Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Ring Closure Reactions for the Synthesis of Cyclic Imines: An Analysis from the 12 Principles of Green Chemistry and Circular Chemistry

Author(s): Paola Borrego-Muñoz, Ericsson Coy-Barrera and Diego Quiroga*

Volume 20, Issue 3, 2023

Published on: 19 August, 2022

Page: [285 - 308] Pages: 24

DOI: 10.2174/1570193X19666220510122957

Price: $65

Abstract

Compounds containing a C=N moiety, namely imines, have been widely used for industrial purposes due to their various biological activities. Cyclic imines are an essential class of nitrogen-based heterocycles and valuable scaffolds for designing and obtaining new biologically active compounds. However, the proposal and implementation of synthetic methods for this heterocyclic system are mainly conditioned by different structural and stereoelectronic considerations. Therefore, it can be complex and sometimes limited to a selected group of heterocyclic compounds. The following review paper is structured to search and collect different synthesis methods of cyclic imines and identify the main progress currently achieved. It addresses this topic using structural considerations, physical properties, and reactivity. The synthesis methods described below have implemented strategies based on cyclo-condensation reactions, radical cyclizations, electrocyclic closures, and carbon-carbon coupling by metal-organic catalysis. These methods have contributed significantly to organic chemistry knowledge. In addition, an analysis of such synthesis methods from applying the principles of green and circular chemistry is presented, evaluating the potential applications, limitations, perspectives, and impact of these methods on the environment.

Keywords: Cyclic imines, cyclo-condensation, radical cyclizations, electrocyclic closures, metal-organic catalysis, ring closure reactions.

Graphical Abstract
[1]
Belowich, M.E.; Stoddart, J.F. Dynamic imine chemistry. Chem. Soc. Rev., 2012, 41(6), 2003-2024.
[http://dx.doi.org/10.1039/c2cs15305j] [PMID: 22310886]
[2]
Dai, L-X.; Lin, Y-R.; Hou, X-L.; Zhou, Y-G. Stereoselective reactions with imines. Pure Appl. Chem., 1999, 71, 1033-1040.
[http://dx.doi.org/10.1351/pac199971061033]
[3]
Da Silva, C.M.; Da Silva, D.L.; Modolo, L.V.; Alves, R.B.; De Resende, M.A.; Martins, C.V.B.; De Fátima, Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res., 2011, 2, 1-8.
[http://dx.doi.org/10.1016/j.jare.2010.05.004]
[4]
de Fátima, Â.; Pereira, C.P.; Olímpio, C.R.S.D.G.; de Freitas Oliveira, B.G.; Franco, L.L.; da Silva, P.H.C. Schiff bases and their metal complexes as urease inhibitors - A brief review. J. Adv. Res., 2018, 13, 113-126.
[http://dx.doi.org/10.1016/j.jare.2018.03.007] [PMID: 30094086]
[5]
Brodowska, K. Łodyga-Chruścińska, E. Schiff bases - Interesting range of applications in various fields of science. Chemik, 2014, 68, 129-134.
[6]
Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff bases: a versatile pharmacophore. J. Catal., 2013, 2013, 1-14.
[http://dx.doi.org/10.1155/2013/893512]
[7]
Tidwell, T.T. Hugo (Ugo) Schiff, Schiff bases, and a century of β-lactam synthesis. Angew. Chem. Int. Ed. Engl., 2008, 47(6), 1016-1020.
[http://dx.doi.org/10.1002/anie.200702965] [PMID: 18022986]
[8]
Iwanejko, J. Wojaczyńska, E. Cyclic imines - preparation and application in synthesis. Org. Biomol. Chem., 2018, 16(40), 7296-7314.
[http://dx.doi.org/10.1039/C8OB01874J] [PMID: 30229794]
[9]
Ansari, A.J.; Pathare, R.S.; Kumawat, A.; Maurya, A.K.; Verma, S.; Agnihotri, V.K.; Joshi, R.; Metre, R.K.; Sharon, A.; Pardasani, R.T.; Sawant, D.M. A diversity-oriented synthesis of polyheterocycles: Via the cyclocondensation of azomethine imine. New J. Chem., 2019, 43, 13721-13724.
[http://dx.doi.org/10.1039/C9NJ02874A]
[10]
Sakamoto, M.; Kawasaki, T.; Ishii, K.; Tamura, O. The chemistry of pericyclic reactions and their application to syntheses of heterocyclic compounds. Yakugaku Zasshi, 2003, 123(9), 717-759.
[http://dx.doi.org/10.1248/yakushi.123.717] [PMID: 14513766]
[11]
Saha, D.; Bagchi, S.; Sharma, A. Metal-catalyzed synthesis of cyclic imines: A versatile scaffold in organic synthesis. Chem. Heterocycl. Compd., 2018, 54, 302-313.
[http://dx.doi.org/10.1007/s10593-018-2264-4]
[12]
Płotka-Wasylka, J.; Mohamed, H.M.; Kurowska-Susdorf, A.; Dewani, R.; Fares, M.Y.; Andruch, V. Green analytical chemistry as an integral part of sustainable education development. Curr. Opin. Green Sustain. Chem., 2021, 31, 31.
[http://dx.doi.org/10.1016/j.cogsc.2021.100508]
[13]
Keijer, T.; Bakker, V.; Slootweg, J.C. Circular chemistry to enable a circular economy. Nat. Chem., 2019, 11(3), 190-195.
[http://dx.doi.org/10.1038/s41557-019-0226-9] [PMID: 30792512]
[14]
Abo Dena, A.S. To the memory of Hugo Schiff: Applications of Schiff bases in potentiometric sensors. Russ. J. Appl. Chem., 2014, 87, 383-396.
[http://dx.doi.org/10.1134/S1070427214030227]
[15]
Pleniceanu, M.; Spinu, C.; Isvoranu, M. Spectrophotometric study of the binary system Ni(II)-n-[2-thyenilmethyliden]-aminopropane and the determination of Ni(II). Analytical applications. Rev. Chim., 2007, 57, 646-649.
[16]
Memon, S.; Memon, N.; Mallah, A.; Soomro, R.; Khuhawar, M. Schiff bases as chelating reagents for metal ions analysis. Curr. Anal. Chem., 2014, 10, 393-417.
[http://dx.doi.org/10.2174/157341101003140521113731]
[17]
Lanjwani, S.N.; Zhu, R.; Khuhawar, M.Y.; Ding, Z. High performance liquid chromatographic determination of platinum in blood and urine samples of cancer patients after administration of cisplatin drug using solvent extraction and N,N′-bis(salicylidene)-1,2-propanediamine as complexation reagent. J. Pharm. Biomed. Anal., 2006, 40(4), 833-839.
[http://dx.doi.org/10.1016/j.jpba.2005.07.040] [PMID: 16181764]
[18]
Cozzi, P.G. Metal-Salen Schiff base complexes in catalysis: Practical aspects. Chem. Soc. Rev., 2004, 33(7), 410-421.
[http://dx.doi.org/10.1039/B307853C] [PMID: 15354222]
[19]
Tokay, F. Bağdat, S. Preconcentration of Cu(II), Co(II), and Ni(II) using an optimized enrichment procedure: Useful and alternative methodology for flame atomic absorption spectrometry. Appl. Spectrosc., 2016, 70(3), 543-551.
[http://dx.doi.org/10.1177/0003702815626684] [PMID: 26823544]
[20]
Chandramouli, M.; Nayanbhai, T.B. Bheemachari; Udupi, R.H. Synthesis and biological screening of certain new triazole schiff bases and their derivatives bearing substituted benzothiazole moiety. J. Chem. Pharm. Res., 2012, 4, 1151-1159.
[21]
Pandey, A.; Dewangan, D.; Verma, S.; Mishra, A.; Dubey, R.D. Synthesis of Schiff Bases of 2-amino-5-aryl-1,3,4-thiadiazole and its analgesic, anti-inflammatory and anti-bacterial activity. Int. J. Chemtech Res., 2011, 3, 178-184.
[22]
Sondhi, S.M.; Singh, N.; Kumar, A.; Lozach, O.; Meijer, L. Synthesis, anti-inflammatory, analgesic and kinase (CDK-1, CDK-5 and GSK-3) inhibition activity evaluation of benzimidazole/ benzoxazole derivatives and some Schiff’s bases. Bioorg. Med. Chem., 2006, 14(11), 3758-3765.
[http://dx.doi.org/10.1016/j.bmc.2006.01.054] [PMID: 16480879]
[23]
Chinnasamy, R.P.; Sundararajan, R.; Govindaraj, S. Synthesis, characterization, and analgesic activity of novel schiff base of isatin derivatives. J. Adv. Pharm. Technol. Res., 2010, 1(3), 342-347.
[http://dx.doi.org/10.4103/0110-5558.72428] [PMID: 22247869]
[24]
Mounika, K.; Pragathi, A.; Gyanakumari, C. Synthesis, characterization and biological activity of a schiff base derived from 3-ethoxy salicylaldehyde and 2-amino benzoic acid and its transition metal complexes. J. Sci. Res., 2010, 2
[25]
Ajit Kumar, C.; Pandeya, S.N. Synthesis & anticonvulsant activity (chemo shock) of schiff and mannich bases of isatin derivatives with 2-amino pyridine (mechanism of action). Int. J. Pharm. Tech. Res., 2012, 4, 590-598.
[26]
Aboul-Fadl, T.; Mohammed, F.A-H.; Hassan, E.A-S. Synthesis, antitubercular activity and pharmacokinetic studies of some Schiff bases derived from 1-alkylisatin and isonicotinic acid hydrazide (INH). Arch. Pharm. Res., 2003, 26(10), 778-784.
[http://dx.doi.org/10.1007/BF02980020] [PMID: 14609123]
[27]
Ali, S.M.M.; Azad, M.A.; Jesmin, M.; Ahsan, S.; Rahman, M.M.; Khanam, J.A.; Islam, M.N.; Shahriar, S.M.S. In vivo anticancer activity of vanillin semicarbazone. Asian Pac. J. Trop. Biomed., 2012, 2(6), 438-442.
[http://dx.doi.org/10.1016/S2221-1691(12)60072-0] [PMID: 23569946]
[28]
Miri, R.; Razzaghi-asl, N.; Mohammadi, M.K. QM study and conformational analysis of an isatin Schiff base as a potential cytotoxic agent. J. Mol. Model., 2013, 19(2), 727-735.
[http://dx.doi.org/10.1007/s00894-012-1586-x] [PMID: 23053004]
[29]
Wei, D.; Li, N.; Lu, G.; Yao, K. Synthesis, catalytic and biological activity of novel dinuclear copper complex with Schiff base. Sci. China Ser. B, 2006, 49, 225-229.
[http://dx.doi.org/10.1007/s11426-006-0225-8]
[30]
Avaji, P.G.; Kumar, C.H.; Patil, S.A.; Shivananda, K.N.; Nagaraju, C. Synthesis, spectral characterization, in-vitro microbiological evaluation and cytotoxic activities of novel macrocyclic bis hydrazone. Eur. J. Med. Chem., 2009, 44(9), 3552-3559.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.032] [PMID: 19419802]
[31]
Khan, S.A.; Nami, S.A.A.; Bhat, S.A.; Kareem, A.; Nishat, N. Synthesis, characterization and antimicrobial study of polymeric transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Microb. Pathog., 2017, 110, 414-425.
[http://dx.doi.org/10.1016/j.micpath.2017.07.008] [PMID: 28729223]
[32]
Prakash, C.R.; Raja, S. Synthesis, characterization and in vitro antimicrobial activity of some novel 5-substituted Schiff and Mannich base of isatin derivatives. J. Saudi Chem. Soc., 2013, 17, 337-344.
[http://dx.doi.org/10.1016/j.jscs.2011.10.022]
[33]
Macomber, R. Organic Chemistry; University Science Books, 1996.
[34]
Pati, S. The chemistry of the carbon-nitrogen double bond; John Wiley & Sons Ltd: Great Britain, 1970.
[35]
Volkmann, R. Nucleophilic addition to imines and imine derivates. In: Comprehensive Organic Synthesis; 1991; pp. 356-390.
[36]
Mloston, G.; Obijalska, E.; Linden, A.; Heimgartner, H. Synthesis and structure of nitrones derived from 2-trifluoromethyl bornane 3-imines. J. Fluor. Chem., 2010, 131, 578-583.
[http://dx.doi.org/10.1016/j.jfluchem.2010.01.001]
[37]
Vesely, J.; Rios, R. Enantioselective methodologies using N-carbamoyl-imines. Chem. Soc. Rev., 2014, 43(2), 611-630.
[http://dx.doi.org/10.1039/C3CS60321K] [PMID: 24186354]
[38]
Katritzky, A.; Taylor, R. Comprehensive Organic Functional Group Transformations II, 2004.
[39]
Basa, P.N.; Bhowmick, A.; Horn, L.M.; Sykes, A.G. Zinc(II) mediated imine-enamine tautomerization. Org. Lett., 2012, 14(11), 2698-2701.
[http://dx.doi.org/10.1021/ol300874c] [PMID: 22582888]
[40]
Kostochka, L.; Lezina, V. Imine-Enamine tautomerism of tropanone Schiff’s Bases. Chem. Heterocycl. Compd., 1994, 30, 335-339.
[http://dx.doi.org/10.1007/BF01165701]
[41]
Amar, A.; Meghezzi, H.; Boucekkine, A.; Kaoua, R.; Kolli, B. How to drive imine-enamine tautomerism of pyronic derivatives of biological interest - a theoretical and experimental study of substituent and solvent effects. C. R. Chim., 2010, 13, 553-560.
[http://dx.doi.org/10.1016/j.crci.2009.11.009]
[42]
Keshmiri-Neghab, H.; Goliaei, B. Therapeutic potential of gossypol: An overview. Pharm. Biol., 2014, 52(1), 124-128.
[http://dx.doi.org/10.3109/13880209.2013.832776] [PMID: 24073600]
[43]
Gadelha, I.C.N.; Fonseca, N.B.S.; Oloris, S.C.S.; Melo, M.M.; Soto-Blanco, B. Gossypol toxicity from cottonseed products. Scientific World Journal, 2014, 2014, 231635.
[http://dx.doi.org/10.1155/2014/231635] [PMID: 24895646]
[44]
Tilyabaev, K.Z.; Kamaev, F.G.; Yuldashev, A.M.; Ibragimov, B.T. 1H NMR study on the solvent effect on imine-enamine tautomerism of the condensation product of gossypol with 4-aminoantipyrine. Russ. J. Org. Chem., 2012, 48, 943-947.
[http://dx.doi.org/10.1134/S1070428012070093]
[45]
Dao, V.T.; Gaspard, C.; Mayer, M.; Werner, G.H.; Nguyen, S.N.; Michelot, R.J. Synthesis and cytotoxicity of gossypol related compounds. Eur. J. Med. Chem., 2000, 35(9), 805-813.
[http://dx.doi.org/10.1016/S0223-5234(00)00165-3] [PMID: 11006482]
[46]
Camargo, H.A.; Rosas, C.C.; Henao, J.A.; Castellanos, N.J. Synthesis and X-ray diffraction data of N 1,N 2-di(2-hydroxy)benzylidenbenzene-1,2-di-imine, C20H16N2O2. Powder Diffr., 2018, 33, 66-69.
[http://dx.doi.org/10.1017/S0885715618000027]
[47]
Przybylski, P.; Lewandowska, W.; Brzezinski, B.; Bartl, F. 1H,13C and15N NMR, FT-IR as well as PM5 studies of a new Schiff base of gossypol with 3,6-dioxadecylamine in solution. J. Mol. Struct., 2006, 797, 92-98.
[http://dx.doi.org/10.1016/j.molstruc.2006.03.013]
[48]
Przybylski, P.; Brzezinski, B.; Bartl, F. The schiff base of gossypol with 3,6,9,12,15,18,21,24-octaoxa-pentacosylamine complexes and monovalent cations studied by electrospray ionization-mass spectrometry, (1)H nuclear magnetic resonance, Fourier transform infrared, as well as PM5 semiempirical methods. Biopolymers, 2004, 74(4), 273-286.
[http://dx.doi.org/10.1002/bip.20075] [PMID: 15211497]
[49]
That, Q.T.; Nguyen, K.P.P.; Hansen, P.E. Schiff bases of gossypol: An NMR and DFT study. Magn. Reson. Chem., 2005, 43(4), 302-308.
[http://dx.doi.org/10.1002/mrc.1532] [PMID: 15678567]
[50]
Minkin, V.I.; Tsukanov, A.V.; Dubonosov, A.D.; Bren, V.A. Tautomeric Schiff bases  Iono-, solvato-, thermo- and photochromism. J. Mol. Struct., 2011, 998, 179-191.
[http://dx.doi.org/10.1016/j.molstruc.2011.05.029]
[51]
Gilli, P.; Bertolasi, V.; Pretto, L.; Gilli, G.; Chimica, D. The nature of solid-state N - H--- O / O - H---N tautomeric competition in resonant systems. intramolecular proton transfer in low-barrier hydrogen bonds formed by the --- O=C-C=N-NH--- a ---H -C=C-=N--- ketohydrazone - azoenol system. A variable-temper. JACS, 2002, 124, 13554-13567.
[http://dx.doi.org/10.1021/ja020589x]
[52]
Martínez, R.F.; Ávalos, M.; Babiano, R.; Cintas, P.; Jiménez, J.L.; Light, M.E.; Palacios, J.C. Tautomerism in Schiff bases. The cases of 2-hydroxy-1-naphthaldehyde and 1-hydroxy-2-naphthaldehyde investigated in solution and the solid state. Org. Biomol. Chem., 2011, 9(24), 8268-8275.
[http://dx.doi.org/10.1039/c1ob06073b] [PMID: 22042218]
[53]
Harada, J.; Fujiwara, T.; Ogawa, K. Crucial role of fluorescence in the solid-state thermochromism of salicylideneanilines. J. Am. Chem. Soc., 2007, 129(151), 16216-16221.
[http://dx.doi.org/10.1021/ja076635g]
[54]
Claramunt, R.; Lopez, C.; Santa María, M.; Sanz, D.; Elguero, J. The use of NMR spectroscopy to study tautomerism. Prog. Nucl. Magn. Reson. Spectrosc., 2006, 49, 169-206.
[http://dx.doi.org/10.1016/j.pnmrs.2006.07.001]
[55]
Wu, Y.; Hu, L.; Li, Z.; Deng, L. Catalytic asymmetric umpolung reactions of imines. Nature, 2015, 523(7561), 445-450.
[http://dx.doi.org/10.1038/nature14617] [PMID: 26201597]
[56]
Dalia, S.A.; Afsan, F.; Hossain, S.; Zakaria, C.M.; Ali, M. A short review on chemistry of schiff base metal complexes and their catalytic application., 2018, 6, 2859-2866.
[57]
Layer, R.W. The chemistry of imines. Chem. Rev., 1963, 63, 489-510.
[http://dx.doi.org/10.1021/cr60225a003]
[58]
Chakraborti, A.K.; Bhagat, S.; Rudrawar, S. Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones. Tetrahedron Lett., 2004, 45, 7641-7644.
[http://dx.doi.org/10.1016/j.tetlet.2004.08.097]
[59]
Paquin, L.; Hamelin, J.; Texier-Boullet, F. Efficient microwave-assisted solvent-free synthesis of N-substituted aldimines. Synthesis Stuttg, 2006, 1652-1656.
[60]
Hegarty, A.F.; Rigopoulos, P.; Rowe, J.E. Mechanisms of nucleophilic attack at carbon-nitrogen double bonds. The reaction of benzohydrazonoyl halides with amines. Aust. J. Chem., 1987, 40, 1777-1782.
[http://dx.doi.org/10.1071/CH9871777]
[61]
Wang, H.; Huang, Y.; Dai, X.; Shi, F. N-Monomethylation of amines using paraformaldehyde and H2. Chem. Commun. (Camb.), 2017, 53(40), 5542-5545.
[http://dx.doi.org/10.1039/C7CC02314F] [PMID: 28470246]
[62]
Zeynali, H.; Keypour, H.; Hosseinzadeh, L.; Gable, R.W. The non-templating synthesis of macro-cyclic Schiff base ligands containing pyrrole and homopiperazine and their binuclear nickel(II), cobalt(II) and mononuclear platinum(II) complexes: X-ray single crystal and anticancer studies. J. Mol. Struct., 2021, 1244, 130956.
[http://dx.doi.org/10.1016/j.molstruc.2021.130956]
[63]
Chkirate, K.; Akachar, J.; Hni, B.; Hökelek, T.; Hassane, E.; Talbaoui, A.; Mague, J.T.; Kheira, N.; Ibrahimi, A.; Mokhtar, E. Synthesis, spectroscopic characterization, crystal structure, DFT, ESI-MS studies, molecular docking and in vitro antibacterial activity of 1, 5-benzodiazepin-2-one derivatives. J. Mol. Struct., 2022, 1247, 131188.
[http://dx.doi.org/10.1016/j.molstruc.2021.131188]
[64]
Johnson, J.E.; Morales, N.M.; Gorczyca, A.M.; Dolliver, D.D.; McAllister, M.A. Mechanisms of acid-catalyzed Z/E isomerization of imines. J. Org. Chem., 2001, 66(24), 7979-7985.
[http://dx.doi.org/10.1021/jo010067k] [PMID: 11722194]
[65]
Bond, D. π-Bond energies in protonated schiff bases. J. Am. Chem. Soc., 1991, 113, 385-387.
[http://dx.doi.org/10.1021/ja00001a070]
[66]
Jebli, N.; Arfaoui, Y.; Van Hecke, K.; Cavalier, J.F.; Touil, S. Experimental and computational investigation of Z/E isomerism, X-ray crystal structure and molecular docking study of (2-(hydroxyimino)cyclohexyl)diphenylphosphine sulfide, a potential antibacterial agent. J. Mol. Struct., 2021, 1229.
[http://dx.doi.org/10.1016/j.molstruc.2020.129634]
[67]
Shi, Y.; Xing, J.; Li, J.; Zhu, F.; Fan, X.; Zhang, Y. The alcohol catalytic mechanism for Schiff base 1,3-proton transfer. Comput. Theor. Chem., 2021, 1204, 113419.
[http://dx.doi.org/10.1016/j.comptc.2021.113419]
[68]
Srivastava, P.; Engman, L. A radical cyclization route to cyclic imines. Tetrahedron Lett., 2010, 51, 1149-1151.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.104]
[69]
Guo, H-M.; Minakawa, M.; Ueno, L.; Tanaka, F. Synthesis and evaluation of a cyclic imine derivative conjugated to a fluorescent molecule for labeling of proteins. Bioorg. Med. Chem. Lett., 2009, 19(4), 1210-1213.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.071] [PMID: 19136260]
[70]
El-bayouki, K.A.M. Benzo1,[5]thiazepine: synthesis, reactions, spectroscopy, and applications. Org. Chem. Int., 2013, 2013, 1-71.
[http://dx.doi.org/10.1155/2013/210474]
[71]
De Munck, L.; Vila, C.; Pedro, J.R. Catalytic asymmetric reactions involving the seven-membered cyclic imine moieties present in dibenzo[b,f][1,4]oxazepines. Eur. J. Org. Chem., 2018, 2018, 140-146.
[http://dx.doi.org/10.1002/ejoc.201701279]
[72]
Majid, S.A.; Khanday, W.A.; Tomar, R. Synthesis of 1,5-benzodiazepine and its derivatives by condensation reaction using H-MCM-22 as catalyst. J. Biomed. Biotechnol., 2012, 2012, 510650.
[http://dx.doi.org/10.1155/2012/510650] [PMID: 22570531]
[73]
Šepac, D.; Hameršak, Z. Šunjić V. Aldol derivatives of 5-phenyl-1,4-benzodiazepin-2-on-N4-oxide; intriguing inertness of N-oxides in aldol reactions. Ark. J., 2003, 2003, 8-13.
[74]
Zhang, H.; Cai, L-Y.; Tang, Z.; Fan, X-Z.; Wu, H-H.; Bi, X-F.; Hong-Wu, Z. 1,3-Dipolar [3+3] cycloaddition of 1,4-benzodiazepinone-based nitrones with α-halohydroxamates for diastereoselective synthesis of novel d-edge heterocycle-fused 1,4-benzodiazepinones. Synlett, 2021, 32, 1974-1980.
[http://dx.doi.org/10.1055/a-1642-0598]
[75]
Abdelhamid, I.A. Synthesis of novel spiro cyclic 2-oxindole derivatives of 6-amino-4H-pyridazine via [3+3] atom combination utilizing chitosan as a catalyst. Synlett, 2009, 2009, 625-627.
[http://dx.doi.org/10.1055/s-0028-1087558]
[76]
Mousavi, H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int. J. Biol. Macromol., 2021, 186, 1003-1166.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.123] [PMID: 34174311]
[77]
Min, L.; Yang, W.; Weng, Y.; Zheng, W.; Wang, X.; Hu, Y. A Method for bischler-napieralski-type synthesis of 3,4-dihydroisoquinolines. Org. Lett., 2019, 21(8), 2574-2577.
[http://dx.doi.org/10.1021/acs.orglett.9b00534] [PMID: 30958675]
[78]
Nakamura, I.; Yamamoto, Y. Transition-metal-catalyzed reactions in heterocyclic synthesis. Chem. Rev., 2004, 104(5), 2127-2198.
[http://dx.doi.org/10.1021/cr020095i] [PMID: 15137788]
[79]
Huang, Q.; Larock, R.C. Synthesis of 4-(1-alkenyl)isoquinolines by palladium(II)-catalyzed cyclization/olefination. J. Org. Chem., 2003, 68(3), 980-988.
[http://dx.doi.org/10.1021/jo0261303] [PMID: 12558424]
[80]
Nath, S. Synthesis of Heterocyclic Compounds by the Application of Radical Cyclization., 2018, 8, 660-670.
[81]
Kim, T.; Kim, K. Practical method for synthesis of 2,3-disubstituted indole derivatives promoted by β-(benzotriazol-1-yl)allylic O-stannyl ketyl radicals. Tetrahedron Lett., 2010, 51, 868-871.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.030]
[82]
Zhang, H.; Hay, E.B.; Geib, S.J.; Curran, D.P. Radical cyclizations of cyclic ene sulfonamides occur with β-elimination of sulfonyl radicals to form polycyclic imines. J. Am. Chem. Soc., 2013, 135(44), 16610-16617.
[http://dx.doi.org/10.1021/ja408387d] [PMID: 24111991]
[83]
Zhang, H.; Hay, E.B.; Geib, S.J.; Curran, D.P. Fates of imine intermediates in radical cyclizations of N-sulfonylindoles and ene-sulfonamides. Beilstein J. Org. Chem., 2015, 11, 1649-1655.
[http://dx.doi.org/10.3762/bjoc.11.181] [PMID: 26664585]
[84]
Huang, Q.; Larock, R.C. Synthesis of isoquinolines by palladium-catalyzed cyclization, followed by a Heck reaction. Tetrahedron Lett., 2002, 43, 3557-3560.
[http://dx.doi.org/10.1016/S0040-4039(02)00579-8]
[85]
Singh, M.S.; Chowdhury, S.; Koley, S. Progress in 1,3-dipolar cycloadditions in the recent decade: an update to strategic development towards the arsenal of organic synthesis. Tetrahedron, 2016, 72, 1603-1644.
[http://dx.doi.org/10.1016/j.tet.2016.02.031]
[86]
Peddibhotla, S.; Tepe, J.J. Stereoselective synthesis of highly substituted Delta1-pyrrolines: Exo-selective 1,3-dipolar cycloaddition reactions with azlactones. J. Am. Chem. Soc., 2004, 126(40), 12776-12777.
[http://dx.doi.org/10.1021/ja046149i] [PMID: 15469263]
[87]
Liu, S.; Liebeskind, L.S. A simple, modular synthesis of substituted pyridines. J. Am. Chem. Soc., 2008, 130(22), 6918-6919.
[http://dx.doi.org/10.1021/ja8013743] [PMID: 18465855]
[88]
Plumet, J. 1,3-Dipolar cycloaddition reactions of nitrile oxides under “non-conventional” conditions: green solvents, irradiation, and continuous flow. ChemPlusChem, 2020, 85(10), 2252-2271.
[http://dx.doi.org/10.1002/cplu.202000448] [PMID: 33044044]
[89]
Sharma, P.; Bhat, S.V.; Prabhath, M.R.R.; Molino, A.; Nauha, E.; Wilson, D.J.D.; Moses, J.E. Synthesis of 1,2,4-triazol-3-imines via selective stepwise cycloaddition of nitrile imines with organo-cyanamides. Org. Lett., 2018, 20(14), 4263-4266.
[http://dx.doi.org/10.1021/acs.orglett.8b01673] [PMID: 29952574]
[90]
Reddy, M.K.; Bhajammanavar, V.; Baidya, M. Annulation cascade of sulfamate-derived cyclic imines with glycine aldimino esters: synthesis of 1,3-benzoxazepine scaffolds. Org. Lett., 2021, 23(10), 3868-3872.
[http://dx.doi.org/10.1021/acs.orglett.1c01001] [PMID: 33956452]
[91]
Li, Z.; Xu, N.; Guo, N.; Zhou, Y.; Lin, L.; Feng, X. Asymmetric catalytic synthesis of hexahydropyrrolo-isoquinolines via three-component 1,3-dipolar-cycloaddition. Chemistry, 2021, 27(60), 14841-14845.
[http://dx.doi.org/10.1002/chem.202102476] [PMID: 34398497]
[92]
Rudy, H.K.A.; Mayer, P.; Wanner, K.T. Synthesis of 1,5-ring-fused imidazoles from cyclic imines and TosMIC – identification of in situ generated N-methyleneformamide as a catalyst in the van leusen imidazole synthesis. Eur. J. Org. Chem., 2020, 2020, 1-15.
[http://dx.doi.org/10.1002/ejoc.202000280]
[93]
Badillo, J.J.; Arevalo, G.E.; Fettinger, J.C.; Franz, A.K. Titanium-catalyzed stereoselective synthesis of spirooxindole oxazolines. Org. Lett., 2011, 13(3), 418-421.
[http://dx.doi.org/10.1021/ol1027305] [PMID: 21186788]
[94]
Chiba, S.; Zhang, L.; Lee, J-Y. Copper-catalyzed synthesis of azaspirocyclohexadienones from alpha-azido-N-arylamides under an oxygen atmosphere. J. Am. Chem. Soc., 2010, 132(21), 7266-7267.
[http://dx.doi.org/10.1021/ja1027327] [PMID: 20462196]
[95]
Kondo, T.; Okada, T.; Mitsudo, T.A. Ruthenium-catalyzed intramolecular oxidative amination of aminoalkenes enables rapid synthesis of cyclic imines. J. Am. Chem. Soc., 2002, 124(2), 186-187.
[http://dx.doi.org/10.1021/ja017012k] [PMID: 11782166]
[96]
Wang, J.; Liu, X.; Wu, Z.; Li, F.; Qin, T.; Zhang, S.; Kong, W.; Liu, L. Silver-catalyzed decarboxylative C–H functionalization of cyclic aldimines with aliphatic carboxylic acids. Chin. Chem. Lett., 2021, 32, 2777-2781.
[http://dx.doi.org/10.1016/j.cclet.2021.03.011]
[97]
Zhong, D.; Wu, D.; Zhang, Y.; Lu, Z.; Usman, M.; Liu, W.; Lu, X.; Liu, W.B. Synthesis of sultams and cyclic N-sulfonyl ketimines via iron-catalyzed intramolecular aliphatic C-H amidation. Org. Lett., 2019, 21(15), 5808-5812.
[http://dx.doi.org/10.1021/acs.orglett.9b01732] [PMID: 31298868]
[98]
Li, R-L.; Fang, Q-Y.; Li, M-Y.; Wang, X-S.; Zhao, L-M. A rearrangement of saccharin-derived cyclic ketimines with 3-chlorooxindoles leading to spiro-1,3-benzothiazine oxindoles. Chem. Commun. (Camb.), 2021, 57(86), 11322-11325.
[http://dx.doi.org/10.1039/D1CC04179G] [PMID: 34636375]
[99]
Poliakoff, M.; Licence, P.; George, M.W. UN sustainable development goals: How can sustainable/green chemistry contribute? By doing things differently. Curr. Opin. Green Sustain. Chem., 2018, 13, 146-149.
[http://dx.doi.org/10.1016/j.cogsc.2018.04.011]
[100]
Lenoir, D.; Schramm, K.W.; Lalah, J.O. Green chemistry: some important forerunners and current issues. Sustain. Chem. Pharm., 2020, 18, 100313.
[http://dx.doi.org/10.1016/j.scp.2020.100313]
[101]
Anastas, P.T.; Warner, J.C. Green chemistry: Theory and Praxis; Oxford University Press: New York, 1998.
[102]
Anastas, P.T.; Williamson, T.C. Green Chemistry, Frontiers in Benign Chemical Syntheses and Processes; Oxford University Press: Oxford, 1998.
[103]
Silvestri, C.; Silvestri, L.; Forcina, A.; Di Bona, G.; Falcone, D. Green chemistry contribution towards more equitable global sustainability and greater circular economy: a systematic literature review. J. Clean. Prod., 2021, 294, 126137.
[http://dx.doi.org/10.1016/j.jclepro.2021.126137]
[104]
Kümmerer, K. Sustainable Chemistry: a Future Guiding Principle. Angew. Chem. Int. Ed. Engl., 2017, 56(52), 16420-16421.
[http://dx.doi.org/10.1002/anie.201709949] [PMID: 29111593]
[105]
Kümmerer, K.; Clark, J.H.; Zuin, V.G. Rethinking chemistry for a circular economy. Science (80-. )., 2020, 367, 369-370.
[106]
Clark, J.H.; Farmer, T.J.; Herrero-Davila, L.; Sherwood, J. Circular economy design considerations for research and process development in the chemical sciences. Green Chem., 2016, 18, 3914-3934.
[http://dx.doi.org/10.1039/C6GC00501B]
[107]
Mohan, S.V.; Katakojwala, R. The circular chemistry conceptual framework: a way forward to sustainability in industry 4.0. Curr. Opin. Green Sustain. Chem., 2021, 28, 100434.
[http://dx.doi.org/10.1016/j.cogsc.2020.100434]
[108]
Chatel, G. Chemists around the World, take your part in the circular economy! Chemistry, 2020, 26(44), 9665-9673.
[http://dx.doi.org/10.1002/chem.202002327] [PMID: 32608524]
[109]
Whitesides, G.M. Reinventing chemistry. Angew. Chem. Int. Ed. Engl., 2015, 54(11), 3196-3209.
[http://dx.doi.org/10.1002/anie.201410884] [PMID: 25682927]
[110]
UN. Transforming our world: The 2030 agenda for sustainable development. Available from: https://sdgs.un.org/2030agenda

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy