Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Cutting-edge Nanotechnological Approaches for Lung Cancer Therapy

Author(s): Amaiyya Agrawal and Sankha Bhattacharya*

Volume 14, Issue 3, 2022

Published on: 20 August, 2022

Page: [171 - 187] Pages: 17

DOI: 10.2174/2589977514666220418085658

Price: $65

Abstract

Lung cancer is the second leading cancer with a high rate of mortality. It can be treated using different intervention techniques such as chemotherapy, radiation therapy, surgical removal, and photodynamic therapy. All of these interventions lack specificity, implying that it harms the normal cells adjacent to the infected ones. Nanotechnology provides a promising solution that increases the bioavailability of anticancer drugs at the tumor site with reduced toxicity and improved therapeutic efficacy. Nanotechnology also improves the way lung cancer is diagnosed and treated. Various nanocarriers like liposomes, polymeric nanoparticles, magnetic nanoparticles, and different theranostic approaches are already approved for medical use, while various are under clinical and preclinical stages. This review article covers the details about lung cancer, types of overexpressed receptors, and cutting-edge nanocarriers used for treating lung cancer at its specific target.

Keywords: Lung cancer, small-cell lung cancer, squamous cell carcinoma, overexpressed receptors, nanotechnology, videoassisted thoracoscopic surgery.

Graphical Abstract
[1]
Aung, H.; Sivakumar, A.; Gholami, S.; Venkateswaran, S.P.; Gorain, B.; Shadab, M. Chapter 1-An Overview of the Anatomy and Physiology of the Lung. In: Nanote-chnology-Based Targeted Drug Delivery Systems for Lung Cancer; , 2019; pp. 1-20.
[http://dx.doi.org/10.1016/B978-0-12-815720-6.00001-0]
[2]
Bakhshinyan, D. Introduction to Cancer Stem Cells: Past, Present, and Future. In: Cancer Stem Cells. Methods in Molecular Biology; Papaccio, G.; Desiderio, V., Eds.; New York, NY: Humana Press, 2018; Vol. 1692, .
[http://dx.doi.org/10.1007/978-1-4939-7401-6_1.]
[3]
Mohan, A.; Garg, A.; Gupta, A. Clinical profile of lung cancer in North India: A 10-year analysis of 1862 patients from a tertiary care center. Lung India, 2020, 37(3), 190-197.
[http://dx.doi.org/10.4103/lungindia.lungindia_333_19] [PMID: 32367839]
[4]
Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global epidemiology of lung cancer. Ann. Glob. Health, 2019, 85(1), 8.
[http://dx.doi.org/10.5334/aogh.2419] [PMID: 30741509]
[5]
Saadat, M.; Manshadi, M.K.D.; Mohammadi, M. Magnetic particle targeting for diagnosis and therapy of lung cancers. J. Control. Release, 2020, 328, 776-791.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.017] [PMID: 32920079]
[6]
Gillessen, S; Attard, G; Beer, TM Management of patients with advanced prostate cancer: The report of the advanced prostate cancer consensus conference APCCC 2017. Eur Urol., 2018 Feb;73(2), 178-211. Epub 2017 Jun 24.
[http://dx.doi.org/10.1016/j.eururo.2017.06.002] [PMID: 28655541]
[7]
Aminu, N.; Bello, I.; Umar, N.M.; Tanko, N.; Aminu, A.; Mumuni, M.A. The influence of nanoparticulate drug delivery systems in drug therapy. J. Drug Deliv. Sci. Technol., 2020, 60, 101961.
[http://dx.doi.org/10.1016/j.jddst.2020.101961]
[8]
Tran, S.; DeGiovanni, P-J.; Piel, B.; Rai, P. Cancer nanomedicine: A review of recent success in drug delivery. Clin. Transl. Med., 2017, 6(1), 44.
[http://dx.doi.org/10.1186/s40169-017-0175-0] [PMID: 29230567]
[9]
Singh, A.P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther., 2019, 4(1), 33.
[http://dx.doi.org/10.1038/s41392-019-0068-3] [PMID: 31637012]
[10]
Mao, Y.; Zou, C.; Jiang, Y.; Fu, D. Erythrocyte-derived drug delivery systems in cancer therapy. Chin. Chem. Lett., 2020.
[11]
Gomes, F.; Tay, R.; Chiramel, J.; Califano, R. The role of targeted agents and immunotherapy in older patients with non-small cell lung cancer. Drugs Aging, 2018, 35(9), 819-834.
[http://dx.doi.org/10.1007/s40266-018-0573-z] [PMID: 30105645]
[12]
Araujo, L.H.; Horn, L.; Merritt, R.E.; Shilo, K.; Xu-Welliver, M.; Carbone, D.P. Cancer of the lung: Non–small cell lung cancer and small cell lung cancer. Abeloff’s Clinical Oncology; Elsevier, 2020, pp. 1108-1158.
[13]
Volpi, S.; Ali, J.M.; Tasker, A.; Peryt, A.; Aresu, G.; Coonar, A.S. The role of positron emission tomography in the diagnosis, staging and response assessment of non-small cell lung cancer. Ann. Transl. Med., 2018, 6(5), 95.
[http://dx.doi.org/10.21037/atm.2018.01.25] [PMID: 29666818]
[14]
Wang, L.; Zhan, C.; Gu, J. Role of skip mediastinal lymph node metastasis for patients with resectable non–small-cell lung cancer: A pro-pensity score matching analysis. Clin. Lung Cancer, 2019, 20(3), e346-e355.
[http://dx.doi.org/10.1016/j.cllc.2018.12.007] [PMID: 30665872]
[15]
Nagasaka, M.; Gadgeel, S.M. Role of chemotherapy and targeted therapy in early-stage non-small cell lung cancer. Expert Rev. Anticancer Ther., 2018, 18(1), 63-70.
[http://dx.doi.org/10.1080/14737140.2018.1409624] [PMID: 29168933]
[16]
Du, X.; Wang, T.; Wang, Z. 5-HT7 receptor contributes to proliferation, migration and invasion in NSCLC cells. OncoTargets Ther., 2020, 13, 2139-2151.
[http://dx.doi.org/10.2147/OTT.S244339]
[17]
Arbane, G.; Tropman, D.; Jackson, D.; Garrod, R. Evaluation of an early exercise intervention after thoracotomy for non-small cell lung cancer (NSCLC), effects on quality of life, muscle strength and exercise tolerance: Randomised controlled trial. Lung Cancer, 2011, 71(2), 229-234.
[http://dx.doi.org/10.1016/j.lungcan.2010.04.025] [PMID: 20541832]
[18]
Xu, Q-L.; Li, H.; Zhu, Y-J.; Xu, G. The treatments and postoperative complications of esophageal cancer: A review. J. Cardiothorac. Surg., 2020, 15(1), 163.
[http://dx.doi.org/10.1186/s13019-020-01202-2] [PMID: 32631428]
[19]
Voss, R.K.; Lin, J.C.; Roper, M.T. Adjuvant chemotherapy does not improve recurrence-free survival in patients with stage 2 or stage 3 rectal cancer after neoadjuvant chemoradiotherapy and total mesorectal excision. Dis. Colon Rectum, 2020, 63(4), 427-440.
[http://dx.doi.org/10.1097/DCR.0000000000001558] [PMID: 31996583]
[20]
Baldini, E.; Tibaldi, C.; Delli Paoli, C. Chemo-radiotherapy integration in unresectable locally advanced non-small-cell lung cancer: A review. Clin. Transl. Oncol., 2020, 22(10), 1681-1686.
[http://dx.doi.org/10.1007/s12094-020-02326-6] [PMID: 32128671]
[21]
Silvestri, G.A.; Gonzalez, A.V.; Jantz, M.A. Methods for staging non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. In: Chest; , 2013; 143, pp. (5 Suppl.)e211S-e250S.
[http://dx.doi.org/10.1378/chest.12-2355] [PMID: 23649440]
[22]
Majumder, J.; Taratula, O.; Minko, T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev., 2019, 144, 57-77.
[http://dx.doi.org/10.1016/j.addr.2019.07.010] [PMID: 31400350]
[23]
Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[24]
Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R.K. Employment of enhanced permeability and retention effect (EPR): Na-noparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C, 2019, 98, 1252-1276.
[http://dx.doi.org/10.1016/j.msec.2019.01.066] [PMID: 30813007]
[25]
Bamburowicz-Klimkowska, M.; Poplawska, M.; Grudzinski, I.P. Nanocomposites as biomolecules delivery agents in nanomedicine. J. Nanobiotechnology, 2019, 17, 48.
[http://dx.doi.org/10.1186/s12951-019-0479-x]
[26]
Mosquera, J.; García, I.; Liz-Marzán, L.M. Cellular uptake of nanoparticles versus small molecules: A matter of size. Acc. Chem. Res., 2018, 51(9), 2305-2313.
[http://dx.doi.org/10.1021/acs.accounts.8b00292] [PMID: 30156826]
[27]
Golombek, S.K.; May, J-N.; Theek, B. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev., 2018, 130, 17-38.
[http://dx.doi.org/10.1016/j.addr.2018.07.007] [PMID: 30009886]
[28]
Song, Z.; Shi, Y.; Han, Q.; Dai, G. Endothelial growth factor receptor-targeted and reactive oxygen species-responsive lung cancer therapy by docetaxel and resveratrol encapsulated lipid-polymer hybrid nanoparticles. Biomed. Pharmacother., 2018, 105, 18-26.
[http://dx.doi.org/10.1016/j.biopha.2018.05.095] [PMID: 29843041]
[29]
Song, Y.; Cai, H.; Yin, T. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment. Int. J. Nanomedicine, 2018, 13, 1585-1600.
[http://dx.doi.org/10.2147/IJN.S155383] [PMID: 29588586]
[30]
Fornaguera, C; Castells-Sala, C; Borrós, S Unraveling polymeric nanoparticles cell uptake pathways: Two decades working to understand nanoparticles journey to improve gene therapy. In: Cell Biology and Translational Medicine; Springer, 2019; 9, pp. 117-138.
[31]
Minasyan, H. Phagocytosis and oxycytosis: Two arms of human innate immunity. Immunol. Res., 2018, 66(2), 271-280.
[http://dx.doi.org/10.1007/s12026-018-8988-5] [PMID: 29508205]
[32]
Li, H.; Tatematsu, K.; Somiya, M.; Iijima, M.; Kuroda, S. Development of a macrophage-targeting and phagocytosis-inducing bio-nanocapsule-based nanocarrier for drug delivery. Acta Biomater., 2018, 73, 412-423.
[http://dx.doi.org/10.1016/j.actbio.2018.04.023] [PMID: 29673839]
[33]
Zhao, Z.; Ukidve, A.; Krishnan, V.; Mitragotri, S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv. Drug Deliv. Rev., 2019, 143, 3-21.
[http://dx.doi.org/10.1016/j.addr.2019.01.002] [PMID: 30639257]
[34]
Muley, H.; Fadó, R.; Rodríguez-Rodríguez, R.; Casals, N. Drug uptake-based chemoresistance in breast cancer treatment. Biochem. Pharmacol., 2020, 177, 113959.
[http://dx.doi.org/10.1016/j.bcp.2020.113959] [PMID: 32272110]
[35]
Leonard, F.; Godin, B. Nanocarrier-based anticancer therapies with the focus on strategies for targeting the tumor microenvironment. Intracel-lular Delivery III; Springer, 2016, pp. 67-122.
[36]
Vanza, J.D.; Patel, R.B.; Patel, M.R. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. J. Drug Deliv. Sci. Technol., 2020, 60, 102070.
[http://dx.doi.org/10.1016/j.jddst.2020.102070]
[37]
Choudhury, H.; Gorain, B.; Pandey, M.; Khurana, R.K.; Kesharwani, P. Strategizing biodegradable polymeric nanoparticles to cross the biological barriers for cancer targeting. Int. J. Pharm., 2019, 565, 509-522.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.042] [PMID: 31102804]
[38]
Gharbavi, M; Amani, J; Kheiri-Manjili, H; Danafar, H; Sharafi, A. Niosome: A Promising Nanocarrier for Natural Drug Delivery through Blood-Brain Barrier. Adv Pharmacol Sci. 2018 Dec 11;, 2018, 6847971.
[http://dx.doi.org/10.1155/2018/6847971] [PMID: 30651728]
[39]
Payen, V.L.; Mina, E.; Van Hée, V.F.; Porporato, P.E.; Sonveaux, P. Monocarboxylate transporters in cancer. Mol. Metab., 2020, 33, 48-66.
[http://dx.doi.org/10.1016/j.molmet.2019.07.006] [PMID: 31395464]
[40]
Hui, Y.; Yi, X.; Hou, F. Role of nanoparticle mechanical properties in cancer drug delivery. ACS Nano, 2019, 13(7), 7410-7424.
[http://dx.doi.org/10.1021/acsnano.9b03924] [PMID: 31287659]
[41]
Yi, M.; Jiao, D.; Qin, S.; Chu, Q.; Wu, K.; Li, A. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol. Cancer, 2019, 18(1), 60.
[http://dx.doi.org/10.1186/s12943-019-0974-6] [PMID: 30925919]
[42]
Caballero Aguilar, L.M.; Silva, S.M.; Moulton, S.E. Growth factor delivery: Defining the next generation platforms for tissue engineering. J. Control. Release, 2019, 306, 40-58.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.028] [PMID: 31150750]
[43]
Meng, H.; Nel, A.E. Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer. Adv. Drug Deliv. Rev., 2018, 130, 50-57.
[http://dx.doi.org/10.1016/j.addr.2018.06.014] [PMID: 29958925]
[44]
Nair, H.B.; Sung, B.; Yadav, V.R.; Kannappan, R.; Chaturvedi, M.M.; Aggarwal, B.B. Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochem. Pharmacol., 2010, 80(12), 1833-1843.
[http://dx.doi.org/10.1016/j.bcp.2010.07.021] [PMID: 20654584]
[45]
Nance, E.; McKenna, M. Challenges and barriers. Nanoparticles for Biomedical Applications; Elsevier, 2020, pp. 89-107.
[http://dx.doi.org/10.1016/B978-0-12-816662-8.00007-2]
[46]
Ashfaq, U.A.; Riaz, M.; Yasmeen, E.; Yousaf, M.Z. Recent advances in nanoparticle-based targeted drug-delivery systems against cancer and role of tumor microenvironment. Crit Rev Therap Drug Carrier Syst, 2017, 344.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2017017845]
[47]
Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity, 2019, 51(1), 27-41.
[http://dx.doi.org/10.1016/j.immuni.2019.06.025] [PMID: 31315034]
[48]
Sumbal, S.; Javed, A.; Afroze, B. Circulating tumor DNA in blood: Future genomic biomarkers for cancer detection. Exp. Hematol., 2018, 65, 17-28.
[http://dx.doi.org/10.1016/j.exphem.2018.06.003] [PMID: 29940219]
[49]
Haider, T.; Sandha, K.K.; Soni, V.; Gupta, P.N. Recent advances in tumor microenvironment associated therapeutic strategies and evaluation mod-els. Mater. Sci. Eng. C, 2020, 116, 111229.
[http://dx.doi.org/10.1016/j.msec.2020.111229] [PMID: 32806313]
[50]
Haider, T.; Tiwari, R.; Vyas, S.P.; Soni, V. Molecular determinants as therapeutic targets in cancer chemotherapy: An update. Pharmacol. Ther., 2019, 200, 85-109.
[http://dx.doi.org/10.1016/j.pharmthera.2019.04.011] [PMID: 31047907]
[51]
Nienhaus, K.; Wang, H.; Nienhaus, G. Nanoparticles for biomedical applications: Exploring and exploiting molecular interactions at the nano-bio interface. Mat Today Adv, 2020, 5, 100036.
[http://dx.doi.org/10.1016/j.mtadv.2019.100036]
[52]
Chakraborty, B.; Pal, R.; Ali, M. Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibro-sarcoma. Cell. Mol. Immunol., 2016, 13(2), 191-205.
[http://dx.doi.org/10.1038/cmi.2015.05] [PMID: 25938978]
[53]
Zaidi, S.; Misba, L.; Khan, A.U. Nano-therapeutics: A revolution in infection control in post antibiotic era. Nanomedicine, 2017, 13(7), 2281-2301.
[http://dx.doi.org/10.1016/j.nano.2017.06.015] [PMID: 28673854]
[54]
Assaraf, Y.G.; Brozovic, A.; Gonçalves, A.C. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist. Updat., 2019, 46, 100645.
[http://dx.doi.org/10.1016/j.drup.2019.100645] [PMID: 31585396]
[55]
Wu, S.; Fu, L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol. Cancer, 2018, 17(1), 25.
[http://dx.doi.org/10.1186/s12943-018-0775-3] [PMID: 29455646]
[56]
Mohammad, I.S.; He, W.; Yin, L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed. Pharmacother., 2018, 100, 335-348.
[http://dx.doi.org/10.1016/j.biopha.2018.02.038] [PMID: 29453043]
[57]
Mokwena, M.G.; Kruger, C.A.; Ivan, M-T.; Heidi, A. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer. Photodiagn. Photodyn. Ther., 2018, 22, 147-154.
[http://dx.doi.org/10.1016/j.pdpdt.2018.03.006] [PMID: 29588217]
[58]
Yoon, S.M.; Shaikh, T.; Hallman, M. Therapeutic management options for stage III non-small cell lung cancer. World J. Clin. Oncol., 2017, 8(1), 1-20.
[http://dx.doi.org/10.5306/wjco.v8.i1.1] [PMID: 28246582]
[59]
Terlizzi, M.; Colarusso, C.; Pinto, A.; Sorrentino, R. Drug resistance in non-small cell lung Cancer (NSCLC): Impact of genetic and non-genetic alterations on therapeutic regimen and responsiveness. Pharmacol. Ther., 2019, 202, 140-148.
[http://dx.doi.org/10.1016/j.pharmthera.2019.06.005] [PMID: 31226345]
[60]
Reuling, E.M.B.P.; Dickhoff, C.; Plaisier, P.W.; Bonjer, H.J.; Daniels, J.M.A. Endobronchial and surgical treatment of pulmonary carcinoid tumors: A systematic literature review. Lung Cancer, 2019, 134, 85-95.
[http://dx.doi.org/10.1016/j.lungcan.2019.04.016] [PMID: 31320001]
[61]
Tsubokawa, N.; Tsutani, Y.; Miyata, Y. Segmentectomy versus lobectomy for radiologically pure solid clinical T1a-bN0M0 lung cancer. World J. Surg., 2018, 42(8), 2493-2501.
[http://dx.doi.org/10.1007/s00268-018-4514-0] [PMID: 29423740]
[62]
Berfield, K.S.; Farjah, F.; Mulligan, M.S. Video-assisted thoracoscopic lobectomy for lung cancer. Ann. Thorac. Surg., 2019, 107(2), 603-609.
[http://dx.doi.org/10.1016/j.athoracsur.2018.07.088] [PMID: 30278164]
[63]
Yamaguchi, M.; Shimamatsu, S.; Edagawa, M. Pneumonectomy after induction chemoradiotherapy for locally advanced non-small cell lung cancer: Should curative intent pulmonary resection be avoided? Surg. Today, 2019, 49(3), 197-205.
[http://dx.doi.org/10.1007/s00595-018-1751-7] [PMID: 30610361]
[64]
Haque, W.; Verma, V.; Polamraju, P.; Farach, A.; Butler, E.B.; Teh, B.S. Stereotactic body radiation therapy versus conventionally fractionated radia-tion therapy for early stage non-small cell lung cancer. Radiother. Oncol., 2018, 129(2), 264-269.
[http://dx.doi.org/10.1016/j.radonc.2018.07.008] [PMID: 30031630]
[65]
Ramalingam, V.; Rajaram, R. A paradoxical role of reactive oxygen species in cancer signaling pathway: Physiology and pathology. Process Biochem., 2021, 100, 69-81.
[66]
Aznar, M.C.; Warren, S.; Hoogeman, M.; Josipovic, M. The impact of technology on the changing practice of lung SBRT. Phys. Med., 2018, 47, 129-138.
[http://dx.doi.org/10.1016/j.ejmp.2017.12.020] [PMID: 29331227]
[67]
Yue, TH; Xing, W 125I Seed brachytherapy combined with singleagent chemotherapy in the treatment of non-small-cell lung cancer in the elderly: A valuable solution. onco targets Ther, 2020, 13, 10581-10591.
[http://dx.doi.org/10.2147/OTT.S272898]
[68]
Heron, DE; Huq, MS; DABR, F Editors. stereotactic radiosurgery and stereotactic body radiation therapy (SBRT). Springer Publishing Company, 2018 Sep 2;
[69]
Dos Santos AlF, de Almeida DRQ, Terra LF, Baptista McS, Labriola L. Photodynamic therapy in cancer treatment-an update review. J. Cancer Metastasis Treat., 2019, 5, 25.
[70]
Callaghan, S.; Senge, M.O. The good, the bad, and the ugly-Controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy. Photochem. Photobiol. Sci., 2018, 17(11), 1490-1514.
[http://dx.doi.org/10.1039/C8PP00008E] [PMID: 29569665]
[71]
Chen, J.; Fan, T.; Xie, Z. Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials, 2020, 237, 119827.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119827] [PMID: 32036302]
[72]
Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol., 2020, 17(11), 657-674.
[http://dx.doi.org/10.1038/s41571-020-0410-2] [PMID: 32699309]
[73]
Chen, J.; Ning, C.; Zhou, Z. Nanomaterials as photothermal therapeutic agents. Prog. Mater. Sci., 2019, 99, 1-26.
[http://dx.doi.org/10.1016/j.pmatsci.2018.07.005] [PMID: 30568319]
[74]
Mukherjee, A.; Paul, M.; Mukherjee, S. Recent progress in the theranostics application of nanomedicine in lung cancer. Cancers (Basel), 2019, 11(5), 597.
[http://dx.doi.org/10.3390/cancers11050597] [PMID: 31035440]
[75]
Gao, Y.; Kraft, J.C.; Yu, D.; Ho, R.J.Y. Recent developments of nanotherapeutics for targeted and long-acting, combination HIV chemotherapy. Eur. J. Pharm. Biopharm., 2019, 138, 75-91.
[http://dx.doi.org/10.1016/j.ejpb.2018.04.014] [PMID: 29678735]
[76]
Ferioli, M.; Zauli, G.; Martelli, A.M. Impact of physical exercise in cancer survivors during and after antineoplastic treatments. Oncotarget, 2018, 9(17), 14005-14034.
[http://dx.doi.org/10.18632/oncotarget.24456] [PMID: 29568412]
[77]
Bahadoer, R.R.; Dijkstra, E.A.; van Etten, B. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): A random-ised, open-label, phase 3 trial. Lancet Oncol., 2021, 22(1), 29-42.
[http://dx.doi.org/10.1016/S1470-2045(20)30555-6] [PMID: 33301740]
[78]
Youn, Y.S.; Bae, Y.H. Perspectives on the past, present, and future of cancer nanomedicine. Adv. Drug Deliv. Rev., 2018, 130, 3-11.
[http://dx.doi.org/10.1016/j.addr.2018.05.008] [PMID: 29778902]
[79]
Uprety, D.; Mandrekar, S.J.; Wigle, D.; Roden, A.C.; Adjei, A.A. Neoadjuvant immunotherapy for non-small cell lung cancer-current concepts and future approaches. J. Thorac. Oncol., 2020.
[http://dx.doi.org/10.1016/j.jtho.2020.05.020]
[80]
Zeman, E.M.; Schreiber, E.C.; Tepper, J.E. Basics of radiation therapy. Abeloff’s Clinical Oncology; Elsevier, 2020, pp. 431-460.
[http://dx.doi.org/10.1016/B978-0-323-47674-4.00027-X]
[81]
Guo, F.; Zhang, H.; Jia, Z.; Cui, M.; Tian, J. Chemoresistance and targeting of growth factors/cytokines signalling pathways: Towards the devel-opment of effective therapeutic strategy for endometrial cancer. Am. J. Cancer Res., 2018, 8(7), 1317-1331.
[PMID: 30094104]
[82]
Sharma, P.; Mehta, M.; Dhanjal, D.S. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact., 2019, 309, 108720.
[http://dx.doi.org/10.1016/j.cbi.2019.06.033] [PMID: 31226287]
[83]
Zhuang, C; Guan, X; Ma, H; Cong, H; Zhang, W; Miao, Z Small molecule-drug conjugates: A novel strategy for cancer-targeted treatment. Eur. J. Med. Chem., 2019, 163, 883-895.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.035] [PMID: 30580240]
[84]
Cryer, A.M.; Thorley, A.J. Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol. Ther., 2019, 198, 189-205.
[http://dx.doi.org/10.1016/j.pharmthera.2019.02.010] [PMID: 30796927]
[85]
Wu, L.; Shan, W.; Zhang, Z.; Huang, Y. Engineering nanomaterials to overcome the mucosal barrier by modulating surface properties. Adv. Drug Deliv. Rev., 2018, 124, 150-163.
[http://dx.doi.org/10.1016/j.addr.2017.10.001] [PMID: 28989056]
[86]
Verma, M.; Sheoran, P.; Chaudhury, A. Application of nanotechnology for cancer treatment. In: Advances in animal biotechnology and its applications; Gahlawat, S.; Duhan, J.; Salar, R.; Siwach, P.; Kumar, S.; Kaur, P., Eds.; Singapore: Springer, 2018.
[http://dx.doi.org/10.1007/978-981-10-4702-210]
[87]
Bhatt, P.; Trehan, S.; Inamdar, N.; Mourya, V.K.; Misra, A. Polymers in drug delivery: An update. Applications of Polymers in Drug Delivery; Elsevier, 2021, pp. 1-42.
[88]
Moradi Kashkooli, F.; Soltani, M.; Souri, M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dy-namic targeting strategies. J. Control. Release, 2020, 327, 316-349.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.012] [PMID: 32800878]
[89]
Prajapati, S.K.; Jain, A.; Jain, A.; Jain, S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur. Polym. J., 2019, 120, 109191.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.08.018]
[90]
Sequeira, J.A.; Santos, A.C.; Serra, J.; Veiga, F.; Ribeiro, A.J. Poly (lactic-co-glycolic acid)(PLGA) matrix implants. Nanostructures for the Engineer-ing of Cells, Tissues and Organs; Elsevier, 2018, pp. 375-402.
[http://dx.doi.org/10.1016/B978-0-12-813665-2.00010-7]
[91]
Samadi, K.; Francisco, M.; Hegde, S. Mechanical, rheological and anaerobic biodegradation behavior of a Poly (lactic acid) blend contain-ing a Poly (lactic acid)-co-poly (glycolic acid) copolymer. Polym. Degrad. Stabil., 2019, 170, 109018.
[http://dx.doi.org/10.1016/j.polymdegradstab.2019.109018]
[92]
Deshmukh, K.; Sankaran, S.; Basheer Ahamed, M. Biomedical applications of electrospun polymer composite nanofibres. In: Polymer Nanocomposites in Biomedical Engineering. Lecture Notes in Bi-oengineering; Sadasivuni, K.; Ponnamma, D.; Rajan, M.; Ahmed, B.; Al-Maadeed, M., Eds.; Cham: Springer, 2019.
[http://dx.doi.org/10.1007/978-3-030-04741-2_5]
[93]
DeStefano, V.; Khan, S.; Tabada, A. Applications of PLA in modern medicine. Engineer Regenerat, 2020, 1, 76-87.
[http://dx.doi.org/10.1016/j.engreg.2020.08.002]
[94]
Deb, P.K.; Kokaz, S.F.; Abed, S.N.; Paradkar, A.; Tekade, R.K. Pharmaceutical and biomedical applications of polymers. In: Basic Fundamentals of Drug Delivery; Tekade, R.K., Ed.; Elsevier, 2019; pp. 203-267.
[http://dx.doi.org/10.1016/B978-0-12-817909-3.00006-6]
[95]
Yadav, H.; Karthikeyan, C. Natural polysaccharides: Structural features and properties. Polysaccharide Carriers for Drug Delivery; Elsevier, 2019, pp. 1-17.
[96]
Ali, A.; Ahmed, S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol., 2018, 109, 273-286.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.078] [PMID: 29248555]
[97]
Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an environment friendly biomaterial - a review on recent modifications and applications. Int. J. Biol. Macromol., 2020, 150, 1072-1083.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.113] [PMID: 31739057]
[98]
Agrawal, M.; Saraf, S.; Saraf, S. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J. Control. Release, 2020, 321, 372-415.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.020] [PMID: 32061621]
[99]
Li, K.; Nejadnik, H.; Daldrup-Link, H.E. Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discov. Today, 2017, 22(9), 1421-1429.
[http://dx.doi.org/10.1016/j.drudis.2017.04.008] [PMID: 28454771]
[100]
Wang, J.; Su, G.; Yin, X. Non-small cell lung cancer-targeted, redox-sensitive lipid-polymer hybrid nanoparticles for the delivery of a second-generation irreversible epidermal growth factor inhibitor-Afatinib: In vitro and in vivo evaluation. Biomed. Pharmacother., 2019, 120, 109493.
[http://dx.doi.org/10.1016/j.biopha.2019.109493] [PMID: 31586902]
[101]
Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Seminars in cancer biology; Woodman, C.; Vundu, G.; George, A.; Wilson, C.M., Eds.; Elsevier, 2020.
[102]
Saokar, S.; Saudagar, R. Nanoparticle in pharmaceutical drug delivery system: A review. J. Drug Deliv. Ther., 2019, 9(3), 543-548.
[103]
Kalaydina, R-V.; Bajwa, K.; Qorri, B.; Decarlo, A.; Szewczuk, M.R. Recent advances in “smart” delivery systems for extended drug release in can-cer therapy. Int. J. Nanomedicine, 2018, 13, 4727-4745.
[http://dx.doi.org/10.2147/IJN.S168053] [PMID: 30154657]
[104]
Le, N.T.T.; Cao, V.D.; Nguyen, T.N.Q.; Le, T.T.H.; Tran, T.T.; Hoang Thi, T.T. Soy lecithin-derived liposomal delivery systems: Surface modification and current applications. Int. J. Mol. Sci., 2019, 20(19), 4706.
[http://dx.doi.org/10.3390/ijms20194706] [PMID: 31547569]
[105]
Huda, S.; Alam, M.A.; Sharma, P.K. Smart nanocarriers-based drug delivery for cancer therapy: An innovative and developing strategy. J. Drug Deliv. Sci. Technol., 2020, 60, 102018.
[http://dx.doi.org/10.1016/j.jddst.2020.102018]
[106]
Saraf, S.; Jain, A.; Tiwari, A.; Verma, A.; Panda, P.K.; Jain, S.K. Advances in liposomal drug delivery to cancer: An overview. J. Drug Deliv. Sci. Technol., 2020, 56, 101549.
[http://dx.doi.org/10.1016/j.jddst.2020.101549]
[107]
Wang, N.; Chen, M.; Wang, T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J. Control. Release, 2019, 303, 130-150.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.025] [PMID: 31022431]
[108]
Skupin-Mrugalska, P. Liposome-based drug delivery for lung cancer. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Can-cer; Elsevier, 2019, pp. 123-160.
[109]
Alavi, M.; Varma, R.S. Overview of novel strategies for the delivery of anthracyclines to cancer cells by liposomal and polymeric nanoformu-lations. Int. J. Biol. Macromol., 2020, 164, 2197-2203.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.274] [PMID: 32763404]
[110]
Lagoa, R.; Silva, J.; Rodrigues, J.R.; Bishayee, A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol. Adv., 2020, 38, 107382.
[http://dx.doi.org/10.1016/j.biotechadv.2019.04.004] [PMID: 30978386]
[111]
Liao, Z.; Wong, S.W.; Yeo, H.L.; Zhao, Y. Nanocarriers for cancer treatment: Clinical impact and safety. NanoImpact, 2020, 20, 100253.
[http://dx.doi.org/10.1016/j.impact.2020.100253]
[112]
Norouzi, M.; Hardy, P. Clinical applications of nanomedicines in lung cancer treatment. Acta Biomater., 2021, 121, 134-142.
[PMID: 33301981]
[113]
Abri Aghdam, M.; Bagheri, R.; Mosafer, J. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled re-lease. J. Control. Release, 2019, 315, 1-22.
[http://dx.doi.org/10.1016/j.jconrel.2019.09.018] [PMID: 31647978]
[114]
Squillaro, T.; Cimini, A.; Peluso, G.; Giordano, A.; Melone, M.A.B. Nano-delivery systems for encapsulation of dietary polyphenols: An experi-mental approach for neurodegenerative diseases and brain tumors. Biochem. Pharmacol., 2018, 154, 303-317.
[http://dx.doi.org/10.1016/j.bcp.2018.05.016] [PMID: 29803506]
[115]
Dahanayake, M.H.; Jayasundera, A.C.A. Nano-based drug delivery optimization for tuberculosis treatment: A review. J. Microbiol. Methods, 2021, 181, 106127.
[http://dx.doi.org/10.1016/j.mimet.2020.106127] [PMID: 33359155]
[116]
Javanbakht, S.; Namazi, H. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater. Sci. Eng. C, 2018, 87, 50-59.
[http://dx.doi.org/10.1016/j.msec.2018.02.010] [PMID: 29549949]
[117]
Imran, M.; Shah, M.R. Amphiphilic block copolymers-Based micelles for drug delivery; Design and Development of New Nanocarriers. Else-vier, 2018, pp. 365-400.
[118]
Sur, S.; Rathore, A.; Dave, V.; Reddy, K.R.; Chouhan, R.S.; Sadhu, V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures Nano-Objects, 2019, 20, 100397.
[http://dx.doi.org/10.1016/j.nanoso.2019.100397]
[119]
Ghezzi, M.; Pescina, S.; Padula, C. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assess-ment in biorelevant conditions. J. Control. Release, 2021, 332, 312-336.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[120]
Rana, M.; Jain, A.; Rani, V.; Chowdhury, P. Glutathione capped core/shell CdSeS/ZnS quantum dots as a medical imaging tool for cancer cells. Inorg. Chem. Commun., 2020, 112, 107723.
[http://dx.doi.org/10.1016/j.inoche.2019.107723]
[121]
Laíns, I.; Gantner, M.; Murinello, S. Metabolomics in the study of retinal health and disease. Prog. Retin. Eye Res., 2019, 69, 57-79.
[http://dx.doi.org/10.1016/j.preteyeres.2018.11.002] [PMID: 30423446]
[122]
Drakopanagiotakis, F.; Wujak, L.; Wygrecka, M.; Markart, P. Biomarkers in idiopathic pulmonary fibrosis. Matrix Biol., 2018, 68-69, 404-421.
[http://dx.doi.org/10.1016/j.matbio.2018.01.023] [PMID: 29408012]
[123]
Varghese, R.J.; Parani, S.; Thomas, S.; Oluwafemi, O.S.; Wu, J. Introduction to nanomaterials: Synthesis and applications. Nanomaterials for Solar Cell Applications; Elsevier, 2019, pp. 75-95.
[http://dx.doi.org/10.1016/B978-0-12-813337-8.00003-5]
[124]
Kesharwani, P.; Gothwal, A.; Iyer, A.K.; Jain, K.; Chourasia, M.K.; Gupta, U. Dendrimer nanohybrid carrier systems: An expanding horizon for targeted drug and gene delivery. Drug Discov. Today, 2018, 23(2), 300-314.
[http://dx.doi.org/10.1016/j.drudis.2017.06.009] [PMID: 28697371]
[125]
Dallavalle, S.; Dobričić, V.; Lazzarato, L. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist. Updat., 2020, 50, 100682.
[http://dx.doi.org/10.1016/j.drup.2020.100682] [PMID: 32087558]
[126]
Dey, R.S.; Purkait, T.; Kamboj, N.; Das, M. Carbonaceous Materials and Future Energy: Clean and Renewable Energy Sources; CRC Press, 2019.
[http://dx.doi.org/10.1201/9781351120784]
[127]
Liu, X.; Xue, L.; Lu, Y.; Xia, Y.; Li, Q. Fabrication of polypyrrole/multi-walled carbon nanotubes composites as high performance electrodes for supercapacitors. J. Electroanal. Chem. (Lausanne), 2020, 862, 114006.
[http://dx.doi.org/10.1016/j.jelechem.2020.114006]
[128]
Hato, M.J. Polymer-based magnetic nanocomposites for the removal of highly toxic hexavalent chromium from aqueous solutions. In: advanced nanostructured materials for environmental remediation. Environmental Chemistry for a Sustainable World; Naushad, M.; Rajendran, S.; Gracia, F., Eds.; Springer: Cham, 2019; Vol. 25, .
[http://dx.doi.org/10.1007/978-3-030-04477-0_8]
[129]
Bisso, S.; Leroux, J-C. Nanopharmaceuticals: A focus on their clinical translatability. Int. J. Pharm., 2020, 578, 119098.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119098] [PMID: 32018018]
[130]
Basak, G.; Hazra, C.; Sen, R. Biofunctionalized nanomaterials for in situ clean-up of hydrocarbon contamination: A quantum jump in global bioremediation research. J. Environ. Manage., 2020, 256, 109913.
[http://dx.doi.org/10.1016/j.jenvman.2019.109913] [PMID: 31818738]
[131]
Yang, K.; Zhang, S.; He, J.; Nie, Z. Polymers and inorganic nanoparticles: A winning combination towards assembled nanostructures for cancer imaging and therapy. Nano Today, 2021, 36, 101046.
[http://dx.doi.org/10.1016/j.nantod.2020.101046]
[132]
Yu, Y.; Miyako, E. Alternating-magnetic-field-mediated wireless manipulations of a liquid metal for therapeutic bioengineering. iScience, 2018, 3, 134-148.
[http://dx.doi.org/10.1016/j.isci.2018.04.012] [PMID: 30428316]
[133]
Sadhasivam, J.; Sugumaran, A. Magnetic nanocarriers: Emerging tool for the effective targeted treatment of lung cancer. J. Drug Deliv. Sci. Technol., 2020, 55, 101493.
[http://dx.doi.org/10.1016/j.jddst.2019.101493]
[134]
Tian, T.; Shu, B.; Jiang, Y.; Ye, M.; Liu, L.; Guo, Z. An ultralocalized cas13a assay enables universal and nucleic acid amplification-free sin-gle-molecule RNA diagnostics. ACS Nano, 2020.
[PMID: 33498106]
[135]
Abid, S.; Hussain, T.; Raza, Z.A.; Nazir, A. Current applications of electrospun polymeric nanofibers in cancer therapy. Mater. Sci. Eng. C, 2019, 97, 966-977.
[http://dx.doi.org/10.1016/j.msec.2018.12.105] [PMID: 30678985]
[136]
Mellatyar, H.; Talaei, S.; Pilehvar-Soltanahmadi, Y. 17-DMAG-loaded nanofibrous scaffold for effective growth inhibition of lung cancer cells through targeting HSP90 gene expression. Biomed. Pharmacother., 2018, 105, 1026-1032.
[http://dx.doi.org/10.1016/j.biopha.2018.06.083] [PMID: 30021337]
[137]
Heng, W.S.; Gosens, R.; Kruyt, F.A.E. Lung cancer stem cells: Origin, features, maintenance mechanisms and therapeutic targeting. Biochem. Pharmacol., 2019, 160, 121-133.
[http://dx.doi.org/10.1016/j.bcp.2018.12.010] [PMID: 30557553]
[138]
Iqbal, M.A.; Arora, S.; Prakasam, G.; Calin, G.A.; Syed, M.A. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol. Aspects Med., 2019, 70, 3-20.
[http://dx.doi.org/10.1016/j.mam.2018.07.003] [PMID: 30102929]
[139]
New discoveries of mdig in the epigenetic regulation of cancers Seminars in cancer biology; Zhang, Q.; Thakur, C.; Shi, J.; Sun, J.; Fu, Y.; Stemmer, P., Eds.; Elsevier, 2019.
[140]
Kale, V.P.; Gilhooley, P.J.; Phadtare, S.; Nabavizadeh, A.; Pandey, M.K. Role of Gambogic Acid in Chemosensitization of Cancer Role of Nutraceu-ticals in Cancer Chemosensitization; Elsevier, 2018, pp. 151-167.
[141]
Yoneda, K.; Tanaka, F. Molecular diagnosis and targeting for lung cancer. Molecular Diagnosis and Targeting for Thoracic and Gastrointestinal Malignancy; Springer, 2018, pp. 1-32.
[142]
Gelatti, A.C.Z.; Drilon, A.; Santini, F.C. Optimizing the sequencing of tyrosine kinase inhibitors (TKIs) in epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC). Lung Cancer, 2019, 137, 113-122.
[http://dx.doi.org/10.1016/j.lungcan.2019.09.017] [PMID: 31568888]
[143]
Saad, M.I.; Rose-John, S.; Jenkins, B.J. ADAM17: An emerging therapeutic target for lung cancer. Cancers (Basel), 2019, 11(9), 1218.
[http://dx.doi.org/10.3390/cancers11091218] [PMID: 31438559]
[144]
Baum, J.E.; Saqi, A.; Heymann, J.J. Non-small cell lung carcinoma: Molecular genetics with consideration of cytologic samples. Diagn. Histopathol., 2018, 24(10), 388-396.
[http://dx.doi.org/10.1016/j.mpdhp.2018.08.003]
[145]
Dholaria, B.; Hammond, W.; Shreders, A.; Lou, Y. Emerging therapeutic agents for lung cancer. J. Hematol. Oncol., 2016, 9(1), 138.
[http://dx.doi.org/10.1186/s13045-016-0365-z] [PMID: 27938382]
[146]
Camidge, D.R.; Dziadziuszko, R.; Peters, S. Updated efficacy and safety data and impact of the EML4-ALK fusion variant on the efficacy of alectinib in untreated ALK-positive advanced Non–Small cell lung cancer in the global phase III ALEX study. J. Thorac. Oncol., 2019, 14(7), 1233-1243.
[http://dx.doi.org/10.1016/j.jtho.2019.03.007] [PMID: 30902613]
[147]
Facchinetti, F.; Friboulet, L. Profile of entrectinib and its potential in the treatment of ROS1-positive NSCLC: Evidence to date. Lung Cancer (Auckl.), 2019, 10, 87-94.
[http://dx.doi.org/10.2147/LCTT.S190786] [PMID: 31572036]
[148]
Blumenschein, G.R., Jr; Mills, G.B.; Gonzalez-Angulo, A.M. Targeting the hepatocyte growth factor-cMET axis in cancer therapy. J. Clin. Oncol., 2012, 30(26), 3287-3296.
[http://dx.doi.org/10.1200/JCO.2011.40.3774] [PMID: 22869872]
[149]
Alvarez, J.G.B.; Otterson, G.A. Agents to treat BRAF-mutant lung cancer. Drugs Context, 2019, 8, 212566.
[PMID: 30899313]
[150]
Kayatani, H.; Ohashi, K.; Ninomiya, K. Beneficial effect of erlotinib and trastuzumab emtansine combination in lung tumors harboring EGFR mutations. Biochem. Biophys. Res. Commun., 2020, 532(3), 341-346.
[http://dx.doi.org/10.1016/j.bbrc.2020.07.055] [PMID: 32888648]
[151]
Rosas, G.; Ruiz, R.; Araujo, J.M.; Pinto, J.A.; Mas, L. ALK rearrangements: Biology, detection and opportunities of therapy in non-small cell lung cancer. Crit. Rev. Oncol. Hematol., 2019, 136, 48-55.
[http://dx.doi.org/10.1016/j.critrevonc.2019.02.006] [PMID: 30878128]
[152]
Testa, U.; Castelli, G.; Pelosi, E. Lung cancers: Molecular characterization, clonal heterogeneity and evolution, and cancer stem cells. Cancers (Basel), 2018, 10(8), 248.
[http://dx.doi.org/10.3390/cancers10080248] [PMID: 30060526]
[153]
Román, M.; Baraibar, I.; López, I. KRAS oncogene in non-small cell lung cancer: Clinical perspectives on the treatment of an old target. Mol. Cancer, 2018, 17(1), 33.
[http://dx.doi.org/10.1186/s12943-018-0789-x] [PMID: 29455666]
[154]
Naghizadeh, S.; Mohammadi, A.; Baradaran, B.; Mansoori, B. Overcoming multiple drug resistance in lung cancer using siRNA targeted therapy. Gene, 2019, 714, 143972.
[http://dx.doi.org/10.1016/j.gene.2019.143972] [PMID: 31301483]
[155]
Buckingham, L. Molecular diagnostics: Fundamentals, methods and clinical applications; FA Davis, 2019.
[156]
Lamberti, G.; Andrini, E.; Sisi, M. Beyond EGFR, ALK and ROS1: Current evidence and future perspectives on newly targetable oncogen-ic drivers in lung adenocarcinoma. Crit. Rev. Oncol. Hematol., 2020, 156, 103119.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103119] [PMID: 33053439]
[157]
Giopanou, I.; Pintzas, A. RAS and BRAF in the foreground for non-small cell lung cancer and colorectal cancer: Similarities and main differ-ences for prognosis and therapies. Crit. Rev. Oncol. Hematol., 2020, 146, 102859.
[http://dx.doi.org/10.1016/j.critrevonc.2019.102859] [PMID: 31927392]
[158]
Orlando, E.; Aebersold, D.M.; Medová, M.; Zimmer, Y. Oncogene addiction as a foundation of targeted cancer therapy: The paradigm of the MET receptor tyrosine kinase. Cancer Lett., 2019, 443, 189-202.
[http://dx.doi.org/10.1016/j.canlet.2018.12.001] [PMID: 30550851]
[159]
Ricordel, C.; Friboulet, L.; Facchinetti, F.; Soria, J-C. Molecular mechanisms of acquired resistance to third-generation EGFR-TKIs in EGFR T790M-mutant lung cancer. Ann. Oncol., 2018, 29(Suppl. 1), i28-i37.
[http://dx.doi.org/10.1093/annonc/mdx705] [PMID: 29462256]
[160]
Deshantri, A.K.; Varela Moreira, A.; Ecker, V. Nanomedicines for the treatment of hematological malignancies. J. Control. Release, 2018, 287, 194-215.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.034] [PMID: 30165140]
[161]
Anastasiadou, E.; Jacob, L.S.; Slack, F.J. Non-coding RNA networks in cancer. Nat. Rev. Cancer, 2018, 18(1), 5-18.
[http://dx.doi.org/10.1038/nrc.2017.99] [PMID: 29170536]
[162]
Kotler, E.; Shani, O.; Goldfeld, G.; Lotan-Pompan, M.; Tarcic, O.; Gershoni, A. A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol. Cell, 2018, 71(1), 178-190.
[163]
Wang, J.; Li, H. CircRNA circ_0067934 silencing inhibits the proliferation, migration and invasion of NSCLC cells and correlates with unfa-vorable prognosis in NSCLC. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(10), 3053-3060.
[PMID: 29863250]
[164]
Leite, M.L.; da Cunha, N.B.; Costa, F.F. Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treat-ment. Pharmacol. Ther., 2018, 183, 160-176.
[http://dx.doi.org/10.1016/j.pharmthera.2017.10.010] [PMID: 29024740]
[165]
Wang, J.; Bai, J.; Al-Jamal, K. Applications of magnetic nanoparticles in multi-modal imaging. Ther Image Guided Drug Deliv, 2018, 63, 53-85.
[http://dx.doi.org/10.1039/9781788010597-00053]
[166]
Seeta Rama Raju, G.; Benton, L.; Pavitra, E.; Yu, J.S. Multifunctional nanoparticles: Recent progress in cancer therapeutics. Chem. Commun. (Camb.), 2015, 51(68), 13248-13259.
[http://dx.doi.org/10.1039/C5CC04643B] [PMID: 26234539]
[167]
Abdullaeva, Z. Nanomaterials in Medicine Nanomaterials in Daily Life; Springer, 2017, pp. 67-89.
[http://dx.doi.org/10.1007/978-3-319-57216-1_4]
[168]
Dhanjal, D.S.; Mehta, M.; Chopra, C.; Singh, R.; Sharma, P.; Chellappan, D.K. Novel Controlled release pulmonary drug delivery systems: Current updates and challenges. Modeling and Control of Drug Delivery Systems; Elsevier, 2021, pp. 253-272.
[169]
Carrasco-Esteban, E; Domínguez-Rullán, JA; Barrionuevo-Castillo, P Current role of nanoparticles in the treatment of lung cancer. J Clin Transl Res, 2021 Mar 16;7(2), 140-155.
[PMID: 34104817] [PMCID: PMC8177846]
[170]
Owen, D.H.; Williams, T.M.; Bertino, E.M. Homologous recombination and DNA repair mutations in patients treated with carboplatin and nab-paclitaxel for metastatic non-small cell lung cancer. Lung Cancer, 2019, 134, 167-173.
[http://dx.doi.org/10.1016/j.lungcan.2019.06.017] [PMID: 31319977]
[171]
Indoria, S.; Singh, V.; Hsieh, M.F. Recent advances in theranostic polymeric nanoparticles for cancer treatment: A review. Int. J. Pharm., 2020, 582, 119314.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119314] [PMID: 32283197]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy