Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Mini-Review Article

Sagacious Perceptive on Marburg Virus Foregrounding the Recent Findings: A Critical Review

Author(s): Bilha Baby, Rajalakshmi Rajendran, Manju M. Nair and Roshni P. Raghavan*

Volume 22, Issue 8, 2022

Published on: 20 August, 2022

Article ID: e100522204513 Pages: 6

DOI: 10.2174/1871526522666220510103618

Price: $65

Abstract

Infectious diseases are defined as a group of diseases caused by any infecting microorganism which are highly potent to severely affect human life. The end can vary from critical infection to mortality. Most infectious diseases are reported with a rapid rate of transmission. Marburg virus disease is a kind of infectious viral disease usually manifested as hemorrhagic fever. The latest reported case of Marburg virus disease confirmed by WHO was on 6th August 2021 in the south-western province of Guinea. Marburg virus disease exhibit similar manifestations to that of infection with the Ebola virus. Though not widely spread to emerge as a pandemic, Marburg virus disease remains a serious threat to human life. This review emphasizes the novel current facts determined through various studies related to Marburg virus infection. From these promising theories, the review tries to put forward the importance of various study conclusions, which are likely to have a major impact on the health sector in the near future.

Keywords: Marburg virus, pathogenesis, manifestations, vaccine, treatment, clinical trials, RNA virus.

Graphical Abstract
[1]
Rugarabamu S, Mwanyika GO, Rumisha SF, et al. Seroprevalence and associated risk factors of selected zoonotic viral hemorrhagic fevers in Tanzania. Int J Infect Dis 2021; 109: 174-81.
[http://dx.doi.org/10.1016/j.ijid.2021.07.006] [PMID: 34242761]
[2]
Al-Halhouli A, Albagdady A, Alawadi J, Abeeleh MA. Monitoring symptoms of infectious diseases: Perspectives for printed wearable sensors. Micromachines (Basel) 2021; 12(6): 620.
[http://dx.doi.org/10.3390/mi12060620] [PMID: 34072174]
[3]
McEntire CRS, Song KW, McInnis RP, et al. Neurologic manifestations of the world health organization’s list of pandemic and epidemic diseases. Front Neurol 2021; 12: 634827.
[http://dx.doi.org/10.3389/fneur.2021.634827]
[4]
Cooper TK, Sword J, Johnson JC, et al. New insights into Marburg virus disease pathogenesis in the rhesus macaque model. J Infect Dis 2018; 218 (Suppl. 5): S423-33.
[http://dx.doi.org/10.1093/infdis/jiy367] [PMID: 30053050]
[5]
Baby B, Devan AR, Nair B, Nath LR. The impetus of COVID -19 in multiple organ affliction apart from respiratory infection: Pathogenesis, diagnostic measures and current treatment strategy. Infect Disord Drug Targets 2021; 21(4): 514-26.
[http://dx.doi.org/10.2174/1871526520999200905115050] [PMID: 32888278]
[6]
Niemuth NA, Fallacara D, Triplett CA, et al. Natural history of disease in cynomolgus monkeys exposed to Ebola virus Kikwit strain demonstrates the reliability of this non-human primate model for Ebola virus disease. PLoS One 2021; 16(7): e0252874.
[http://dx.doi.org/10.1371/journal.pone.0252874] [PMID: 34214118]
[7]
Hensley LE, Alves DA, Geisbert JB, et al. Pathogenesis of Marburg hemorrhagic fever in cynomolgus macaques. J Infect Dis 2011; 204 (Suppl. 3): S1021-31.
[http://dx.doi.org/10.1093/infdis/jir339] [PMID: 21987738]
[8]
Nakayama E, Saijo M. Animal models for Ebola and Marburg virus infections. Front Microbiol 2013; 4: 267.
[http://dx.doi.org/10.3389/fmicb.2013.00267] [PMID: 24046765]
[9]
Shifflett K, Marzi A. Marburg virus pathogenesis - differences and similarities in humans and animal models. Virol J 2019; 16(1): 165.
[http://dx.doi.org/10.1186/s12985-019-1272-z] [PMID: 31888676]
[10]
Muñoz-Fontela C, McElroy AK. Ebola virus disease in humans: Pathophysiology and immunity. Curr Top Microbiol Immunol 2017; 411: 141-69.
[http://dx.doi.org/10.1007/82_2017_11] [PMID: 28653186]
[11]
Brainard J, Hooper L, Pond K, Edmunds K, Hunter PR. Risk factors for transmission of Ebola or Marburg virus disease: A systematic review and meta-analysis. Int J Epidemiol 2016; 45(1): 102-16.
[http://dx.doi.org/10.1093/ije/dyv307] [PMID: 26589246]
[12]
Schuh AJ, Amman BR, Jones MEB, et al. Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats. Nat Commun 2017; 8(1): 14446.
[http://dx.doi.org/10.1038/ncomms14446] [PMID: 28194016]
[13]
Knust B, Schafer IJ, Wamala J, et al. Multidistrict outbreak of Marburg virus disease-Uganda, 2012. J Infect Dis 2015; 212 (Suppl. 2): S119-28.
[http://dx.doi.org/10.1093/infdis/jiv351] [PMID: 26209681]
[14]
Kortepeter MG, Dierberg K, Shenoy ES, Cieslak TJ. Marburg virus disease: A summary for clinicians. Int J Infect Dis 2020; 99: 233-42.
[http://dx.doi.org/10.1016/j.ijid.2020.07.042] [PMID: 32758690]
[15]
Ligon BL. Outbreak of Marburg hemorrhagic fever in Angola: A review of the history of the disease and its biological aspects. Semin Pediatr Infect Dis 2005; 16(3): 219-24.
[http://dx.doi.org/10.1053/j.spid.2005.05.001] [PMID: 16044395]
[16]
Colebunders R, Tshomba A, Van Kerkhove MD, et al. Marburg hemorrhagic fever in Durba and Watsa, Democratic republic of the Congo: Clinical documentation, features of illness, and treatment. J Infect Dis 2007; 196(s2) (Suppl. 2): S148-53.
[http://dx.doi.org/10.1086/520543] [PMID: 17940943]
[17]
Raabea VN, Borcherta M. Infection control during filoviral hemorrhagic Fever outbreaks. J Glob Infect Dis 2012; 4(1): 69-74.
[http://dx.doi.org/10.4103/0974-777X.93765] [PMID: 22529631]
[18]
Grolla A, Lucht A, Dick D, Strong JE, Feldmann H. Laboratory diagnosis of Ebola and Marburg hemorrhagic fever. Bull Soc Pathol Exot 2005; 98(3): 205-9.
[PMID: 16267962]
[19]
Saijo M, Niikura M, Ikegami T, Kurane I, Kurata T, Morikawa S. Laboratory diagnostic systems for Ebola and Marburg hemorrhagic fevers developed with recombinant proteins. Clin Vaccine Immunol 2006; 13(4): 444-51.
[http://dx.doi.org/10.1128/CVI.13.4.444-451.2006] [PMID: 16603611]
[20]
Saijo M, Niikura M, Maeda A, et al. Characterization of monoclonal antibodies to Marburg virus nucleoprotein (NP) that can be used for NP-capture enzyme-linked immunosorbent assay. J Med Virol 2005; 76(1): 111-8.
[http://dx.doi.org/10.1002/jmv.20332] [PMID: 15778962]
[21]
Kurosaki Y, Grolla A, Fukuma A, Feldmann H, Yasuda J. Development and evaluation of a simple assay for Marburg virus detection using a reverse transcription-loop-mediated isothermal amplification method. J Clin Microbiol 2010; 48(7): 2330-6.
[http://dx.doi.org/10.1128/JCM.01224-09] [PMID: 20421440]
[22]
Geisbert TW, Feldmann H. Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections. J Infect Dis 2011; 204 (Suppl. 3): S1075-81.
[http://dx.doi.org/10.1093/infdis/jir349] [PMID: 21987744]
[23]
Brauburger K, Hume AJ, Mühlberger E, Olejnik J. Forty-five years of Marburg virus research. Viruses 2012; 4(10): 1878-927.
[http://dx.doi.org/10.3390/v4101878] [PMID: 23202446]
[24]
Hevey M, Negley D, VanderZanden L, et al. Marburg virus vaccines: Comparing classical and new approaches. Vaccine 2001; 20(3-4): 586-93.
[http://dx.doi.org/10.1016/S0264-410X(01)00353-X] [PMID: 11672925]
[25]
cAd3-Marburg Vaccine in Healthy Adults. ClinicalTrialsgov Identifier:NCT03475056 Available at: https://clinicaltrials.gov/ct2/show/NCT03475056?cond=NCT03475056&draw=2&rank=1
[26]
Evaluating an Ebola and a Marburg Vaccine in Uganda ClinicalTrialsgov Identifier:NCT00997607 Available at: https://clinicaltrials.gov/ct2/show/NCT00997607?cond=NCT00997607&draw=2&rank=1
[27]
A Safety Trial to Test MVA-BN(R)-Filo and Ad26.ZEBOV Vaccines in Healthy Volunteers. ClinicalTrialsgov Identifier:NCT02891980 Available at: https://www.clinicaltrials.gov/ct2/show/NCT02891980?cond=NCT02891980&draw=2&rank=1
[28]
Ebola and Marburg Virus Vaccines. ClinicalTrialsgov Identifier:NCT00605514 Available at: https://www.clinicaltrials.gov/ct2/show/NCT00605514?cond=NCT00605514&draw=2&rank=1
[29]
Suschak JJ, Schmaljohn CS. Vaccines against Ebola virus and Marburg virus: Recent advances and promising candidates. Hum Vaccin Immunother 2019; 15(10): 2359-77.
[http://dx.doi.org/10.1080/21645515.2019.1651140] [PMID: 31589088]
[30]
Warren TK, Wells J, Panchal RG, et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature 2014; 508(7496): 402-5.
[http://dx.doi.org/10.1038/nature13027] [PMID: 24590073]
[31]
Julander JG, Demarest JF, Taylor R, et al. An update on the progress of galidesivir (BCX4430), a broad-spectrum antiviral. Antiviral Res 2021; 195: 105180.
[http://dx.doi.org/10.1016/j.antiviral.2021.105180] [PMID: 34551346]
[32]
Cross RW, Bornholdt ZA, Prasad AN, et al. Combination therapy protects macaques against advanced Marburg virus disease. Nat Commun 2021; 12(1): 1891.
[http://dx.doi.org/10.1038/s41467-021-22132-0] [PMID: 33767178]
[33]
Mantlo EK, Paessler S, Seregin A, Mitchell A. Luminore coppertouch surface coating effectively inactivates SARS-CoV-2, Ebola virus, and Marburg virus in vitro. Antimicrob Agents Chemother 2021; 65(7): e0139020.
[http://dx.doi.org/10.1128/AAC.01390-20] [PMID: 33903111]
[34]
Warnes SL, Highmore CJ, Keevil CW. Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: Implications for public health. MBio 2012; 3(6): e00489-12.
[http://dx.doi.org/10.1128/mBio.00489-12] [PMID: 23188508]
[35]
Pastor N, Weinstein H, Jamison E, Brenowitz M. A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. J Mol Biol 2000; 304(1): 55-68.
[http://dx.doi.org/10.1006/jmbi.2000.4173] [PMID: 11071810]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy