivatives were reported to have the potential to inhibit EGFR signaling pathways. We then discuss the advanced technologies and approaches that rapidly discover EGFR inhibitor-based natural products. Hopefully, this literature review could increase the excitement of finding an effective EGFR pathway inhibitor from natural products.

Keywords: Cancer, chemotherapy, EGFR, inhibitor, natural products, TNBC.

Graphical Abstract
[1]
Sharma, G.N.; Dave, R.; Sanadya, J.; Sharma, P.; Sharma, K.K. Various types and management of breast cancer: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(2), 109-126.
[PMID: 22247839]
[2]
Witsch, E.; Sela, M.; Yarden, Y. Roles for growth factors in cancer progression. Physiology (Bethesda), 2010, 25(2), 85-101.
[http://dx.doi.org/10.1152/physiol.00045.2009] [PMID: 20430953]
[3]
Kuan, C.T.; Wikstrand, C.J.; Bigner, D.D. EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr. Relat. Cancer, 2001, 8(2), 83-96.
[http://dx.doi.org/10.1677/erc.0.0080083] [PMID: 11397666]
[4]
Harari, P.M. Epidermal growth factor receptor inhibition strategies in oncology. Endocr. Relat. Cancer, 2004, 11(4), 689-708.
[http://dx.doi.org/10.1677/erc.1.00600] [PMID: 15613446]
[5]
Dassonville, O.; Bozec, A.; Fischel, J.L.; Milano, G. EGFR targeting therapies: Monoclonal antibodies versus tyrosine kinase inhibitors. Similarities and differences. Crit. Rev. Oncol. Hematol., 2007, 62(1), 53-61.
[http://dx.doi.org/10.1016/j.critrevonc.2006.12.008] [PMID: 17324578]
[6]
El Guerrab, A.; Bamdad, M.; Kwiatkowski, F.; Bignon, Y.J.; Penault-Llorca, F.; Aubel, C. Anti-EGFR monoclonal antibodies and EGFR tyrosine kinase inhibitors as combination therapy for triple-negative breast cancer. Oncotarget, 2016, 7(45), 73618-73637.
[http://dx.doi.org/10.18632/oncotarget.12037] [PMID: 27655662]
[7]
Scott, A.M.; Allison, J.P.; Wolchok, J.D. Monoclonal antibodies in cancer therapy. Cancer Immun., 2012, 12(1), 14.
[PMID: 22896759]
[8]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.K.; Batra, S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[9]
Ono, M.; Kuwano, M. Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin. Cancer Res., 2006, 12(24), 7242-7251.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0646] [PMID: 17189395]
[10]
Scaltriti, M.; Baselga, J. The epidermal growth factor receptor pathway: A model for targeted therapy. Clin. Cancer Res., 2006, 12(18), 5268-5272.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1554] [PMID: 17000658]
[11]
Rutkowska, A.; Stoczyńska-Fidelus, E.; Janik, K.; Włodarczyk, A.; Rieske, P. EGFRvIII: An oncogene with ambiguous role. J. Oncol., 2019, 2019, 1092587.
[http://dx.doi.org/10.1155/2019/1092587] [PMID: 32089685]
[12]
Lo, H.W.; Hung, M.C. Nuclear EGFR signalling network in cancers: Linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br. J. Cancer, 2006, 94(2), 184-188.
[http://dx.doi.org/10.1038/sj.bjc.6602941] [PMID: 16434982]
[13]
Comis, R.L. The current situation: Erlotinib (Tarceva) and gefitinib (Iressa) in non-small cell lung cancer. Oncologist, 2005, 10(7), 467-470.
[http://dx.doi.org/10.1634/theoncologist.10-7-467] [PMID: 16079313]
[14]
Culy, C.R.; Faulds, D. Gefitinib. Drugs, 2002, 62(15), 2237-2248.
[http://dx.doi.org/10.2165/00003495-200262150-00008] [PMID: 12381224]
[15]
Cross, D.A.; Ashton, S.E.; Ghiorghiu, S.; Eberlein, C.; Nebhan, C.A.; Spitzler, P.J.; Orme, J.P.; Finlay, M.R.; Ward, R.A.; Mellor, M.J.; Hughes, G.; Rahi, A.; Jacobs, V.N.; Red Brewer, M.; Ichihara, E.; Sun, J.; Jin, H.; Ballard, P.; Al-Kadhimi, K.; Rowlinson, R.; Klinowska, T.; Richmond, G.H.; Cantarini, M.; Kim, D.W.; Ranson, M.R.; Pao, W. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov., 2014, 4(9), 1046-1061.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0337] [PMID: 24893891]
[16]
Wong, S.F. Cetuximab: An epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clin. Ther., 2005, 27(6), 684-694.
[http://dx.doi.org/10.1016/j.clinthera.2005.06.003] [PMID: 16117976]
[17]
Chung, C. Tyrosine kinase inhibitors for epidermal growth factor receptor gene mutation-positive non-small cell lung cancers: An update for recent advances in therapeutics. J. Oncol. Pharm. Pract., 2016, 22(3), 461-476.
[http://dx.doi.org/10.1177/1078155215577810] [PMID: 25855240]
[18]
Kuan, F.C.; Kuo, L.T.; Chen, M.C.; Yang, C.T.; Shi, C.S.; Teng, D.; Lee, K.D. Overall survival benefits of first-line EGFR tyrosine kinase inhibitors in EGFR-mutated non-small-cell lung cancers: A systematic review and meta-analysis. Br. J. Cancer, 2015, 113(10), 1519-1528.
[http://dx.doi.org/10.1038/bjc.2015.356] [PMID: 26461059]
[19]
Bean, J.; Brennan, C.; Shih, J.Y.; Riely, G.; Viale, A.; Wang, L.; Chitale, D.; Motoi, N.; Szoke, J.; Broderick, S.; Balak, M.; Chang, W.C.; Yu, C.J.; Gazdar, A.; Pass, H.; Rusch, V.; Gerald, W.; Huang, S.F.; Yang, P.C.; Miller, V.; Ladanyi, M.; Yang, C.H.; Pao, W. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl. Acad. Sci. USA, 2007, 104(52), 20932-20937.
[http://dx.doi.org/10.1073/pnas.0710370104] [PMID: 18093943]
[20]
Postel-Vinay, S.; Ashworth, A. AXL and acquired resistance to EGFR inhibitors. Nat. Genet., 2012, 44(8), 835-836.
[http://dx.doi.org/10.1038/ng.2362] [PMID: 22836088]
[21]
Wang, Y.; Lai, H.; Fan, X.; Luo, L.; Duan, F.; Jiang, Z.; Wang, Q.; Leung, E.L.H.; Liu, L.; Yao, X. Gossypol inhibits non-small cell lung cancer cells proliferation by targeting EGFRL858R/T790M. Front. Pharmacol., 2018, 9, 728.
[http://dx.doi.org/10.3389/fphar.2018.00728] [PMID: 30038571]
[22]
Subramaniam, S.; Selvaduray, K.R.; Radhakrishnan, A.K. Bioactive compounds: Natural defense against cancer? Biomolecules, 2019, 9(12), 758.
[http://dx.doi.org/10.3390/biom9120758] [PMID: 31766399]
[23]
Liang, Y.; Zhang, T.; Zhang, J. Natural tyrosine kinase inhibitors acting on the epidermal growth factor receptor: Their relevance for cancer therapy. Pharmacol. Res., 2020, 161, 105164.
[http://dx.doi.org/10.1016/j.phrs.2020.105164] [PMID: 32846211]
[24]
Efferth, T.; Ramirez, T.; Gebhart, E.; Halatsch, M.E. Combination treatment of glioblastoma multiforme cell lines with the anti-malarial artesunate and the epidermal growth factor receptor tyrosine kinase inhibitor OSI-774. Biochem. Pharmacol., 2004, 67(9), 1689-1700.
[http://dx.doi.org/10.1016/j.bcp.2003.12.035] [PMID: 15081868]
[25]
Yan, X.; Li, P.; Zhan, Y.; Qi, M.; Liu, J.; An, Z.; Yang, W.; Xiao, H.; Wu, H.; Qi, Y.; Shao, H. Dihydroartemisinin suppresses STAT3 signaling and Mcl-1 and Survivin expression to potentiate ABT-263-induced apoptosis in non-small cell lung cancer cells harboring EGFR or RAS mutation. Biochem. Pharmacol., 2018, 150, 72-85.
[http://dx.doi.org/10.1016/j.bcp.2018.01.031] [PMID: 29360439]
[26]
Liu, Z.; Carpenter, S.B.; Bourgeois, W.J.; Yu, Y.; Constantin, R.J.; Falcon, M.J.; Adams, J.C. Variations in the secondary metabolite camptothecin in relation to tissue age and season in Camptotheca acuminata. Tree Physiol., 1998, 18(4), 265-270.
[http://dx.doi.org/10.1093/treephys/18.4.265] [PMID: 12651381]
[27]
Wang, Y.; Yang, S.; Zhang, S.; Wu, X. Oxymatrine inhibits proliferation and migration of vulvar squamous cell carcinoma cells via attenuation of the RAS/RAF/MEK/ERK pathway. Cancer Manag. Res., 2020, 12, 2057-2067.
[http://dx.doi.org/10.2147/CMAR.S245696] [PMID: 32256113]
[28]
Li, W.; Yu, X.; Tan, S.; Liu, W.; Zhou, L.; Liu, H. Oxymatrine inhibits non-small cell lung cancer via suppression of EGFR signaling pathway. Cancer Med., 2018, 7(1), 208-218.
[http://dx.doi.org/10.1002/cam4.1269] [PMID: 29239135]
[29]
Dai, Z.; Wang, L.; Wang, X.; Zhao, B.; Zhao, W.; Bhardwaj, S.S.; Ye, J.; Yin, Z.; Zhang, J.; Zhao, S. Oxymatrine induces cell cycle arrest and apoptosis and suppresses the invasion of human glioblastoma cells through the EGFR/PI3K/Akt/mTOR signaling pathway and STAT3. Oncol. Rep., 2018, 40(2), 867-876.
[http://dx.doi.org/10.3892/or.2018.6512] [PMID: 29989652]
[30]
Tang, Y.; Sun, A.; Liu, R.; Zhang, Y. Simultaneous determination of fangchinoline and tetrandrine in Stephania tetrandra S. Moore by using 1-alkyl-3-methylimidazolium-based ionic liquids as the RP-HPLC mobile phase additives. Anal. Chim. Acta, 2013, 767, 148-154.
[http://dx.doi.org/10.1016/j.aca.2013.01.001] [PMID: 23452799]
[31]
Horng, C.T.; Yang, J.S.; Chiang, J.H.; Lu, C.C.; Lee, C.F.; Chiang, N.N.; Chen, F.A. Inhibitory effects of tetrandrine on epidermal growth factor-induced invasion and migration in HT29 human colorectal adenocarcinoma cells. Mol. Med. Rep., 2016, 13(1), 1003-1009.
[http://dx.doi.org/10.3892/mmr.2015.4635] [PMID: 26648313]
[32]
Nomura, M.; Tsukada, H.; Ichimatsu, D.; Ito, H.; Yoshida, T.; Miyamoto, K. Inhibition of epidermal growth factor-induced cell transformation by tannins. Phytochemistry, 2005, 66(17), 2038-2046.
[http://dx.doi.org/10.1016/j.phytochem.2005.01.018] [PMID: 16153407]
[33]
N, B.; K R, C. Tetrandrine and cancer - An overview on the molecular approach. Biomed. Pharmacother., 2018, 97, 624-632.
[http://dx.doi.org/10.1016/j.biopha.2017.10.116] [PMID: 29101806]
[34]
Zhang, R.; Qiao, H.; Chen, S.; Chen, X.; Dou, K.; Wei, L.; Zhang, J. Berberine reverses lapatinib resistance of HER2-positive breast cancer cells by increasing the level of ROS. Cancer Biol. Ther., 2016, 17(9), 925-934.
[http://dx.doi.org/10.1080/15384047.2016.1210728] [PMID: 27416292]
[35]
Jabbarzadeh Kaboli, P.; Leong, M.P.Y.; Ismail, P.; Ling, K.H. Antitumor effects of berberine against EGFR, ERK1/2, P38 and AKT in MDA-MB231 and MCF-7 breast cancer cells using molecular modelling and in vitro study. Pharmacol. Rep., 2019, 71(1), 13-23.
[http://dx.doi.org/10.1016/j.pharep.2018.07.005] [PMID: 30343043]
[36]
Chen, Y.; Zhang, H.Y. Berberine and chemotherapeutic drugs synergisticall y inhibits cell proliferation and migration of breast cancer cells. Int. J. Clin. Exp. Med., 2019, 11(12), 13243-13250.
[37]
Xie, Y.J.; Gao, W.N.; Wu, Q.B.; Yao, X.J.; Jiang, Z.B.; Wang, Y.W.; Wang, W.J.; Li, W.; Hussain, S.; Liu, L.; Leung, E.L.; Fan, X.X. Chelidonine selectively inhibits the growth of gefitinib-resistant non-small cell lung cancer cells through the EGFR-AMPK pathway. Pharmacol. Res., 2020, 159, 104934.
[http://dx.doi.org/10.1016/j.phrs.2020.104934] [PMID: 32464330]
[38]
Hou, F.J.; Guo, L.X.; Zheng, K.Y.; Song, J.N.; Wang, Q.; Zheng, Y.G. Chelidonine enhances the antitumor effect of lenvatinib on hepatocellular carcinoma cells. OncoTargets Ther., 2019, 12, 6685-6697.
[http://dx.doi.org/10.2147/OTT.S215103] [PMID: 31695406]
[39]
Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Molecular targets and anticancer potential of sanguinarine-a benzophenanthridine alkaloid. Phytomedicine, 2017, 34, 143-153.
[http://dx.doi.org/10.1016/j.phymed.2017.08.006] [PMID: 28899497]
[40]
Leung, E.L.H.; Fan, X.X.; Wong, M.P.; Jiang, Z.H.; Liu, Z.Q.; Yao, X.J.; Lu, L.L.; Zhou, Y.L.; Yau, L.F.; Tin, V.P.; Liu, L. Targeting tyrosine kinase inhibitor-resistant non-small cell lung cancer by inducing epidermal growth factor receptor degradation via methionine 790 oxidation. Antioxid. Redox Signal., 2016, 24(5), 263-279.
[http://dx.doi.org/10.1089/ars.2015.6420] [PMID: 26528827]
[41]
Praptiwi, P.; Jamal, Y.; Fathoni, A.; Nurkanto, A.; Agusta, A. Antibacterial activity of Bisanthraquinone (+)-1, 1'-bislunatin. Microbiol. Indones., 2013, 7(4), 4-11.
[http://dx.doi.org/10.5454/mi.7.4.4]
[42]
Zhao, Q.; Kretschmer, N.; Bauer, R.; Efferth, T. Shikonin and its derivatives inhibit the epidermal growth factor receptor signaling and synergistically kill glioblastoma cells in combination with erlotinib. Int. J. Cancer, 2015, 137(6), 1446-1456.
[http://dx.doi.org/10.1002/ijc.29483] [PMID: 25688715]
[43]
Li, X.; Fan, X.X.; Jiang, Z.B.; Loo, W.T.; Yao, X.J.; Leung, E.L.; Chow, L.W.; Liu, L. Shikonin inhibits gefitinib-resistant non-small cell lung cancer by inhibiting TrxR and activating the EGFR proteasomal degradation pathway. Pharmacol. Res., 2017, 115, 45-55.
[http://dx.doi.org/10.1016/j.phrs.2016.11.011] [PMID: 27864022]
[44]
Singh, F.; Gao, D.; Lebwohl, M.G.; Wei, H. Shikonin modulates cell proliferation by inhibiting epidermal growth factor receptor signaling in human epidermoid carcinoma cells. Cancer Lett., 2003, 200(2), 115-121.
[http://dx.doi.org/10.1016/S0304-3835(03)00239-8] [PMID: 14568164]
[45]
Li, D.; Wu, L.J.; Tashiro, S.; Onodera, S.; Ikejima, T. Oridonin induces human epidermoid carcinoma A431 cell apoptosis through tyrosine kinase and mitochondrial pathway. J. Asian Nat. Prod. Res., 2008, 10(1-2), 77-87.
[http://dx.doi.org/10.1080/10286020701273866] [PMID: 18058384]
[46]
Kang, N.; Zhang, J.H.; Qiu, F.; Tashiro, S.; Onodera, S.; Ikejima, T. Inhibition of EGFR signaling augments oridonin-induced apoptosis in human laryngeal cancer cells via enhancing oxidative stress coincident with activation of both the intrinsic and extrinsic apoptotic pathways. Cancer Lett., 2010, 294(2), 147-158.
[http://dx.doi.org/10.1016/j.canlet.2010.01.032] [PMID: 20202741]
[47]
Yu, Y.; Fan, S.M.; Ye, Y.C.; Tashiro, S.; Onodera, S.; Ikejima, T. The tyrphostin AG1478 augments oridonin-induced A431 cell apoptosis by blockage of JNK MAPK and enhancement of oxidative stress. Free Radic. Res., 2012, 46(11), 1393-1405.
[http://dx.doi.org/10.3109/10715762.2012.720017] [PMID: 22881126]
[48]
Hong, J.Y.; Chung, H.J.; Lee, H.J.; Park, H.J.; Lee, S.K. Growth inhibition of human lung cancer cells via down-regulation of epidermal growth factor receptor signaling by yuanhuadine, a daphnane diterpene from Daphne genkwa. J. Nat. Prod., 2011, 74(10), 2102-2108.
[http://dx.doi.org/10.1021/np2003512] [PMID: 21916433]
[49]
Bae, S.Y.; Hong, J.Y.; Lee, H.J.; Park, H.J.; Lee, S.K. Targeting the degradation of AXL receptor tyrosine kinase to overcome resistance in gefitinib-resistant non-small cell lung cancer. Oncotarget, 2015, 6(12), 10146-10160.
[http://dx.doi.org/10.18632/oncotarget.3380] [PMID: 25760142]
[50]
Kim, D.; Bach, D.H.; Fan, Y.H.; Luu, T.T.T.; Hong, J.Y.; Park, H.J.; Lee, S.K. AXL degradation in combination with EGFR-TKI can delay and overcome acquired resistance in human non-small cell lung cancer cells. Cell Death Dis., 2019, 10(5), 361.
[http://dx.doi.org/10.1038/s41419-019-1601-6] [PMID: 31043587]
[51]
Banik, K.; Ranaware, A.M.; Deshpande, V.; Nalawade, S.P.; Padmavathi, G.; Bordoloi, D.; Sailo, B.L.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; Sethi, G.; Kunnumakkara, A.B. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol. Res., 2019, 144, 192-209.
[http://dx.doi.org/10.1016/j.phrs.2019.04.004] [PMID: 31002949]
[52]
Leeman-Neill, R.J.; Cai, Q.; Joyce, S.C.; Thomas, S.M.; Bhola, N.E.; Neill, D.B.; Arbiser, J.L.; Grandis, J.R. Honokiol inhibits epidermal growth factor receptor signaling and enhances the antitumor effects of epidermal growth factor receptor inhibitors. Clin. Cancer Res., 2010, 16(9), 2571-2579.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0333] [PMID: 20388852]
[53]
Hongjing, ZANG.; Fan, S. Arbiser, J Honokiol, a natural product, overcomes acquired resistance of EGFR mutant NSCLC cells to the third generation EGFR inhibitor, osimertinib. Cancer Res., 2019, 79(13), 1277-1277.
[54]
Wang, X.; Duan, X.; Yang, G.; Zhang, X.; Deng, L.; Zheng, H.; Deng, C.; Wen, J.; Wang, N.; Peng, C.; Zhao, X.; Wei, Y.; Chen, L. Honokiol crosses BBB and BCSFB, and inhibits brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. PLoS One, 2011, 6(4), e18490.
[http://dx.doi.org/10.1371/journal.pone.0018490] [PMID: 21559510]
[55]
Liu, H.; Zang, C.; Emde, A.; Planas-Silva, M.D.; Rosche, M.; Kühnl, A. Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer., 2008, 591(1-3), 43-51.
[56]
Liou, S.F.; Hua, K.T.; Hsu, C.Y.; Weng, M.S. Honokiol from Magnolia spp. induces G1 arrest via disruption of EGFR stability through repressing HDAC6 deacetylated Hsp90 function in lung cancer cells. J. Funct. Foods, 2015, 15, 84-96.
[http://dx.doi.org/10.1016/j.jff.2015.03.018]
[57]
Lee, D.H.; Szczepanski, M.J.; Lee, Y.J. Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. J. Cell. Biochem., 2009, 106(6), 1113-1122.
[http://dx.doi.org/10.1002/jcb.22098] [PMID: 19229860]
[58]
Rho, J.K.; Choi, Y.J.; Jeon, B.S.; Choi, S.J.; Cheon, G.J.; Woo, S.K.; Kim, H.R.; Kim, C.H.; Choi, C.M.; Lee, J.C. Combined treatment with silibinin and epidermal growth factor receptor tyrosine kinase inhibitors overcomes drug resistance caused by T790M mutation. Mol. Cancer Ther., 2010, 9(12), 3233-3243.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0625] [PMID: 21159609]
[59]
Cufí, S.; Bonavia, R.; Vazquez-Martin, A.; Oliveras-Ferraros, C. Corominas-Faja. Silibinin suppresses EMT-driven erlotinib resistance by reversing the high miR-21/low miR-200c signature in vivo. Sci. Rep., 2013, 3(1), 1-10.
[http://dx.doi.org/10.1038/srep02459]
[60]
Hosen, S.; Kabir, M.; Hasanat, A.; Chowdhury, T.; Chakrabarty, N. Docking and ADME/T analysis of silibinin as a potential inhibitor of EGFR kinase for ovarian cancer therapy. J. App0 Pharm. Sci., 2016, 6(08), 001-005.
[61]
Cui, X.; Inagaki, Y.; Xu, H.; Wang, D.; Qi, F.; Kokudo, N.; Fang, D.; Tang, W. Anti-hepatitis B virus activities of cinobufacini and its active components bufalin and cinobufagin in HepG2.2.15 cells. Biol. Pharm. Bull., 2010, 33(10), 1728-1732.
[http://dx.doi.org/10.1248/bpb.33.1728] [PMID: 20930383]
[62]
Huang, H.; Shah, K.; Bradbury, N.A.; Li, C.; White, C. Mcl-1 promotes lung cancer cell migration by directly interacting with VDAC to increase mitochondrial Ca 2+ uptake and reactive oxygen species generation. Cell Death Dis., 20145(10), e1482.
[http://dx.doi.org/10.1038/cddis.2014.419]
[63]
Burma, S.; Chen, B.P.; Chen, D.J. Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair (Amst.), 2006, 5(9-10), 1042-1048.
[http://dx.doi.org/10.1016/j.dnarep.2006.05.026] [PMID: 16822724]
[64]
Cao, F.; Gong, Y.B.; Kang, X.H.; Lu, Z.H.; Wang, Y.; Zhao, K.L.; Miao, Z.H.; Liao, M.J.; Xu, Z.Y. Degradation of MCL-1 by bufalin reverses acquired resistance to osimertinib in EGFR-mutant lung cancer. Toxicol. Appl. Pharmacol., 2019, 379, 114662.
[http://dx.doi.org/10.1016/j.taap.2019.114662] [PMID: 31301315]
[65]
Feng, Y.; Chen, Y.; Meng, Y.; Cao, Q.; Liu, Q.; Ling, C.; Wang, C. Bufalin suppresses migration and invasion of hepatocellular carcinoma cells elicited by poly (I: C) therapy. OncoImmunology, 2018, 7(5), e1426434.
[http://dx.doi.org/10.1080/2162402X.2018.1426434] [PMID: 29721392]
[66]
Shimizu, M.; Adachi, S.; Masuda, M.; Kozawa, O.; Moriwaki, H. Cancer chemoprevention with green tea catechins by targeting receptor tyrosine kinases. Mol. Nutr. Food Res., 2011, 55(6), 832-843.
[http://dx.doi.org/10.1002/mnfr.201000622] [PMID: 21538846]
[67]
Yang, C.S.; Wang, X.; Lu, G.; Picinich, S.C. Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer, 2009, 9(6), 429-439.
[http://dx.doi.org/10.1038/nrc2641] [PMID: 19472429]
[68]
Yang, C.S.; Wang, H. Cancer preventive activities of tea catechins. Molecules, 2016, 21(12), 1679.
[http://dx.doi.org/10.3390/molecules21121679] [PMID: 27941682]
[69]
Lee, L.T.; Huang, Y.T.; Hwang, J.J.; Lee, A.Y.L.; Ke, F.C.; Huang, C.J.; Kandaswami, C.; Lee, P.P.; Lee, M.T. Transinactivation of the epidermal growth factor receptor tyrosine kinase and focal adhesion kinase phosphorylation by dietary flavonoids: Effect on invasive potential of human carcinoma cells. Biochem. Pharmacol., 2004, 67(11), 2103-2114.
[http://dx.doi.org/10.1016/j.bcp.2004.02.023] [PMID: 15135307]
[70]
Sakurai, M.A.; Ozaki, Y.; Okuzaki, D.; Naito, Y.; Sasakura, T.; Okamoto, A.; Tabara, H.; Inoue, T.; Hagiyama, M.; Ito, A.; Yabuta, N.; Nojima, H. Gefitinib and luteolin cause growth arrest of human prostate cancer PC-3 cells via inhibition of cyclin G-associated kinase and induction of miR-630. PLoS One, 2014, 9(6), e100124.
[http://dx.doi.org/10.1371/journal.pone.0100124] [PMID: 24971999]
[71]
Mehta, R.; Katta, H.; Alimirah, F.; Patel, R.; Murillo, G.; Peng, X.; Muzzio, M.; Mehta, R.G. Deguelin action involves c-Met and EGFR signaling pathways in triple negative breast cancer cells. PLoS One, 2013, 8(6), e65113.
[http://dx.doi.org/10.1371/journal.pone.0065113] [PMID: 23762292]
[72]
Baba, Y.; Maeda, T.; Suzuki, A.; Takada, S.; Fujii, M.; Kato, Y. Deguelin potentiates apoptotic activity of an EGFR tyrosine kinase inhibitor (AG1478) in PIK3CA-mutated head and neck squamous cell carcinoma. Int. J. Mol. Sci., 2017, 18(2), 262.
[http://dx.doi.org/10.3390/ijms18020262] [PMID: 28134774]
[73]
Park, H.J.; Min, T.R.; Chi, G.Y.; Choi, Y.H.; Park, S.H. Induction of apoptosis by morusin in human non-small cell lung cancer cells by suppression of EGFR/STAT3 activation. Biochem. Biophys. Res. Commun., 2018, 505(1), 194-200.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.085] [PMID: 30243717]
[74]
Nie, P.; Hu, W.; Zhang, T.; Yang, Y.; Hou, B.; Zou, Z. Synergistic induction of erlotinib-mediated apoptosis by resveratrol in human non-small-cell lung cancer cells by down-regulating survivin and upregulating PUMA. Cell. Physiol. Biochem., 2015, 35(6), 2255-2271.
[http://dx.doi.org/10.1159/000374030] [PMID: 25895606]
[75]
Zhu, Y.; He, W.; Gao, X.; Li, B.; Mei, C.; Xu, R.; Chen, H. Resveratrol overcomes gefitinib resistance by increasing the intracellular gefitinib concentration and triggering apoptosis, autophagy and senescence in PC9/G NSCLC cells. Sci. Rep., 2015, 5(1), 17730.
[http://dx.doi.org/10.1038/srep17730] [PMID: 26635117]
[76]
Clark, R.; Lee, S-H. Anticancer properties of capsaisin against human cancer. Anticancer Res., 2016, 36(3), 837-843.
[PMID: 26976969]
[77]
Hwang, Y.P.; Yun, H.J.; Choi, J.H.; Han, E.H.; Kim, H.G.; Song, G.Y.; Kwon, K.I.; Jeong, T.C.; Jeong, H.G. Suppression of EGF-induced tumor cell migration and matrix metalloproteinase-9 expression by capsaicin via the inhibition of EGFR-mediated FAK/Akt, PKC/Raf/ERK, p38 MAPK, and AP-1 signaling. Mol. Nutr. Food Res., 2011, 55(4), 594-605.
[http://dx.doi.org/10.1002/mnfr.201000292] [PMID: 21462327]
[78]
Thoennissen, N.H.; O’Kelly, J.; Lu, D.; Iwanski, G.B.; La, D.T.; Abbassi, S.; Leiter, A.; Karlan, B.; Mehta, R.; Koeffler, H.P. Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene, 2010, 29(2), 285-296.
[http://dx.doi.org/10.1038/onc.2009.335] [PMID: 19855437]
[79]
Chien, C.M.; Lin, K.L.; Su, J.C.; Chang, L.S.; Lin, S.R. Inactivation of epidermal growth factor receptor and downstream pathways in oral squamous cell carcinoma Ca9-22 cells by cardiotoxin III from Naja naja atra. J. Nat. Prod., 2009, 72(10), 1735-1740.
[http://dx.doi.org/10.1021/np900010g] [PMID: 19754129]
[80]
Li, S.; Gao, Y.; Ma, W.; Guo, W.; Zhou, G.; Cheng, T.; Liu, Y. EGFR signaling-dependent inhibition of glioblastoma growth by ginsenoside Rh2. Tumour Biol., 2014, 35(6), 5593-5598.
[http://dx.doi.org/10.1007/s13277-014-1739-x] [PMID: 24557544]
[81]
Chen, W.; Qiu, Y. Ginsenoside Rh2 targets EGFR by up-regulation of miR-491 to enhance anti-tumor activity in hepatitis B virus-related hepatocellular carcinoma. Cell Biochem. Biophys., 2015, 72(2), 325-331.
[http://dx.doi.org/10.1007/s12013-014-0456-9] [PMID: 25561284]
[82]
Sathishkumar, N.; Karpagam, V.; Sathiyamoorthy, S.; Woo, M.J.; Kim, Y.J.; Yang, D.C. Computer-aided identification of EGFR tyrosine kinase inhibitors using ginsenosides from Panax ginseng. Comput. Biol. Med., 2013, 43(6), 786-797.
[http://dx.doi.org/10.1016/j.compbiomed.2013.02.020] [PMID: 23668355]
[83]
Shan, X.; Aziz, F.; Tian, L.L.; Wang, X.Q.; Yan, Q.; Liu, J.W. Ginsenoside Rg3-induced EGFR/MAPK pathway deactivation inhibits melanoma cell proliferation by decreasing FUT4/LeY expression. Int. J. Oncol., 2015, 46(4), 1667-1676.
[http://dx.doi.org/10.3892/ijo.2015.2886] [PMID: 25672851]
[84]
Jiang, J.; Yuan, Z.; Sun, Y.; Bu, Y.; Li, W.; Fei, Z. Ginsenoside Rg3 enhances the anti-proliferative activity of erlotinib in pancreatic cancer cell lines by downregulation of EGFR/PI3K/Akt signaling pathway. Biomed. Pharmacother., 2017, 96, 619-625.
[http://dx.doi.org/10.1016/j.biopha.2017.10.043] [PMID: 29035827]
[85]
Wang, X.; Xu, L.; Lao, Y.; Zhang, H.; Xu, H. Natural products targeting EGFR signaling pathways as potential anticancer drugs. Curr. Protein Pept. Sci., 2018, 19(4), 380-388.
[http://dx.doi.org/10.2174/1389203718666170106104211] [PMID: 28059040]
[86]
Panda, A.K.; Chakraborty, D.; Sarkar, I.; Khan, T.; Sa, G. New insights into therapeutic activity and anticancer properties of curcumin. J. Exp. Pharmacol., 2017, 9, 31-45.
[http://dx.doi.org/10.2147/JEP.S70568] [PMID: 28435333]
[87]
Wada, K.; Lee, J.Y.; Hung, H.Y.; Shi, Q.; Lin, L.; Zhao, Y.; Goto, M.; Yang, P.C.; Kuo, S.C.; Chen, H.W.; Lee, K.H. Novel curcumin analogs to overcome EGFR-TKI lung adenocarcinoma drug resistance and reduce EGFR-TKI-induced GI adverse effects. Bioorg. Med. Chem., 2015, 23(7), 1507-1514.
[http://dx.doi.org/10.1016/j.bmc.2015.02.003] [PMID: 25753330]
[88]
Lee, J.Y.; Lee, Y.M.; Chang, G.C.; Yu, S.L.; Hsieh, W.Y.; Chen, J.J.; Chen, H.W.; Yang, P.C. Curcumin induces EGFR degradation in lung adenocarcinoma and modulates p38 activation in intestine: The versatile adjuvant for gefitinib therapy. PLoS One, 2011, 6(8), e23756.
[http://dx.doi.org/10.1371/journal.pone.0023756] [PMID: 21858220]
[89]
Li, S.; Liu, Z.; Zhu, F.; Fan, X.; Wu, X.; Zhao, H.; Jiang, L. Curcumin lowers erlotinib resistance in non-small cell lung carcinoma cells with mutated EGF receptor. Oncol. Res., 2013, 21(3), 137-144.
[http://dx.doi.org/10.3727/096504013X13832473330032] [PMID: 24512728]
[90]
Wang, J.; Zhu, M.; Wang, L.; Chen, C.; Song, Y. Amphiregulin potentiates airway inflammation and mucus hypersecretion induced by urban particulate matter via the EGFR-PI3Kα-AKT/ERK pathway. Cell. Signal., 2019, 53, 122-131.
[http://dx.doi.org/10.1016/j.cellsig.2018.10.002] [PMID: 30291869]
[91]
Lin, H.; Zhang, C.; Zhang, H.; Xia, Y.Z.; Zhang, C.Y.; Luo, J.; Yang, L.; Kong, L.Y. Physakengose G induces apoptosis via EGFR/mTOR signaling and inhibits autophagic flux in human osteosarcoma cells. Phytomedicine, 2018, 42, 190-198.
[http://dx.doi.org/10.1016/j.phymed.2018.03.046] [PMID: 29655686]
[92]
Zhang, H.W.; Lv, C.; Zhang, L.J.; Guo, X.; Shen, Y.W.; Nagle, D.G.; Zhou, Y.D.; Liu, S.H.; Zhang, W.D.; Luan, X. Application of omics- and multi-omics-based techniques for natural product target discovery. Biomed. Pharmacother., 2021, 141, 111833.
[http://dx.doi.org/10.1016/j.biopha.2021.111833] [PMID: 34175822]
[93]
Ziemert, N.; Alanjary, M.; Weber, T. The evolution of genome mining in microbes - A review. Nat. Prod. Rep., 2016, 33(8), 988-1005.
[http://dx.doi.org/10.1039/C6NP00025H] [PMID: 27272205]
[94]
Baral, B.; Akhgari, A.; Metsä-Ketelä, M. Activation of microbial secondary metabolic pathways: Avenues and challenges. Synth. Syst. Biotechnol., 2018, 3(3), 163-178.
[http://dx.doi.org/10.1016/j.synbio.2018.09.001] [PMID: 30345402]
[95]
Albarano, L.; Esposito, R.; Ruocco, N.; Costantini, M. Genome mining as new challenge in natural products discovery. Mar. Drugs, 2020, 18(4), 199.
[http://dx.doi.org/10.3390/md18040199] [PMID: 32283638]
[96]
Zwirchmayr, J.; Grienke, U.; Hummelbrunner, S.; Seigner, J.; de Martin, R.; Dirsch, V.M.; Rollinger, J.M. A biochemometric approach for the identification of in vitro anti-inflammatory constituents in masterwort. Biomolecules, 2020, 10(5), 679.
[http://dx.doi.org/10.3390/biom10050679] [PMID: 32354017]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy