Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Research Article

Fabrication of Metal Sulfides/Graphene Nanocomposites for the Applications in Supercapacitors. II: Ni-Mn-S/Mn-Cu-O/Graphene

Author(s): Yueqiu Chen, Kundrakudi P. Annamalai, Tianlu Chen, Xuyi Chen and Yousheng Tao*

Volume 15, Issue 2, 2022

Published on: 28 June, 2022

Page: [103 - 110] Pages: 8

DOI: 10.2174/2405520415666220425110022

Price: $65

Abstract

Background: Excessive use of fossil energy has exacerbated global warming, and the goal of carbon neutralization has been put on the agenda. In order to make full use of renewable energy and reduce greenhouse gas emissions, it is urgent to develop environment-friendly energy storage devices. We previously reported metal sulfides/ graphene nanocomposites for the applications in supercapacitors (I. NiS/graphene). Recent work was presented as the paper in the series (II. Ni-Mn-S/Mn-Cu-O/graphene).

Objective: To synthesize graphene-supported multi-metal sulfides for electrochemical capacitance storage.

Methods: The materials were prepared with a two-step hydrothermal method. Samples were characterized by field emission scanning electron microscopy, X-ray powder diffraction, and electrochemical measurements.

Results: The as-fabricated electrode exhibited a specific capacitance of 566 F g–1 at the current density of 1 A g–1 and a rate of 68% at 10 A g–1. The materials retained 75.8% of the initial capacitance after 1000 charge-discharge cycles at 5 A g–1. The results suggest optimum Ni-Mn-S/Mn-Cu-O/graphene composites for supercapacitor applications.

Conclusion: The Ni-Mn-S/Mn-Cu-O/graphene composites with nanosheet structures were prepared with a two-step hydrothermal method. The materials showed enhanced electrochemical capacitance performances superior to the individual components.

Keywords: Electrode, graphene, hydrothermal synthesis, metal sulfides, nanocomposite, supercapacitor.

Next »
Graphical Abstract
[1]
Liu L, Annamalai KP, Tao Y. Fabrication of metal sulfides/graphene nanocomposites for the applications in superca-pacitors. Part I: NiS/graphene. Recent Innov Chem Eng 2016; 9: 43-8.
[http://dx.doi.org/10.2174/2405520408666160628094856]
[2]
Kumar A, Bano S, Govind B, Bhardwaj A, Bhatt K, Misra DK. A review on fundamentals, design and optimization to high ZT of thermoelectric materials for application to thermoelectric technology. J Electron Mater 2021; 50: 6037-59.
[http://dx.doi.org/10.1007/s11664-021-09153-7]
[3]
Abdessameud S, Medraj M. Understanding the hydrogen storage behavior of promising AL-Mg-Na compositions using thermodynamic modeling. Mater Renew Sustain 2016; p. 5.
[4]
Kumar A, Bano S, Govind B, Bhardwaj A, Singh VN. Enhanced thermoelectric performance of n-type Zr0.66Hf0.34Ni1+xSn Heusler nanocomposites. J Alloys Compd 2022; 900: 163454.
[http://dx.doi.org/10.1016/j.jallcom.2021.163454]
[5]
Richhariya G, Kumar A, Tekasakul P, Gupta B. Natural dyes for dye sensitized solar cell: A review. Renew Sustain Energy Rev 2017; 69: 705-18.
[http://dx.doi.org/10.1016/j.rser.2016.11.198]
[6]
Liu L, Wang J, Wang F, Yang X. The impact of the planting of forest biomass energy plants under the embedded inter-net of things technology on the biodiversity of the local environmental ecology. Environ Technol Innov 2021; 24: 101894.
[http://dx.doi.org/10.1016/j.eti.2021.101894]
[7]
Tarhan C, Çil MA. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. J Energy Storage 2021; 40: 102676.
[http://dx.doi.org/10.1016/j.est.2021.102676]
[8]
Olabi AG, Bahri AS, Abdelghafar AA, et al. Large-vscale hydrogen production and storage technologies: Current status and future directions. Int J Hydrogen Energy 2021; 46: 23498-528.
[http://dx.doi.org/10.1016/j.ijhydene.2020.10.110]
[9]
Xu X, Xiao L, Wu Z, et al. Harvesting vibration energy to piezo-catalytically generate hydrogen through Bi2WO6 laye-red-perovskite. Nano Energy 2020; 78: 105351.
[http://dx.doi.org/10.1016/j.nanoen.2020.105351]
[10]
Liu L, Wang Z, Wang Y, et al. Optimizing wind/solar combinations at finer scales to mitigate renewable energy variabili-ty in China. Renew Sustain Energy Rev 2020; 132: 110151.
[http://dx.doi.org/10.1016/j.rser.2020.110151]
[11]
Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater 2008; 7(11): 845-54.
[http://dx.doi.org/10.1038/nmat2297] [PMID: 18956000]
[12]
Simon P, Gogotsi Y. Perspectives for electrochemical capacitors and related devices. Nat Mater 2020; 19(11): 1151-63.
[http://dx.doi.org/10.1038/s41563-020-0747-z] [PMID: 32747700]
[13]
Choudhary N, Li C, Moore J, et al. Asymmetric supercapacitor electrodes and devices. Adv Mater 2017; 29(21): 1605336.
[http://dx.doi.org/10.1002/adma.201605336] [PMID: 28244158]
[14]
Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J. Battery-Supercapacitor hybrid devices: Recent progress and future prospects. Adv Sci (Weinh) 2017; 4(7): 1600539.
[http://dx.doi.org/10.1002/advs.201600539] [PMID: 28725528]
[15]
Chen GZ. Supercapacitor and supercapattery as emerging electrochemical energy stores. Int Mater Rev 2017; 62: 173-202.
[http://dx.doi.org/10.1080/09506608.2016.1240914]
[16]
Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S. Carbon materials for chemical capacitive energy storage. Adv Mater 2011; 23(42): 4828-50.
[http://dx.doi.org/10.1002/adma.201100984] [PMID: 21953940]
[17]
Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 2014; 7: 1597-614.
[http://dx.doi.org/10.1039/c3ee44164d]
[18]
Snook GA, Kao P, Best AS. Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 2011; 196: 1-12.
[http://dx.doi.org/10.1016/j.jpowsour.2010.06.084]
[19]
Yu X, Yu L, Lou XWD. Metal sulfide hollow nanostructures for electrochemical energy storage. Adv Energy Mater 2016; 6: 1501333.
[http://dx.doi.org/10.1002/aenm.201501333]
[20]
Ling Z, Ren CE, Zhao MQ, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci USA 2014; 111(47): 16676-81.
[http://dx.doi.org/10.1073/pnas.1414215111] [PMID: 25389310]
[21]
Cao X, Tan C, Sindoro M, Zhang H. Hybrid micro-/nano-structures derived from metal-organic frameworks: prepara-tion and applications in energy storage and conversion. Chem Soc Rev 2017; 46(10): 2660-77.
[http://dx.doi.org/10.1039/C6CS00426A] [PMID: 28418059]
[22]
Halder A, Ghosh M, Khayum MA, et al. Interlayer Hydrogen-Bonded covalent organic frameworks as High-Performance supercapacitors. J Am Chem Soc 2018; 140(35): 10941-5.
[http://dx.doi.org/10.1021/jacs.8b06460] [PMID: 30132332]
[23]
Xia C, Li P, Gandi AN, Schwingenschlögl U, Alshareef HN. Is NiCo2S4 really a semiconductor? Chem Mater 2015; 27: 6482-5.
[http://dx.doi.org/10.1021/acs.chemmater.5b01843]
[24]
Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D. Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 2013; 5(19): 8879-83.
[http://dx.doi.org/10.1039/c3nr02958a] [PMID: 23903234]
[25]
Moosavifard SE, Fani S, Rahmanian M. Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors. Chem Commun (Camb) 2016; 52(24): 4517-20.
[http://dx.doi.org/10.1039/C6CC00215C] [PMID: 26935179]
[26]
Li S, Huang W, Yang Y, et al. Hierarchical layer-by-layer porous FeCo2S4@Ni(OH)2 arrays for all-solid-state asymme-tric supercapacitors. J Mater Chem A Mater Energy Sustain 2018; 6: 20480-90.
[http://dx.doi.org/10.1039/C8TA07598K]
[27]
Balamurugan J, Li C, Aravindan V, Kim NH, Lee JH. Hierarchical Ni-Mo-S and Ni-Fe-S nanosheets with ultrahigh energy density for flexible all Solid-State supercapacitors. Adv Funct Mater 2018; 28: 1803287.
[http://dx.doi.org/10.1002/adfm.201803287]
[28]
Li C, Balamurugan J, Kim NH, Lee JH. Hierarchical Zn-Co-S nanowires as advanced electrodes for all solid state asymmetric supercapacitors. Adv Energy Mater 2018; 8: 1702014.
[http://dx.doi.org/10.1002/aenm.201702014]
[29]
Zhao J, Hou S, Bai Y, et al. Multilayer dodecahedrons Zn-Co sulfide for supercapacitors. Electrochim Acta 2020; 354.
[30]
Xun X, Liu H, Su Y, et al. One-pot synthesis Ni-Cu sulfide on Ni foam with novel three-dimensional prisms/spheres hie-rarchical structure for high-performance supercapacitors. J Solid State Chem 2019; 275: 95-102.
[http://dx.doi.org/10.1016/j.jssc.2019.04.012]
[31]
Wei C, Chen Q, Cheng C, Liu R, Zhang Q, Zhang L. Mesoporous nickel cobalt manganese sulfide yolk-shell hollow spheres for high-performance electrochemical energy storage. Inorg Chem Front 2019; 6: 1851-60.
[http://dx.doi.org/10.1039/C9QI00173E]
[32]
Cao J, Hu Y, Zhu Y, et al. Synthesis of mesoporous nickel-cobalt-manganese sulfides as electroactive materials for hybrid supercapacitors. Chem Eng J 2021; 405: 126928.
[http://dx.doi.org/10.1016/j.cej.2020.126928]
[33]
Zhu Y, Murali S, Stoller MD, et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011; 332(6037): 1537-41.
[http://dx.doi.org/10.1126/science.1200770] [PMID: 21566159]
[34]
Bonaccorso F, Colombo L, Yu G, et al. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015; 347(6217): 1246501.
[http://dx.doi.org/10.1126/science.1246501] [PMID: 25554791]
[35]
Pandolfo AG, Hollenkamp AF. Carbon properties and their role in supercapacitors. J Power Sources 2006; 157: 11-27.
[http://dx.doi.org/10.1016/j.jpowsour.2006.02.065]
[36]
Liu L, Annamalai KP, Tao Y. A hierarchically porous CuCo2S4/graphene composite as an electrode material for super-capacitors. N Carbon Mater 2016; 31: 336-42.
[http://dx.doi.org/10.1016/S1872-5805(16)60017-3]
[37]
Annamalai KP, Liu L, Tao Y. Highly exposed nickel cobalt sulfide-rGO nanoporous structures: An advanced energy-storage electrode material. J Mater Chem A Mater Energy Sustain 2017; 5: 9991-7.
[http://dx.doi.org/10.1039/C7TA01735A]
[38]
Guo D, Zhang P, Zhang H, et al. NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapa-citors. J Mater Chem A Mater Energy Sustain 2013; 1: 9024.
[http://dx.doi.org/10.1039/c3ta11487b]
[39]
Huang X, Zhang Z, Li H, Zhao Y, Wang H, Ma T. Novel fabrication of Ni3S2/MnS composite as high performance su-percapacitor electrode. J Alloys Compd 2017; 722: 662-8.
[http://dx.doi.org/10.1016/j.jallcom.2017.06.166]
[40]
Du D, Lan R, Xu W, Beanland R, Wang H, Tao S. Preparation of a hybrid Cu2O/CuMoO4 nanosheet electrode for high-performance asymmetric supercapacitors. J Mater Chem A Mater Energy Sustain 2016; 4: 17749-56.
[http://dx.doi.org/10.1039/C6TA08670E]
[41]
Du D, Lan R, Humphreys J, Amari H, Tao S. Preparation of nanoporous nickele-copper sulfide on carbon cloth for high-performance hybrid supercapacitors. Electrochim Acta 2018; 273: 170-80.
[http://dx.doi.org/10.1016/j.electacta.2018.04.041]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy