Generic placeholder image

Reviews on Recent Clinical Trials

Editor-in-Chief

ISSN (Print): 1574-8871
ISSN (Online): 1876-1038

Case Report

Hepatic Encephalopathy by Manganese Deposition: A Case Report and a Review of Literature

Author(s): Ludovico Abenavoli*, Giulia Fabiano, Anna Caterina Procopio, Isabella Aquila, Rinaldo Pellicano, Stefania Barone and Maurizio Morelli

Volume 17, Issue 3, 2022

Published on: 01 August, 2022

Page: [216 - 219] Pages: 4

DOI: 10.2174/1574887117666220617104539

Price: $65

Abstract

Background: Hepatic encephalopathy is defined as a spectrum of neuropsychiatric disorders in patients with liver dysfunction, usually cirrhosis, after exclusion of brain disease. This study reports the role of manganese in brain alterations and clinical manifestations of hepatic encephalopathy.

Case presentation: Male patient, 67 years old, suffering from alcoholic liver cirrhosis and two previous episodes of hepatic encephalopathy, developed drowsiness, asterixis, amnesia, disorientation in time and space, and psychomotor retardation. Brain MRI without contrast showed initial signs of cerebral atrophy, a hyperintense signal of globi pallidi and bilateral substantia nigra. The hyperintense signal of globi pallidi is the result of manganese deposition in the brain.

Conclusion: The case report presented supports the data reported in the literature, indicating that the increase in plasma manganese levels in subjects with liver dysfunction is correlated with the onset of extrapyramidal symptoms.

Keywords: Hepatic encephalopathy, Manganese, cirrhosis, liver dysfunction, brain, extrapyramidal symptoms, globi pallidi.

Graphical Abstract
[1]
Weissenborn K. Hepatic Encephalopathy: Definition, Clinical Grading and Diagnostic Principles. Drugs 2019; 79(S1) (Suppl. 1): 5-9.
[http://dx.doi.org/10.1007/s40265-018-1018-z] [PMID: 30706420]
[2]
Butterworth RF. Hepatic encephalopathy--a serious complication of alcoholic liver disease. Alcohol Res Health 2003; 27(2): 143-5.
[PMID: 15303624]
[3]
Butterworth RF. Hepatic encephalopathy. Alcohol Res Health 2003; 27(3): 240-6.
[PMID: 15535452]
[4]
Cordoba J. Hepatic Encephalopathy: From the Pathogenesis to the New Treatments. ISRN Hepatol 2014; 2014236268.
[http://dx.doi.org/10.1155/2014/236268] [PMID: 27335836]
[5]
Sofroniew MV, Vinters HV. Astrocytes: Biology and pathology. Acta Neuropathol 2010; 119(1): 7-35.
[http://dx.doi.org/10.1007/s00401-009-0619-8] [PMID: 20012068]
[6]
Jaeger V, DeMorrow S, McMillin M. The Direct Contribution of Astrocytes and Microglia to the Pathogenesis of Hepatic Encephalopathy. J Clin Transl Hepatol 2019; 7(4): 352-61.
[http://dx.doi.org/10.14218/JCTH.2019.00025] [PMID: 31915605]
[7]
Butterworth RF, Spahr L, Fontaine S, Layrargues GP. Manganese toxicity, dopaminergic dysfunction and hepatic encephalopathy. Metab Brain Dis 1995; 10(4): 259-67.
[http://dx.doi.org/10.1007/BF02109357] [PMID: 8847990]
[8]
Rovira A, Alonso J, Cordoba J. MR imaging findings in hepatic encephalopathy. AJNR Am J Neuroradiol 2008; 29: 1612e21.
[http://dx.doi.org/10.3174/ajnr.A1139]
[9]
Kulisevsky J, Pujol J, Balanzó J, et al. Pallidal hyperintensity on magnetic resonance imaging in cirrhotic patients: Clinical correlations. Hepatology 1992; 16(6): 1382-8.
[http://dx.doi.org/10.1002/hep.1840160613] [PMID: 1446893]
[10]
Spahr L, Butterworth RF, Fontaine S, et al. Increased blood manganese in cirrhotic patients: Relationship to pallidal magnetic resonance signal hyperintensity and neurological symptoms. Hepatology 1996; 24(5): 1116-20.
[http://dx.doi.org/10.1002/hep.510240523] [PMID: 8903385]
[11]
McKinney AM, Lohman BD, Sarikaya B, et al. Acute hepatic encephalopathy: Diffusion-weighted and fluid-attenuated inversion recovery findings, and correlation with plasma ammonia level and clinical outcome. AJNR Am J Neuroradiol 2010; 31(8): 1471-9.
[http://dx.doi.org/10.3174/ajnr.A2112] [PMID: 20448015]
[12]
Rao VLR, Giguère JF, Layrargues GP, Butterworth RF. Increased activities of MAOA and MAOB in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Brain Res 1993; 621(2): 349-52.
[http://dx.doi.org/10.1016/0006-8993(93)90126-8] [PMID: 8242348]
[13]
Pomier-Layrargues G, Spahr L, Butterworth RF. Increased manganese concentrations in pallidum of cirrhotic patients. Lancet 1995; 345(8951): 735.
[http://dx.doi.org/10.1016/S0140-6736(95)90909-5] [PMID: 7885158]
[14]
Cordova FM, Aguiar AS Jr, Peres TV, et al. Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox. Arch Toxicol 2013; 87(7): 1231-44.
[http://dx.doi.org/10.1007/s00204-013-1017-5] [PMID: 23385959]
[15]
Marreilha dos Santos AP, Santos D, Au C, Milatovic D, Aschner M, Batoréu MC. Antioxidants prevent the cytotoxicity of manganese in RBE4 cells. Brain Res 2008; 1236: 200-5.
[http://dx.doi.org/10.1016/j.brainres.2008.07.125] [PMID: 18725210]
[16]
Stephenson AP, Schneider JA, Nelson BC, et al. Manganese-induced oxidative DNA damage in neuronal SH-SY5Y cells: Attenuation of thymine base lesions by glutathione and N-acetylcysteine. Toxicol Lett 2013; 218(3): 299-307.
[http://dx.doi.org/10.1016/j.toxlet.2012.12.024] [PMID: 23296100]
[17]
da Silva Santos V, Bisen-Hersh E, Yu Y, et al. Anthocyanin-rich açaí (Euterpe oleracea Mart.) extract attenuates manganese-induced oxidative stress in rat primary astrocyte cultures. J Toxicol Environ Health A 2014; 77(7): 390-404.
[http://dx.doi.org/10.1080/15287394.2014.880392] [PMID: 24617543]
[18]
Hanasaki Y, Ogawa S, Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic Biol Med 1994; 16(6): 845-50.
[http://dx.doi.org/10.1016/0891-5849(94)90202-X] [PMID: 8070690]
[19]
Lee E, Sidoryk-Wegrzynowicz M, Farina M, Rocha JB, Aschner M. Estrogen attenuates manganese-induced glutamate transporter impairment in rat primary astrocytes. Neurotox Res 2013; 23(2): 124-30.
[http://dx.doi.org/10.1007/s12640-012-9347-2] [PMID: 22878846]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy